Série de TD N⁰ 1

Exercice 1

Soient
$$A = \begin{pmatrix} -7 & 2 \\ 0 & -1 \\ 1 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 21 & -6 \\ 0 & 3 \\ -3 & 12 \end{pmatrix}$, $D = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ et $E = \begin{pmatrix} 1 & 2 \\ -3 & 0 \\ -8 & 6 \end{pmatrix}$

des matrices à coefficients dans R

- 1. Donner le type (la taille) de chaque matrice.
- 2. Calculer toutes les sommes possibles de deux de ces matrices.
- 3. Calculer 3A + 2C, 5B 4D et trouver le scalaire α tel que $A \alpha C$ soit la matrice nulle.
- 4. Calculer tous les produits possibles de deux de ces matrices.
- 5. Calculer tous les carrés possibles de ces matrices.

(Justifier à chaque fois pourquoi on peut ou on ne peut pas faire les calculs)

Exercice 2

1. Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (a) Calculer A^2 , A^3 et A^4 .
- (b) En déduire une formule pour A^p , $p \in \mathbb{N}$. (Vérifier le résultat obtenu par récurrence pour tout $p \in \mathbb{N}$).

2. Soient
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}) \ et \ N = A - I_4.$$

- (a) Montrer que la matrice N est nilpotente 1 .
- (b) À l'aide de la formule du binôme de Newton², calculer A^p pour $p \in \mathbb{N}$.

Exercice 3

1. Soient
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$. Calculer A^{-1} , B^{-1} , $(AB)^{-1}$, $(BA)^{-1}$ et A^{-2} .

2. Calculer l'inverse de la matrice
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
.

3. Soit
$$A = \begin{pmatrix} -1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (a) Claculer $2A A^2$.
- (b) En déduire sans faire les calculs l'inverse A^{-1} de A.

2.
$$(A+B)^n = \sum_{k=0}^n \binom{p}{k} A^{p-k} B^k$$
 à condition que $AB = BA$!

^{1.} Une matrice N est nilpotente s'il existe un $k \in \mathbb{N}$ tel que $A^k = 0$.

^{3.} On note par : $A^{-p} = (A^p)^{-1}$.