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1-Real Numbers

1.1-Introduction.

Numbers are a central element in mathematics. Among the different types of numbers, the
set N = {0,1,2, ... } of natural numbers, the set Z=NU (—N) [m € (—N) @3 neN;m =
—n of relative numbers and the set @ of rational numbers, that is: 7€@, if there are
(p,q) € Z X N*, p and q are prime to each other (p A ¢ = 1), such that r = S. Starting from

Q, whose well-known properties are assumed, namely, (Q, +, ., <) is a totally ordered set, the
total order relation <, defined on Q is compatible with the addition + and the multiplication X,
and that Q is Archimidean i.c., Vr € Q" there exists n € N*, such that r < n . The need to

introduce a larger set than Q, is motivated by the fact that V2 € Q. Indeed, if there exists peZ
and geN* with p A ¢ = 1, such that p? = 2 g2, then 2 divides p?, as the square of an odd
number is odd, also 2 divides p, so there exists p'eZ, such that p = 2p’, hence 2p” = q?and
therefore 2 divides g, contradiction. Also, the two numbers e and 7t are not rational. In
general, if p is a prime number, then \/5 is not an rational number,...etc. Such numbers are
called irrational numbers. The union of rational numbers and irrational numbers constitutes

the set R of real numbers. The object of the following section, is to define the set of real
numbers by a series of axioms, and to give a second motivation for the introduction of this set.

1.2-Axiomatic definition of real numbers.

Since, the set of real numbers, was introduced to complete the set Q of rational numbers,
then we say that x is a real number if either (x € Q), or (x € Q, x is said to be an irrational
number). The intuition of their existence is ancient (since Pythagoras and his proof of the
irrationality of v/2). Their rigorous construction, dating from the 19iem century by Cantor
and Dedekine. Note that we can define a real number from its decimal development, i.e. a real
x can be seen as a relative integer constituting its integer part, separated by a comma,
followed by an infinity of digits constituting its decimal part for example:

m = 3.1415926536.. .. This definition called arithmetic representation of a real number poses
a certain number of problems. Also, a real number can be defined as a limit of the so-called
Cauchy sequences in Q (the density of Q in R). One of the simplest definitions of R is the
following axiomatic definition.

Definition 1.1. The set R of real numbers, provided with two internal laws: the addition noted
+, the multiplication noted x. and the ordering or a comparison relation noted < (lower or
equal), satisfies the following axioms.

1-(R*, +,X) is a commutative field.

The addition is such that (R, +) is an Abelian group.

a;)) vVx,y,z €ER, (x +y) + z = x + (y + z). The addition is associative.

a;) Vx,y € R, x + y = y + x. The addition is commutative.

a3) Vx € R, x + 0 = 0. 0 is a neutral element for addition.

a,) Vx € R, x + (—x) = 0. Each element x admits a symmetric for the addition noted

—-x €ER.

The multiplication is such that (R*,X), is an Abelian group, (R* = R\ {0}).

as) Vx,y,z € R, (x X y) X z = x X (y X z). Multiplication is associative.

as) Vx,y € R, x X y = y X x. Multiplication is commutative.

a;) Vx € R, x X 1 = x. 1 is a neutral element for multiplication.

ag) Vx € R*, x X x~1 = 1. Each element x in R* admits the reverse for the multiplication,

1
noted x 1 or— € R*.
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Multiplication is distributive with respect to addition.

a) Vx,y,zER x X (y+2) = (x Xy) + (x X 2).

2-(R, <)is completely ordered.

a10) Vx € R, x < x. The ordering is reflexive.

a11) Vx,y,z € R, if (x < yand y < z) then x < z. The ordering is transitive.

a12) Vx,y € R, if (x < yand y < x) then (x = y). The ordering is antisymmetric.

a13) Vx,y € R, x < y or y < x. The comparison relation is a total ordering.

For every x,y € R, we write x < y (x is less than or equal to y) or equivalently y = x (y is
upper than or equal to x), and the ordering (x < y; x # y) is written (x < y) (x is less than
y), or (y is upper than x).

A real number x is said to be positive if 0 < x, the set of positive real numbers is denoted by
R%, x is said to be negative if x < 0, the set of negative real numbers is denoted by R”. In the
sequel, for every x,y € R, we write x — y instead of x + (—y) and xy instead of x X y.
3-Compatibility of the ordering < with addition and multiplication.

a14) Vx,y,x",y' € R, satisfying (x < yand x' < y"), we have (x + x <y +y'). The
ordering < is compatible with addition.

a;s) Vx,y,x',y" € R*, satisfying (x < y and x’' < y"), we have (xx" < yy"). The ordering <
is compatible with multiplication.

As a consequence: for every x,y in R, (if x < y then —y < —x) and for every x, y in R*, (if
x <ytheny ' < x7).

1.3-Intervals, absolute value, bounded parts
Definition 1.2. A non-empty part E in R is an interval if, Vx, y € E satisfying x < y, there
exists z € E such thatx <y < z.
If a, b and x, are three real numbers such that: a < xq < b. The unbounded open intervals of
Rare: | — oo, a[, |b, +o[, R =] — o, +x[, and the open bounded interval of R is ]a, b[. The
unbounded closed intervals of R are: | — oo, a], [b, +[, R =] — o0, +oo[ and the closed
bounded interval of R is [a, b]. Neither open nor closed bounded intervals of R are ]a, b],
[a, b[. In the case where a = b, [a, a] = {a} and ]a, a[= @. The numbers a and b are called
the limits of the interval and b — a is its length. The total order relation makes it possible to
define the absolute value function in R.
Definition 1.3. The absolute value in R, is a function noted |. |, defined from R to R, by:
Vx € R, |x]| ={x’lf.OSX;

’ —x,ifx <0,
As a direct consequence we have:
Vx ER, (x < |x|) and if ¢ € R, (fixed), (x| <ae= —a<x<a).
Proposition 1.1. The following are true, for every x,y € R:
D(|x]=0<= x=0).
2) |xy| = Ix|ly|. So, |x?| = |x|* = x*.
3) |x +y| < |x| + |y|, (triangular inequality).
4) [lx] = Iyl = |x = yl.
Proof. 1) evident. 2) if x and y have the same sign, then |xy| = xy. In the case where
x,¥ € Ry, |x| = x and |y| = y, and in the case where x,y € R_, |x| = —x and |y| = —y, so
in both cases |x||y| = xy. If x and y are of different signs, then |xy| = —(xy). In the case
where for example x € R, and y € R_, |[x| = x and |y| = —y, then |x||y| = x(—y) =
—(xy). 3) Since, from, 2) Vz € R, |z|? = z2 then for any x,y € R, we have |x + y|? = (x +
y)? = |x|?+ 2xy + |y|* < [x|* + 2|x||y[ + |y]* = (x| + [y]?s0 |x + y| < [x] + [y]. 4) We
demonstrate in the same way that: Vx,y € R, |[x| — |y|| < |x + y|, and by replacing y by
(—y) in the last inequality, we get the result.
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Definition 1.4 Let E be a non-empty part of R. We say that:
i) E is bounded above, if there is a real number M such that, Vx € E,x < M, in this case M is
called an upper bound of E.
ii) E is bounded below, if there is a real number m such that, Vx € E,m < x, in this case m is
called a lower bound of E.
iii) E is bounded, if E is both bounded above and below. Equivalently: E is bounded<there
exists a € R,, such that Vx € E, |x| < a.
Remark 1.1
a) If M is an upper bound of E, any element greater than M is also an upper bound of E.
When E is bounded above, the least upper bound of E is called the supremum of E, and
denoted by supE, or maxE if it belongs to E. The supE when it exists, it is unique.
b) If m is a lower bound of E, any element less than m is also a lower bound of E. When E is
bounded below, the first lower bound of E is called the infimum of E and denoted by infE,
or minE if it belongs to E. The infE when it exists, it is unique.
¢) In the case where a non-empty part E of R is bounded, [infE, supE] is the smallest closed
interval containing E.
Let us end the axiomatic definition of R, by the following.
4-Axiom of the upper bound.
a16) Any non empty, bounded above (respectively bounded below) part of R, has an
supremum (respectively an infimum).
Remark 1.2. If x,y € R such that x < y + &, Ve > 0, then x < y. Indeed, suppose that x>y
then for ¢ = x — y, we have x < y + x — y = x, contradiction.
Proposition 1.2. Let E be a bounded part of R, My and m, two real numbers, then:

DHVx €ER x < My
1) Mo = supE <= {ii) Ve > 0, there exists x, € E, such that My — ¢ < x,.
. DHVx € R,my < x;
2)mo = infk < {ii) Ve > 0, there exists x, € E, such that x, < my + «.
Proof. 1) Since M, is the an upper bound of E, then i) Vx € E,x < M,. To demonstrate ii),
suppose that there exists € > 0, such that Vx € E,x < My — ¢, that is My — € is an upper
bound of E less than M, contradiction with the definition of supE. Reciprocally i) implies
that M, is an upper bound of E.To demonstrate that My is the least upper bound of E, suppose
that there exists My < M, such that My = supE. According to i) and ) Ve > 0, there exists
xg € E, such that My — & < x, < My < My, so My < M, + &, using the remark 1.2, we get
M, = M,. Property 2) is demonstrated in the same way.
Example 1.1.
a) If, E = {—1,0,1} then, infE = minE = —1 and supE = maxE = 1.
b) If E = [0,1] then, infE = minE = 0 and supE = maxE = 1.
c¢) If E = [0,1] then, infE = minE = 0 and supE = 1.
d) If E =]0,1] then, infE = 0 and supE = maxE = 1.
e) If E =]0,1[ then, infE = 0 and supE = 1.
Let us demonstrate, for example that in ) supE = 1. Using property a) in Proposition 1.2, it
is clear that i) Vx € E,x < 1. To demonstrate ii),lete > 0,ife < 1then0 <1 —e< 1, as
R is an interval, there exists x,ER suchthat 1 — ¢ < x, < 1,s0x, € E. If, 1 < ¢, then
1—-e<0<xVx€EE.
Example 1.2. This is still a motivation to introduce the set R. Let E = {r € Q,,7* < 2} bea
partof Q. AsO €EE ,E # @andas Vr € E,0 < r < V2 < 2, then E is bounded in Q, and
minE = 0 € Q.. But supE is not in Q, which shows that the axiom a1 of the upper bound is
not true in Q. Let us prof that supE € Q. Suppose that, there exists p € Z, q € N*, such that
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supE=§:r.lnthecasewhereo<2—r2,wehaveszz_TrEQi,sos< 1and (r +

§)? =124 2rs + s? <r?+ 5s = 2, witch implies that r + s € E therefore s < 0,

.. -2
contradiction. In the case where 0 < r?— 2, we have s = rT € Qi,sos<land (r —s)?>

r?’—2rs >r’—4s = Tzsj > 2, it follows that r — s € Q} and r — s is an upper bound of E,

witch is less than r, contradiction.

1.4-Archimed's axiom, everywhere density of Q in R

In all of the following: S¢ denotes the complement of any set S iffy means, if and only if,
i.e. means, that is A and V be any family of elements a (sets of indices).
Proposition 1.3 (Archimed’s axiom). R is Archimedean, i.e: For every x,y € R} satisfying
x < y there exists n € N*, such that y < nx.
Proof. Suppose that, there exist xo and yo in R, x¢ < y, and for all n € N*, nxy < y,. Since a

non empty part E = {nxy; n € N*}is bounded above by y,. For My = supE and € = Mo >0,
pty p { yy P >

there exists ny € N* such that, My — % < MyXo, hence My < (2n9)xo, as 2ny € E,
contradiction.

Remark 1.3.

a) The set N of natural numbers is unbounded above. That is for every y € R}, there exists
n € N*, such that y < n. It suffices to take x = 1 in the proposition 1.2.

b) The set Z of relative numbers is both unbounded above and below, since (—N) is
unbounded below.

Definition 1.5 (everywhere dense part in R). A non-empty part Ein R, is said to be
everywhere dense in R if, for all x, y in R, x < y there exists z € E, such that x < z < y.
Proposition 1.4. Q is everywhere dense in R.

Proof. Let x, y are in R with x < y. Let us prove that there exists 7 in Q such that: x <r <

y. Since z = y%x > 0, there exists n € N* such that z = y%x <n,ornx +1 < ny(x),
likewise for nx € R, there exists k € N* such that nx < k. Let E = {k € N*; nx < k} and

F ={nx € R; z<n}, E and F are non-empty, and F is bounded above by the elements of E.
Let p = supF, then p € E and for € = 1, there exists n € N* such thatp — 1 < nx < p,

witch implies that nx < p < nx + 1, using (*) we obtain nx < p < nyor x < 5 <y (r=
"€ Q).

Example 1.3.

a) V2 is the supremum of E = {r € Q,,r’ < 2}. Indeed i) Vr € E,r < V2, ii) For0 < e <
V2, we have 0 < V2 — £ < /2, since Q is everywhere dense in R, there exists 7, € Q such
that, 0 < V2 —e <1, <v2 (1, €E).If, V2 < e, thenvV2 —e <0 <r,Vr € E.

b) The set QC, of the irrational numbers is everywhere dense in R. Note that, for every € Q
(B #0),a+ B2 € Q°. Thenif x,y € R, x < y there exists r € Q such that x < r < y.

Since g € R}, there exists n € N*, such that% <n,thenx <r +% V2 < y (r +% V2 €
QcC.

2-The Euclidean Topology, Topological space
2.1-Introduction

Starting from the open intervals in R. We will define, the notion of open set, i.e. the parts
of R which are the union of open intervals. We will demonstrate that, the open sets are stable
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by any union, and stable by the finite intersection. Let {O,; a € A} be a family of sets in R,
where Va € A, O, is the union of the open intervals in R, then, the family t,, = {®,0,; a €
A} define in addition to the algebraic stricture, a topological structure on R. Open sets and
therefore open intervals play a fundamental role in real analysis, namely: the study of the limit
of a sequence, the continuity of a function, the derivability,...etc. In its primitive form
topology was called situation geometry, or analysis situs. It is therefore a specific
mathematical domain of geometry, which interested in the qualitative properties of
mathematical objects, independently of any measurement. The study of topology requires at
first a certain act of faith, which will make the internal beauty of this theory easier.

2.2-Open sets, closed sets, neighborhoods

Definition 2.1.

a) Let xo € Rand § > 0, the interval I(xo,8) =]xo — &8, xo + 6| is called the open interval
centered in x, with radius §.

b) The non-empty set O in R, is called the open set, if Vx € O, there exists § > 0, such that,
lx —6,x+ 8[c 0.

c¢) The complement of any open set in R is called a closed set.

d) Let xo € R, we say that, the set N is a neighborhood of x,, if there exists an open set O
containing xo, and O c N.

Example 2.1.

a) All open intervals in R is an open set. For example Va, b € R, the open intervals ]a, b[ and

| — o, a[ are open sets. Indeed for each x €]a, b[, there exists § = %min(x —a,b—x)>0,

such that |x — §,x + 6[C]a, b[ and, for x €] — oo, a], there exists § = xz;a > 0 such that
Jx=46,x+8[c] —x,a.

b) R is open, since Vx € R and Ve > 0, the open interval |x — &, x + e[ R.

c) Va,b € R, the closed intervals | — o, a] and [b, +oo[ are closed sets, indeed,

] — ,a]® =]a, +oo[, and[b, +[¢ =] — o0, b].

d) The interval [a, b[is not open, indeed Ve > 0, Ja — €,a + €[Z [a, b][, since between a — ¢
and a there exits at last an number less than a. Also he interval ]a, b]is not open.

e) @ is closed. Since P¢=R.

The open sets in R satisfied the following properties:

Proposition 2.1.

0;-The union of any family of open sets is open.

0,-The intersection of any finite family of open sets is open.

Proof. O;-Let {O,; a € A} be a family of the open sets in R. Then for x €U,ep O, there
exists @ € A such that x € O, therefore, there exists § > 0 such that [x — §,x + §[c O, C
Ugea Og, hence Uy, O, is an open. O,-Let {O,; @ = 1,...,n} be a finite family of the open
sets in R. Then for x €n}_; 0,, we have x € 0,,Va € {1,...,n} therefore there exists

&, > 0, such that, [x — 8,4, x + 6,[c O,, Va € {1,...,n} then for § = min{d,, a =

1,..,n, [x—d,x+d[cNa=1 nOa, witch implies that N@=1 70« is an open set. The collection
7, = {0,R} U {0,; a € A}, where Va € A, O, is an open set of R, is called the Euclidean (or
usual, or natural) topology of R, the couple (R, 7,,) is called Euclidean (or usual, or
natural) space.

A topology can be defined on any nonempty set as follows:

Definition 2.2. Let E be a nonempty set. A family 1 of subsets of E is called a topology, if:
i) @ and E are in t.

ii) The union of any collection of elements of t is an element of 7, (1 is stable by the union).

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 8



Elements of Mathematical Analysis | 2021

iit) The intersection of any finite collection of elements of T is an element of 7, (7 is stable by
the finite intersection ).
The elements of T are called the open sets, and (E, 7) is called a topological space. If O € 7,
0€ is called a closed set in E and a set N C E is called a neighborhood of a non-empty part
A of E, if there exists O € T such that A € O € N. When A = {x}, we say that N is a
neighborhood of the point x.

In the sequel, we use indifferently, space and subspace (respectively space R) instead of,
topological space and topological subspace (respectively instead of (R, 7,,)).
Example 2.2. In the space R
a) Va € R, the singleton {a} is closed, indeed for any a € R, {a}¢ =] — o, a[U]a, +o[ which
is according to O, is an open.
b) N and Z are closed sets, since N¢ =Upcy In,n + 1[and Z¢ =U,cz n,n + 1].
¢) Q and Q° are neither open nor closed. In deed, suppose that Q is open then Vr € Q, there
exists § > 0 such that ]r — §,7 + §[c Q, as Q€ is everywhere dense in R, there exists
a € Q°, a €]r — 8,7 + [ Q contradiction. By the density of Q in R, we deduce that QC is
not open and hence Q and Q€ are not closed.
d) Only @ and R are both open and closed (clopen). Indeed, if a subset A of R is clopen, then
A = 0. Since if we suppose that A # @, then for x € A®, one of the tow subsets A N] — o, x]
and A N [x, +oo[ is nonempty. Suppose that B = A N [x, +oo[# @, witch is clopen, then B is
closed and bounded bellow, therefore it has an minimum. Let b = minB, asalso B = A N
]x, +oo[ and B is open for b € B, there is § > 0, such that |b — §,b[ c]b — §,b + §[C
B,witch implies that b is not the minimum of B, contradiction.
Remark 2.1 The intersection of any family of open set is not always open. In the space R for

example, the family of open intervals {In (O, %) ,n € N*}, is such that N, e+ I (O, %) =0
which is a closed set. It is clear that 0 € I, (O, %) ,Vn € N* then 0 €N, ey I (O, %) and if

1) . 1 1 .
X ENpen In (O,;), le. ——<x <, vn € N*, hence whenn = +o,x = 0.

On a non-empty set E, we can define several topologies and a subset of the space E can be
open, closed, open and closed (clopen), neither open nor closed. If T and ¢ are topologies on
E, 1 s called coarser (or weaker or smaller) than ¢, equivalently o is called finer (or
stronger or larger) than t, if every element of 7 is an element of o, and the relationship is
expressed as T € o. Of course, as sets of sets, T € ¢. The ordering C is only a partial
ordering. We say that 1 is equal to o if, 1o and cCr1.

Example 2.3. Let £ be a non-empty set.

a) Let P(E) be the collection of all parts of £, then P (E) is a topology on E, denoted 1,4;
called a discrete topology and F is called a discrete space. This topology is the finest
topology for E, since any open set of other topology is an open set in this topology.

b) The family 1,4;s = {@, R} is a topology on E, called indiscrete topology and E is called
indiscrete space. This topology is the coarset topology in E, since any open set of this
topology is an open set in other topology.

c¢) The family T = {@, {0}, {1}, {2},{0,1},{0,2}, {1,2}, E}, where E = {0,1,2} is a topology on
R.

d) The family T = {[a, b[, a, b € R}U{®, R} is a topology on R.

e) The collection 1. = {@, A}, where 4 is finite i.e., the collection consisting of the empty
set and, those subsets of £ whose complements are finite. t.,¢ is a topology on E, called
cofinite topology and E is called cofinite space. For the proof, it suffices to apply the De
Morgan's Laws and to remark that, @ is finite, the arbitrary intersection of finite sets is finite
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and the finite union of finite sets is finite. In R, t.f €7y, since if O € 1.4¢, there is a finite
A c R, such that 0 = A€, since A is closed in the space R, then O € T,,.
f) Let E an uncountable set 1., = {@, A}, where A is countable i.e., the collection
consisting of the empty set and, those subsets of £ whose complements are countable. Then
Tcoc 18 @ topology in E, called cocountable topology and E is the cocountable space
g) Let N ={@, N, ={1,2,...,n}; n € N*} be the family consisting of subsets of N*, then
(N*, V) is a topology in N*. Indeed, i) @, N* € V. ii) If, N,, = {1,2,...,n.}, N, =
{1,2,...,n2},... Ny, = {1,2,...,n}, any arbitrary collection of the elements of V', then
Uken+ Np, = {1,2,...,]}, where j = sup{ny, k € N} if it exists, if not Uyen+ Ny, = N7, then
Uken* Np, € V. 000) If, Ny, = {1,2,...,n4}, Np, = {1,2,...,n},...,Np ={1,2,...,ni} isa
finite collection of the elements of N, then N¥_,, N, ={12,...,1}, where | = min{n;, 1 <
i < k}, then n'i‘=1, N, EN.

As a direct consequence of the proposition 2.1 and De Morgan's Laws, if {S,; a €A} is
any family of sets in R, then Uy, S¢ = (Nyep S,)¢, we have:
Corollary 2.1
C1-The intersection of any collection of closed sets is closed.
C»-The union of any finite family of closed sets is closed.
Remark 2.2. The union of any family of closed sets is not hallways closed. In the space R,

the countable family of closed intervals I,, = [0,1 — ﬂ ,n € N* is such that U, ey« I, = [0,1]

which is not closed. In fact, if x €U, cn+ I,,, there exists ngEN* suchthat 0 < x < 1 — ni <1,
0

then x € [0,1]. Conversely, if 0 < x < 1, then i > 0, from Archimed's axiom, there exists

noEN™ such that ﬁ <ngorx<1-— ni, then x €EUpen* I
- 0

In the sequel, V'(x) denote the collection of any neighborhoods of x. Before giving
neighborhood properties, note that in any topological space, we have the following useful
property.

Proposition 2.2. The non-empty set, is open iffy it is a neighborhood of each of its points.
Proof. Let U a non-empty part of £, then U is open if there exists O € t, such that U = 0. If
x € U, since x € U c U, then U € V' (x). Reciprocally, if U € N (x) (xeN) there exists

O, € tsuchthat x € 0, c U, then U,¢y O, € U and since U =Uycy {x} CUyey Oy, therefore
U =Uyey Oy, by 04 in proposition 2.1, U € 7.

Theorem 2.1. In any space (E, 1), NV (x) have the following properties.

N;-Any point x of E has at least one neighborhood, and VN € NV'(x),x € N.

No-If, {N,; a €A} is a family of elements in V'(x), then U e, N, € N (x), (V' (x) is stable
by the union)

Ns-If, {N,; a = 1,...,n} is a finite elements of N'(x), then N]_; N, € N (x), (M (x) is
stable by a finite intersection).

N-If, there exists a set M of E containing N € NV (x), then M € NV (x), (V' (x) is hereditary
on the right) or (absorption property).

Ns-If, N € V' (x), there exists M € NV (x), such that N € N (y),Vy € M (M c N).

Proof. N;-Since x € E witch is an open, by proposition 2.2 E € N (x), if N € NV (x), there
exists O € 7 such that x € 0 © N. Nz-Let x €EUyep Ny, there exists ag € A, such that x € N,
hence there exists O € 7 such that x € 0 © Ny, CU,e, Ny, then Uy, Ny € NV (x). Ns- If, for
a=1,...,n, Ny, € N(x); there exists O, € 1,x € 0, € N, thenx € 0 =N}~ O, C

Ny—; Ny, hence N_; N, € V' (x). Ny~ Since N € NV (x), there exists O € T such that x € 0 C
N c M, then M € NV (x). N5-If, N € V' (x), there exists O € T such that x € 0 c N, by
proposition 2.2 0 € N (x), using N3, N € V' (y) Vy € 0, it suffices to take M = O.
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Example 2.4.

a) In the space R, for every a, b in R, the intervals ]a, b] and [a, b[ are neither open nor
closed.

b) Let E = {0,1,2} and t = {@, {0}, {1}, {0,1}, E'}, then t is a topology in £, N'({0,1}) =
{{0,1}, E}, vV ({0,2}) = {E} = M ({1,2}), M(0) = {{0},{0,1},{0,2}, E}, V' (1) =
{{1},{0,1},{1,2}, E} and V' (2) = {E}.

¢) In the indiscrete space E, all parts are neither open nor closed and Vx € E, N'(x) = E.
d) In the discrete space E, all parts are both open and closed, and Vx € E, N (x) is the
collection of all parts of £ containing x.

Starting to the open sets, we have defined the closed sets and the neighborhoods. Another
way is to define the neighborhoods and from the neighborhoods, we define the open sets and
closed sets. The two paths are equivalent as it will be demonstrated in the following theorem.
Theorem 2.2. Let x € E and o(x) the family of the parts of £ verifying Ny,..., N5 in the
theorem 2.1. Then, there exists in £ an unique topology, whose a(x) constitutes, for each x in
E, the family of neighborhoods of x, for this topology.

Proof. The idea of the construction of this topology comes from the fact that an open set is a
neighborhood of each of its points (see, proposition 2.2). According to the definition 2.2, we
will show that, the family 7={@}U{all parts O c E, such that: if x € O then O € o(x)}
define a topology on E. i) Since for x € E, {x} € E and x € {x}, then {x} € o(x), by Ny,

E € o(x) therefore E € 1.ii) Let {O,; a € A} be a family of elements in 1. Since U,y O, C
E and for x €U,ep Oy, there exists @ € A, such that x € O, € 0(x), as Oy, CUep Oy by
N4, Uyep O, € 0(x), therefore Uyep O, € T. iii) Let {O,; @ = 1,...,n} be a finite elements
of t, then Nj—; O, C E and for x €nj_, 0,,Va € {1,...,n},x € 0, € o(x), by N3,

Ny—, 0, € 0(x),so Nj—; O, € T.We then demonstrated that t is a topology in E, it remains to
demonstrate that if V' (x) is the family of neighborhoods of x € E according to t, then
N(x) =0a(x). Let N € N (x), there exists 0 € 7,x € O € N as O € g(x) then by N,

N € o(x),s0 N'(x) € a(x). Conversely, if N € g(x), by N5 there exists M € g(x), M c N
such that, N € a(y) forevery y € M,then M € t,s0 N € N'(x) and a(x) € N (x). The
uniqueness of T comes from proposition 2.2.

2.3-Basis and subbasis of topology, basis of neighborhoods

The use of bases and subbases of topology (a parts of the topology), which we will
introduce below, instead of the initial topology, is often more convenient and gives the same
results as the initial topology.
Definition 2.3. Let (E, 7) be a topological space.
a) A family B c 1, is called a basis (or a base) of 7, if Vx € O € t, there exists B € B
containing x and contained in O. Equivalently O =Ug¢g B.
b) A family B(x) < N (x), is called a basis of neighborhoods of x, or a fundamental system
of neighborhoods of x, if VN € V'(x), there exists B € B(x), suchthat B € Nie. N =
Ugpen(x) B-
Remark 2.3.
a) The definition 2.3 means that, a topology 7 is completely determined, by a given part of its
elements.
b) 1t is clear that if, B C 7 is a basis and B’ is a family of open sets containing B, then B’ is
also a basis of t. In particular 7 is a basis of itself. Therefore a space E can have many basis.
Example 2.5.
a) Let T = {0, {0}, {1}, {2},{0,1},{0,2},{1,2}, E} be a topology in E = {0,1,2}, then B =
{{0}, {13}, {2}} is a basis of a topology .
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b) In the discrete space E, Vx € E,B(x) = {x} is a basis of neighborhoods of x, since
B(x) € N(x)and VN € N (x), x € N then {x} c N.

c) Let x be an element of the space R, the collection J,,(x) = {In (x, %) = ]x - %, X+ %[ ,nE
N is a basis of neighborhoods of .x. In fact, if ¥€£ and VEN x there exists >0, /(x,0)CN,
by Archimed’s axiom, there is n, € N* such that ni < 8,50 I, (x, ni) C N.

0 0

Important. Let x be an element of the space R, the open intervals containing x, constitute a
basis of neighborhoods of x. In particular, the collection {I(x, §),d > 0} constitute a basis of
neighborhoods of x. Then, N € N'(x) & 3§ > 0,1(x,8) € N.Indeed, N € N'(x) & 30 €
TwX€E€OCN&3IS>0,I(x,8) c O c N. Therefore in the space R, it suffices for
neighborhoods of x to consider the collection of open intervals {I(x,§),d > 0}.
Theorem 2.3. Let (E, T) be a topological space and B a family of parts of E, then: B is a basis
of 1

b,) Any element x of E belongs atleastto B € B.

{bz) If B1,B, € Band x € B, N B,, there exists B € B,suchthatx € B € B; N B,.
Proof. Suppose that B is a basis of 1. b1) Since E € t by definition 2.3, E =Ugeg B, then if
x € E, there exists B € B such that x € B. b,) Let B4, B, € B. Since B1 N B, € t there exists
a collection {B,; a € A} of the elements of B such that By N B, =U,cp B,. Soif x € B1 N
B, there exists ag € A such that x € B, © B1 N B,. Reciprocally, suppose that B is a family
of parts of E satisfying b,) and b,) and demonstrate that B define a topology on E, therefore
B is a basis. Let ¢ be a family of all parts O € E defined by: O € o if, there exists a collection
{B,; a € A} of the elements of B such that 0 =U s B,. i) by b1) E =Ugeg BthenE € ¢
and U,ep @, = 0, then @ € 0. 11) Let {0 ,; a € A} be a collection of the elements of o, then
by b,) for every a € A, there exists a collection {B i la €1 }, of the elements of B such that
Oq =Yier By, 50 Uyen Op =Ugen (Ui er Bi,) =Yuieaxi Bi, € 0.
iit) Let {O,4; a =1,...,n} be a finite family of &, then by b;) for every a € A, there exists a
collection {B i la €1 }, of the elements of B such that 0, =U;_¢; B, 50 Ng=y Op =
Ng—q (UiaE, Bia) =U; el (ngzl Bl-a), as from b;) NG B;, € B, then Ng_; O, € 0.

Now let T be a topology on E and B a family of open sets in E satisfying b;) and b;) in
theorem 2.3. B is a basis of a topology ¢ C 7. So that B generates exactly t, it must satisfy the
conditions of the following.

Corollary 2.2. A family of open sets o C  is a basis of 1 iffy for all open set O€ t and for all
x in O, there existsaset U, € o suchthatx € U, < O.

Proof. If 6 is a basis of T and x € O € T, there exists a collection {U,; x € O} of the elements
of o, such that 0 =U,¢, U, hence if x € O, there exists U, € o suchthatx € U, c O.
Reciprocally, if for all x € O € t, there exists the collection {U,; x € O} of the elements of ¢
such that O =U,¢o U ,, by definition 2.3 a) o is a basis of 1.

Remark 2.4. Corollary 2.1, allows us to demonstrate that a family of open set of a given
topology is a basis of this topology. For example in the space R the open intervals with
rational extremities is the basis of 7,,. In fact, if I(x, §) is an open interval centered in x € R,
with radius § > 0, as Q is dance in R, there exists r € Q between 0 and §, therefore I(x,r) C
I1(x,8).

Corollary 2.3. If B is a basis of the topology T on E, and if ¢ is a collection of the elements of
1, such that any element of B is written as a union of elements of o, then o is also a basis of t
Proof. Let O € 7, since B is a basis of the topology 1, by definition 2.3 a) there exists a
collection {B ; a € A}, of elements of B such that 0 =U,¢, B,. By hypothesis Va € A, there
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exists a collection {Sﬁa' B, € V} of elements of ¢ such that B, =Up ev Sﬁa’ so 0 =

Ugea (UB(,EV Sﬁu) =U(ap,)eaxv Sp,» 1.e. o is also a basis of 1.

Corollary 2.4. Let B be a family of elements of the topology t on E. Then B is a basis of T
iffy, Vx € E, the family B(x) = {B € B, x € B} is a fundamental system of neighborhoods of
X.
Proof. Let x € E and N € V' (x), there exists O € t, such that x € O N, since B is a basis
of 1, there exists B € B, such thatx € B € 0 i.e. B € B(x) and B c N, by definition 2.3 b)
B(x) is a fundamental system of neighborhoods of x. Conversely, let O € T and x € O by
proposition 2.1, 0 € NV (x) as B(x) is a fundamental system of neighborhoods of any x € E,
there exists B € B(x) hence B € B, x € B and B c O i.e. B is a basis of 1.

Definition 2.4. Let £ be a topological space. The subset S C 7 is said to be a subbase for the
topology T, if the collection of all finite intersects of sets in S forms a base of 1, i.e. the set
SB={nl-, 0, O, €S}, isabasis of 7.

Example 2.6.

a) Let E ={a,b,c,d, e, f}be, with the topology t = {@, {a},{c,d},{a,c,d},{b,c,d,e, f}, E}.
Then the subset S = {{a},{a,c,d},{b,c,d,e, f}} C 7 is a subbase of 1. Since, the collection of
all finite intersections of elements from S'is: SB = {@, {a}, {c,d},{a,c,d},{b,c,d,e, f}}.
Every set in 1 is a trivial union of elements in SB and E = {a} U {b,c,d, e, f}, so SB is a base
of T and S'is a subbase of 1.

b) Let E = {a, b, c,d, e} be, with the topology

T ={0,{a},{b},{a,b},{b,d},{a,b,d},{a,b,c,d}, E}. Then, the set

S = {{a},{b},{a, b},{a,b,d},{a,b,c,d},E} C T is not a subbase of 1. The set of all finite
intersects of sets from Sis: SB = {0, {a}, {b},{a, b}, {a, b,d},{a, b, c,d}, E}. All sets except
{b, d} can be expressed as trivial intersections. However, {b, d} cannot be expressed as a
union of elements from SB, so SB is not a base of T and hence S is not a subbase of 7.

3-Topological parts, Weierstrass-Bolzano Theorem

Let (E, T) be a topology space, 4 and B a non-empty subsets of E.
3.1-Closure, accumulation point, Weierstrass-Bolzano theorem

In addition to the open sets and the neighborhoods, which are introduced in section 2, in
this section ,we will introduce other topological sets as well as their properties, among these
sets, the closure, the interior, the set of accumulation points,...etc.
The adherence. We say that x € E is an adherent point of 4, if every neighborhood of x
contains at least one point of 4, i.e. VN € N'(x), N N A # @. The set of the adherent points of
A, is called the adherence of A4 and it is noted cl(A) or A.
The closure. The intersection of all closed sets of £ containing A4, is called the closure of 4
and it is noted cl(A). By C; in the corollary 2.1 cl(A) is closed and it is the smallest one
containing 4.
Proposition 3.1. The closure of 4 is equal to its adherence i.e. cl[(4) = A.
Proof. cl(A) = A iffy cl(A)¢ = AC. If, x € cl(A)®, then x & cl(A), there exists a closed set S
containing 4 such that x & S, then x € S¢ witch is an open set. By proposition 2.2, S¢ is a
neighborhood of x, since S N A = @ then x & Ai.e. x € AC. Inversely, if x € A®, then x &
A, there exists N € N'(x), N N A = @. Therefore ,there exists 0 € 7,x € 0 € Nand O N
A=0,s0A c 0¢, withis a closed set and x & O€, then x & cl(A) i.e. x € cl(A)C.
Proposition 3.2.
1) A is closede cl(A) = A then, cl(cl(A)) = cl(4).
2) If, A c B, then cl(A) < cl(B).
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3) cl(AU B) = cl(A) U cl(B).

4) cl(ANB) c cl(A) n cl(B), the converse is not throw.

Proof. 1) Evident. 2) Since B c cl(B) and A c B, then A C cl(B), as cl(A) is the smallest
closed containing 4, then cl(4) < cl(B). 3) Since, A c AUB and B € AU B, by 2)

cl(A) ccl(AUB)and cl(B) c cl(AU B), then cl(A) U cl(B) < cl(A U B). Conversely,

A ccl(A) and B c cl(B),then AU B c cl(A) U cl(B), as cl(A) U cl(B) is closed, 1) and
2) imply that cl(AU B) c cl(A) U cl(B).4) Since ANB cAand ANB c B, thencl(AN
B) ccl(A) and cl(ANB) c cl(B),socl(ANB) c cl(A) n cl(B). For the converse, it
suffices to take in the space R, A = [0,1[U {3}, B = [1,2[ then cl(A) = [0,1] U {3}, cl(B) =
[1,2],cl(A N B) = @,and cl(A) N cl(B) = {1}, therefore cl(A) N cl(B) & cl(A N B).
Example 3.1. In the space R.

a) AsVa,b € R, [a, b] is closed then cl([a, b]) = [a, b],Va,b € R. Also, as | —

o, a] and [b, +oo[ are closed Va, b € R, then cl(] — x,a]) =] — xo,a] and cl([b, +x[) =

[b, +].

b) cl(]a, b]) = cl(]a, b]) = cl([a,b[) = [a, b],Va, b € R. It suffices to prof that cl(]a, b[) =
[a,b],Va,b € R, letx € cl(]a, b[),then Ve > 0,1(x,¢) N]a,b[# PasVe > 0,I(x, &) N
la,b[c I(x,&) N[a,b],then Ve > 0,1(x,€) N [a,b] # @,so x € cl([a, b]) = [a, b].

¢) cl(Q) = Rand cl(Q°) = R. Since Q R and R is closed then cl(Q) c cl(R) = R.
Conversely if x € R, then Ve > 0, there exists r € Q, such that r € I(x, €) (we have used the
density of Q in R), so I(x,&) N Q # @ and x € cl(Q).

d) As in ¢) we use the density of Q¢ in R, to prof that c/(Q¢}) = R.

Example 3.2.

a) If, A is the part of the indiscrete space E, then cl(A) = Eif A # @,or cl(4) = 0,if A = Q.
b) If, A4 is the part of the discrete space E, then cl(A) = A.

c) Let E = {a, b, c,d} provided with the topology, T = {@, {b, c},{b,c,d}, E}. Then cl({a}) =
{a},cl({b}) = E,cl({c}) = E and cl({d}) = {a,d}.

Accumulation point. We say that, x € E is an accumulation point of 4, if every
neighborhood of x contains at least one point of A other than x.The set of accumulation points
of 4 is denoted by 4". Then: x € A’ & VN € N (x), (N\{x}) N A # Q.

Isolated point. We say that, x € A is an isolated point of 4, if x is not an accumulation point
of A.. The set of isolated points of 4 is denoted by 4"". So, x € A" <there is N € N (x), such
that N N A = {x}.

Example 3.3. In the space R, Va, b € R.

a) All point of A =]a, b[ is an accumulation point and A’ = cl(4) = [a, b]. Indeed, if

x €]a, b[, forevery e > 0,if x —e < a < x,]x —&,x[NA =]a,x[ then (I(x,e)\{x}) NA #
@, so x is an accumulation point of |a, b[; ifa <x —e < x,]x — &, x[N A =]x —

g, x[ then (I(x, e)\{x}) N A # @, likewise in the cases, x < x+e < b; x < b <x +
candx —& < a < b < x+ e Inall cases x is an accumulation point of ]a, b[. Also, a is an
accumulation point of 4, since for every ¢ > 0if,a+ & < b,]a,a + €[N A =]a, a + €[ then
(I(a,e)\{a}))NA#= @ andif b < a + €, then (I(a,€) \ {a}) = la, b[ # @. Likewise, b is an
accumulation point of ]a, b[, so A = cl(A) = [a, b].

b) All point of A =] — o, a[ is an accumulation point and A’ =] — o, a] = cl(A4). Indeed, if
X €] —oo,al, forevery e > 0,if, x + e < a,(I(x, &) \ {x}) N A =[x — &, x[U]x,x + €], if
a<x+e U(xe)\{x}) NA=[x—¢x[U]x,a[, then x is an accumulation point of | —

o, a[. we prove as in a) that a is also an accumulation point of A. So A’ =] — o, a] = cl(A4).

c) Since, (I (0, %) \ {O}) NA=0@and (I (1,%) \ {1}) N A = @. Then, 0 and 1 are isolated
points of A = {0,1}.
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d) All point of A = {%, ne N*} is an isolated point. Let us demonstrate for example that 1 is
an isolated point of A. It suffices to take § = é, then (I (1,%) \ {1}) NA=0Q.As,ifx €
(I (1,%) \ {1}) N A = @, there exists ny € N* \ {1}, such that x = n—10 and 1 —% < ni0<1+%, ie.

2’8
12N A=g, if not there exists 70EN~*\ {2} such that 320<8<570, impossible since 70=1 or

ny = 3. Note that 0 is an accumulation point of 4, indeed Ve > 0, by Archimedes axiom ,
there exists n € N*, % <e&,500,e)\{0}H)NA=+0Q.

5ny<6<7n, impossible, since ny > 2. Also, % is an isolated point of A, since (1 (l, l) \

e) All points of the discrete space R, are isolated points, since Vx € R, the set N = {x} €

N (x) satisfies (N \ {x}) NN = @.

Corollary 3.1.

a)cl(A) =AUA"

b) A is closed4 contains all its accumulation points.

Proof. a) Let x € cl(A), since A C cl(A), either x isin 4 oritisn't in 4. If x € A, then
x€EAUA If,x ¢ Athenx € A'since VN e N (x), (N\{x}) NA+#0,s0cl(A) cAUA.
Inversely, if x € AU A'thenx € A c cl(A) orx € A’then VN € N (x),(N\ {x}) N A # Q,
sONNA+@andx € cl(A). b) If Aisclosed, A=cl(A) =AU A, thenA'c Aie. A
contains all its accumulation points. Now, if A’ © A as cl(A) = AU A’, then cl(A) c A, hence
cl(A) = A with implies that A is closed.

Starting from that, N,en+ I, = @, where [, = ]O,%[,n € N*, if not there exists x € ]O,%[,

1 ) . .
vn € N*, thenn < ot vn € N*, i.e. N is bounded above, contradiction.

Question. Does there exists sequences of intervals of R whose intersection is not empty? The
answer is given by the following Cantor principal.

Lemma 3.1. (Nested interval theorem or Cantor principal). The intersection of decreasing
sequence of nonempty intervals I,, = [a,,, b, ], V n € N*, is not empty. And if, inf,en{b,, —
an=0, then, the intersection is reduced to a single point.

Proof. Let A = {ay,a;,...} and B = {b4, b;,...}, since I,,;; € I, Vn € N*, then 4 is
bounded above, by the elements of B, and B is bounded below by the elements of 4, so

Vn €N"a, <supA < b,,infB < b, . Since infB, is the first lower bound of B then,

Vn €N a, <supA<infB < b, i.e. Nyen+ I, = [supA, infB] # @. Let for any n € N*,
l, =b, —a, and L = {l,,,n € N*}, it is obvious that Vn € N*, 0 < [,,, by a4 chapter I
infL exists, if infL = 0 then supA = infB, if not for € = mfB-supd 0, there exists

infB—supA < bp,—an, ln,

no € N* such that [, < > - contradiction. Therefore, the intersection is

reduced to a single point.
Theorem 3.1. (Weierstrass-Bolzano theorem). Any infinite bounded part £ of the space R has
at last one accumulation point.

Proof. Let I; = [infE, supE], it is clear that E C [4, then one of the tow intervals
infE+supE] [infE+supE

[infE , >
the infinite one, then I, I, E N I; is an infinite part of R, by the same, we devise I, on two
intervals where one of them say I3 C I, and E N I3 is an infinite part of R, by the same idea,
supE—infE

—n1 and E N I,,,
V n € N* is infinite. By Cantor principle, Nyen+ I, # 9@, since 0 = inf{l, = b, —a,,n €
N*}, then supE = infE = a, and Ny,en+ I, = {a}. then, a is an accumulation point of E, since

, SUpE ] contains an infinity points of £, if not £ is finite. Let I,

we construct a sequence of intervals such that I,,., € I,, = [a,, b, ] =
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for € > 0, there exists ng € N* such that I, < &,thena € I,,, c I(a,€) so (I(a, &) \ {a}) N
E+0.

3.2-Interior, boundary, exterior

The interior. A point x € A is an interior point of 4, if A € NV (x). The set of all interior
points of A, is denoted by int(A) or A°, and is called, the interior of A.

Then int(A) =Upcy 0, i.e. int(A), is the greatest open set contained in 4. In deed, if

x € int(A), there exists an open Oy, x € O, C A, then int(4) CU,¢, O, and obviously, if
X €Uyey Oy, there exists an open Oy, x € O, C A, so x € int(A4).

Example 3.4. in the space R.

a) Va,b € R, int([a,b]) = int(]a, b]) = int(]a, b]) =]a, b[ and int(] — x©,a]) =] — x,al.
b) Va € R, int({a}) = 0.

) int(N) = int(Z) = int(Q) = int(Q°) = @. Prof that for example int(N) = @, suppose
that, there exists § > 0 such that Jn — §,n + §[ N, so N contains an element of Q¢,
contradiction.

Example 3.5.

a) If A4 is the part of the indiscrete space E, int(4) = {

b) If, A is the part of the discrete space E, int(A) = A.
c)If, E ={a,b,c,d} and T = {@,{a}, {b}, {a, b}, E} then int({d}) = int({c}) = @ and
int({a,c,d}) = {a}.
Corollary 3.2. x € int(A) & A € N (x).
Proof. If x € int(A), witch is open, by proposition 2.2 int(A) € N (x), as int(A) € Aby N,
in theorem 2.1, A € V' (x). Reciprocally, if A € NV (x), there exists O € 7,x € O C A then
x € int(A).
Proposition 3.3.
1) A is opene int(A4) = A then, int(int(A)) = int(4).
2) If, A c B, then int(A4) c int(B).
3) int(A N B) = int(A) N int(B).
4) int(A) U int(B) c int(A U B), the converse is not throw.
Proof. 1) Evident. 2) If A € B, as int(A) c A, then int(A) c B, since int(A) is open and
int(B) is the greatest open contained in B, then int(4) < int(B). 3) It is clear that by 2)
int(AN B) c int(A) and int(A N B) c int(B), so int(A N B) c int(A) N int(B).
Conversely, int(A) € A and int(B) c B, then int(4) N int(B) € A N B so, by definition of
int(A N B) and int(A) N int(B) is open, we have int(A) N int(B) c int(ANB). 4) Itis
clear that by 2) int(A) c int(A U B), int(B) c int(A U B), then int(A) U int(B)
int(A U B). To prof that the inverse is not true. Let in the space R, A = [—-1,0[ and B =
[0,1] then (A) =] — 1,0[, int(B) =]0,1[, int(AU B) =] — 1,1[£] — 1,0[U]0,1[= int(A) U
int(B).

The duality properties in the sense of "complement" between the closure and the interior
are given by the following corollary:
Corollary 3.3. cl(A%) = int(A)€ and int(A%) = cl(A)C.
Proof. If, cl(A%) = int(A)¢ then (int(A%)¢ = cl(A), so int(A¢}) = cl(A)C. It remains to
prof that cI(A¢) = int(A)¢. Since, int(A) =Uye, O, Where Va€A, O, is open and O, C A,
then Va €A, A€ c 0,¢ and int(A)¢=Nyc, 0, = cl(A°) (by definition of the closure of AS).
The boundary. A point x € E is an boundary point of A, if x € cl(4) N cl(A%). The set of all
boundary points of 4, is denoted by bd(A) or fr(A), and is called the boundary of 4. Then
bd(A) = cl(A) N cl(A®) = cl(A)\int(A) is closed.
Corollary 3.4.

AifA=E;
QifA=0.
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a) A4 is closede bd(A) c A.
b) A isopene= bd(A) N A = Q.
c) bd(cl(A)) € bd(A) and bd(int(A)) < bd(A).
Proof. a) A4 is closed iffy, cl(A) = A, then bd(A) = A N cl(A®) c A. Conversely, if
bd(A) c A and cl(A) € A, there exists x € cl(A) and x & A, i.e. x € A® C cl(A®) then
x € bd(A) c A, contradiction. b) A4 is open iffy int(A) = A, since cl(A%) = int(A)¢=AC,
then A N bd(A) = [cl(A)C N cl(A)] N cl(A) = @. Conversely, if bd(A) N A = @ and
A & int(A), there exists x € A C cl(A) and x & int(A), i.e. x € int(A)¢ = cl(A°), so
x € bd(A) N A, contradiction. ¢) bd(cl(4)) = cl(cl(4)) N cl(cl(A)®) = cl(A) n
cl(cl(A)%) c cl(A) N cl(AC) = bd(A) and bd(int(A)) = cl(int(A)) N cl(int(A)®) =
cl(int(4)) n cl(cl(A%)) = cl(int(A)) N cl(A%) c cl(A) N cl(AC) = bd(A).
It is obvious that.
Corollary 3.5. If 4 is closed then: A = bd(A) < int(A) =@ < cl(A°) =E.
The exterior. A point x € E is an exterior point of 4, if x € int(A®). The set of all exterior
points of 4, is denoted by ext(A), and is called the exterior of 4. Then ext(A4) = int(A) is
open.
Corollary 3.6.
a)ext(A) =¢p ©cl(A) =E.
b) ext(A) = ext(ext(A)°) = ext(cl(A)).
c) ext(AUB) = ext(A) N ext(B) and ext(4) U ext(B) c ext(A N B).
Proof. a) ext(A) = @ iffy cl(A)¢ = @ iffy cl(A) = E. b) ext(A) = cl(A)° iffy ext(A)¢ =
c

cl(4) iffy ext(ext(A)°) = ext(cl(A)) = int(cl(A)) = (cl(cl(A))) = cl(A)° =
int(A¢) = ext(A).c) ext(AU B) = int(A U B)¢ = int(A° n B%) = int(4°) nint(B¢}) =
ext(A) N ext(B) and ext(A) U ext(B) = int(A%) U int(B®) c int(A° U B®) =
int((AN B)®) = ext(ANB).
Example 3.6. in the space R.
a)Va,b € R,ext([a,b]) = ext(]a, b[) = ext(]a, b]) =] — »,a[U]b, +oo[ and ext(] —
©, a]) =]a, +o[.
b) Va,b € R,bd([a,b]) = bd(]a,b]) = bd(]a, b]) = {a, b} and bd(] — =, a]) = {a}.
c) Va € R,ext({a}) =] — w,al[V]a, +[,bd({a}) = {a}.
d) ext(N) =] — o0, 0[U (Upen]n,n + 1]), bd(N) = N; ext(Z) =U,ez]n,n + 1[,bd(Z) =
Z; ext(Q) = ext(Q%) = 0,bd(Q) = bd(Q°) = R.
Example 3.7.

AifA = @;

a) If A4 is the part of the indiscrete space E, ext(A) = { DifA=E

b) In the discrete space E, ext(@) = E and ext(E) = Q.
c)If, E ={a,b,c,d}and T = {@,{a}, {b}, {a, b}, E} then ext({d}) = {a, b} and
ext({a,c,d}) = 0.

4-Metric Space

In this chapter, we are interested in the definition, of one special kind of a topological
space, called metric space, i.e. a space witch a metric is defined. This space is very useful, in
the study of the Cauchy sequences, uniform continuity, and enjoying several properties, which
are not valid in a general topological space. We present here, and in the chapter 13 and 14, the
particularities of this space such as: open, neighborhood, limit, continuityi,...,etc.
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4.1 Definitions and examples

Definition 4.1. The application d from the set E X E into R, is said to be a metric over E, if it
satisfies for every x,y, z € E, the following three axioms:

my) d(x,y) =0 & x =y, (separation axiom).

m,) d(x,y) = d(y, x), (Ssymmetry axiom).

m3) d(x,y) < d(x,z) +d(z,y), (triangular inequality axiom).

The couple (E, d) or simply E if no confusion (as in general, there are more than one metric
defined on F)

Example 4.1.

a) The function d;: R X R = R, defined by: Vx,y € R, d, (x,y) = |x — y|, where |. | is the
absolute value function on R is a metric on R, called the usual metric and (R, d,,) is called
usual metric space.

b) Let R*, n € N* be the n dimensional Euclidian space, and d, d3, d,, the functions from
RexRe to R, defined respectively by :Vx,y € R”, d1(x,y) = Yy |Xg — Yal 5 d2(x,y) =

\/ZZ=1(xa — ¥)?%; and do(x,y) = MaxX<gen|Xe — Vol Where x = (X1, ..., x4,..., %),y =

0L Ve Y),and V1 < @ < n,xg, Y, € R. Then (R, dy), (R?, d3) and (R, d,,) are

metric spaces. To prove the triangular inequality axiom for d,, we us the following Cauchy-

Bouniakowsky inequality: Vx,y € R, /37 _ 1 x,ve < (V201 %e2) (V201 Ya?)-

c¢) Let E be an ensemble, the function d from E X E to R, defined by: Vx,y € E,d(x,y) =
lifx#y

{0, ifx=y,

discrete metric space.

d) Leta,b € Rbe, and E = C([a, b]) the set of the continuous functions from [a, b] to R.

The applications d4, d3, d,, from E X E to R, defined respectively by: Vf,g € E,d(f,g) =

[ IF® — g@®ldt; da(f, 9) = \/f;(f(t) — g(©)%dt and d(f, g9) = maxa<e<plf (1) —

g(t)| are the metrics on E, so (E, d,), (E,d>) and (E, d,,) are metric spaces. To prove the
separation axiom for d,, we us the following result concerning the integral of the positive

function: if the continuous function h: [a, b] = R, is such that f: h(t)dt=0, then h(t) =

0,Vt € [a, b].To prove the triangular inequality axiom of d,, we us the following integral
Cauchy-Bouniakowsky inequality:

vf,g €E,f, f(Dg(®)dt < (J Iy f(t)fdt) (J I g(t)fdt).

Proposition 4.1. In a metric space (E, d), the following inequality holds: Vx,y,z €

E; ld(x,y) —d(x,2)| < d(y,2).

Proof. By, the symmetric and the triangular inequality property in the definition 4.1,

Vx,y,z € E,d(x,z) <d(x,y) +d(y,z) and d(x,y) < d(x,z) + d(y,z), then Vx,y,z €
E,d(x,z) —d(x,y) <d(y,z) andd(x,y) —d(x,z) £ d(y,z),soVx,y,z € E,—d(y,z) <
d(x,z) —d(x,y) <d(y,z),1.e.Vx,y,z € E,|d(x,y) —d(x,z)| <d(y,2).

It's easy to check that:

Proposition 4.2. If, (E, d) is a metric space and ¢: R, — R, is an increasing function, which
satisfies, for every u, v € R, p(u + v) < ¢p(u) + ¢(v) and ¢(0) = 0. Then, the
composition function ¢ o d is a metric on E.

Example 4.2. Let (E, d) be a metric space, the functions §,6', 6" E X E — R,, defined
respectively by: Vx,y € E,6(x,y) = min(1,d(x,y)); 6'(x,y) = % and 6"(x,y) =

In(1 + d(x,y)) are metrics. Indeed, the function ¢, Y, 8: R, — R, defined respectively by,
vu € RY, ¢p(u) = min(1,w); Y(u) = ﬁ and 6(u) = In(1 + u), where [n is the Neperien

is a metric on E called a discrete metric, and the metric space (E, d) is called a
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logarithm function, satisfy the conditions of the proposition 4.2, since Vu,v € R*, ¢(u +
u+v

v) =min(l,u+v) <min(1,u) + min(1,v) = p(uw) + p(v); Y(u+v) = =

1+u+v

u v u v
e T T St S Yy +yYy@)and(u+v) =m(l+u+v) <n(l+
w1l +v)=ImnA+u)+n(l+v)=_0(~u)+ 0(v). The others conditions are obvious.
Definition 4.3. Let a part 4, of the metric space E.
a) A is said to be bounded, if there is k > 0, such that d(x,y) < k,Vx,y € A.
b) When 4 is bounded, the real number §(A) = supy,ead(x,y) is called, the diameter of 4.
It is clear that:
Corollary 4.1. If 4 and B are two subsets of the metric space (E, d). Then:

a) Aisboundede= 6(4) < +oo.

b) §(A) =0 A= {x}.

c) 6(A) = 6(cl(A)).

d) IfAc B = 6(A) c 6(B).

e) 6(AUB)=8(A)+d(A,B)+ 6(B).
Example 4.3.
a) In the metric space E, Vx € E, the part {x} is bounded and § ({x}) = 0.
b) In the usual metric space, §([a,b]) = maxyyeaplx —y| =b — a.
Definition 4.4. Let 4 and B are nonvoide parts of a metric space (E, d). We call distance
between 4 and B, the real number d (4, B) = min, y)eaxpd(x,y), and for a fixed x in £,

distance between {x} and B, the real number d(x, B) = min,egd(x,y).
Remark 4.1. Since in the usual metric R, for A = {0} and B = %,Vn € N*d(A,B) =

min {%, vn € N* } = 0, then the first axiom in the definition of the metric is not checked,

then the distance between the parts of a metric space, is not a metric.

Definition 4.5. Let (E, d) be a metric space, a € E and r > 0.

a) The set B(a,r) = {x € E,d(a,x) < r}, is called the open bull, with center a and radius .
b) The set B(a, ) = {x € E,d(a, x) < 1}, is called the closed bull, with center a and radius
T.

¢) The set S(a,r) = {x € E,d(a,x) = r}, is called the sphere, with center a and radius r.
Example 4.4.

a)In (R, d,),ifa€R; B(a,r) ={x ER, |Ja—x| <r}=la—r,a+7];
Baar)={xeR,Ja—x|<r}=[a—r,a+7r];andS(a,7) ={x EE,|a—x| =71} ={a —
r,a+r}

b) In (R? dy),B(0,1) = {(x,y) € R? |x| + |y| < 1}, witch is the surface of a lozenge.

¢) In (R? d,), B(0,1) = {(x,y) € R34 x?+ y? < 1}, witch is a disk.

d) In (R?%d..),S(0,1) = {(x,y) € R? max(|x|, |y|) = 1}, witch is a square.

e) In a discrete metric space E.

If,r <1,B(a,r) =B(a,r) ={a}and S(a,r) = Q.

If,r =1,B(a,r) = {a} and B(a,r) = S(a,r) =E.

If,r>1,B(a,v) = B(a,r) = E and S(a,r) = Q.

Proposition 4.2. A part of a metric space, is bounded<it is contained, in an open or closed
ball.

Proof. Let 4 a bounded part of a metric space E, then 6(A)<tw and Vx,y € A,d(x,y) <
5(A), so for y = a (fixed), Vx € 4,d(a,x) < §(A), then A € B(a, §(A)). Inversely, suppose
that there exist a € E and r > 0, such that A € B(a,r), then Vx,y € A,d(a,x) < r and
d(a,y) < r since, by the triangular inequality axiom, d(x,y) < d(x,a) + d(a,y), then
Vx,y € A,d(x,y) < 2r and 4 is bounded.
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4.2. Metric-induced topology

The topology on a metric space, is closely related to the open balls, defined by the metric
of this space. Then, if (E, d) is a metric space, the collection 74 U {@} of the subsets of E,
defined by: O€t,; <for every x € O, there exists r > 0, such that B(x,r) c 0, is a topology
on FE, called a metric-induced topology, or associated topology, or adjacent topology to the
metric space E. Let us verify that t; U {@}, satisfies the axioms of a topology:
0;-1t is clear that @ and E are in T4 U {@}.
0,-1f, {O,, @ €A} is the collection of the elements of 74 then, for x €U ¢, O,, there exist
@o € A and x € Oy, so there exits >0, such that B(x,7) € 0,, CUgep Og, S0 Ugep 0,€ET,.
0s-1f, {0,,1 < a < n,n € N*} is the finite collection of the elements of 74 then, for x €
Ng=;1 Oy, we have x € O,, Va = 1,...,n; then there exists 1, > 0, such that B(x,1,) € O,
so for r = min{r,, 1 < a < n},B(x,r) cNl_; O, therefore NS_; 0, € 4.
Proposition 4.3.
a) The open ball is open.
b) The closed ball is closed.
Proof. a) Let x € B(a,r), then forp =r —d(a,x) > 0,B(x,p) € B(a,r),so B(a,r) is
open. Indeed, for y € B(x,p),d(x,y) < p =r —d(a,x), thend(a,y) < d(a,x) +
d(x,y) < r, therefore y € B(a,r). b) Let x € B(a,r)¢, then B(x, p) € B(a,r)¢, where
p=d(a,x)—r >0.Indeedify € B(x,p),d(x,y) <p=d(a,x)—r <d(a,y)+
d(y,x) — r, implies that v < d(a,y), so y € B(a,r)¢ hence B(a,r)¢ is open , so B(a,r) is
closed.
Remark 4.2.
a) All the definitions given in a general topological space, remain valid for a space associated
to a metric such as: the neighborhoods, the closure, the interior, the boundary,...etc.
b) Any open in 7,4 is the union of the open balls, indeed if, O € 74, 0 =U,¢o {x} C
U,eo B(x,7) € 0. So for every x in a metric space, the collection {B(x,7r),r > 0} of open
balls, constitute a basis of neighborhoods of x. Also, N € N'(x) & 3r > 0,B(x,r) € N.
Indeed: N e N(x) © 30 €14, x E0 C N & 3Ir > 0,B(x,v) € O c N. Therefore in
(E, t4), it suffices for neighborhoods of x to consider the collection of open bulls
{B(x,r),r > 0}.
c) It is clear that, in a metric space E, for 0 < p <rand a € E, B(a,p) < B(a,p) € B(a,7).
d) Do not believe that, the interior of a closed ball is the open ball, and that, the closure of an
open ball is the closed ball. In fact, in a discrete metric space, B(a,r) = {a}, since
clo(B(a,7)) = clo({a}) = {a} (We will see in chapter 13, that in metric space the singleton
is closed) and B(a,r) = E, then int(B(a,r)) = int(E) = E.

5-Densety, Countability and Separation Axioms

5.1-Densety, countability

A topological space, with the concepts defined in the preceding chapters, becomes more
and more interesting, if it is reinforced by additional conditions, such as: countability,
separability, compactness, ... etc. In the sequel, we will introduce the axioms of this series in
the order of their successive reinforcement. Let E be a topological space, 4 and B a non-
empty subsets of E.
Everywhere dense part. The part A4 is said to be everywhere dense in £, if c[(A) = E.
Dense part. The part 4 is said to be dense in E, if int(cl(A)) # @. Equivalently, the part A4 is
said to be nowhere dense in E, if int(cl(A)) = ©.
Example 5.1.
a) Q and Q° are everywhere dense in the space R.
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b) In the space R, all intervals are dense, for example: A = [0,1] is dense in R, since
int(cl(A)) =]0,1[# 0.

¢) In the indiscrete space, all part 4 is dense in E, since int(cl(4)) = E # @. The only
nowhere dense subset is @.

d) In the discrete space FE, all part 4, is dense in itself, since cl(4) = A. The only nowhere
dense subset is @.

It is obvious that.

Proposition 5.1.

1) If cl(A) = E and A c B, then cl(B) = E.

2) A part A of the space E is nowhere dense<cl(A) is nowhere dense< cl(A)€ is
everywhere dense.

3) If 4 or B are nowhere dense, then A N B is nowhere dense.

The following corollaries give useful characterizations for the everywhere dense parts.
Corollary 5.1. cl(A) = E <for every non empty open 0,0 N A # Q.

Proof. Since Vx € 0,x € cl(A) and O € N (x), then O N A # @. Inversely, let x € E and

N € V' (x), there exists an open 0, x € O € N, such that @ = O N ACNNA, so x € cl(4).
Corollary 5.2. If cl(A) = E and O is an open, then cl(0 N A) = cl(0).

Proof. Let x € cl(0) and N € IV (x), there exists an open U, x € U € N, as U € N (x), then
U N 0 # @, furthermore U N O is open. By corollary 5.1, UN (O NA)=({UN0O)NA =+ 0,
then NN (0O NA) # @,sox € cl(O N A), the converse is obvious.

Remark 5.1. It may be that, the equality in corollary 5.2 is false, if O is not open, as shown in
the following example. Let E = {1,2,3}, 7 = {@,{1,2},E}, A = {1} and U = {3} no open, then
cl(A) =E,cl(AnU) =@ and cl(U) = {3}, socl(ANU) # cl(U).

Corollary 5.3. Let U be a part, of a space E. Then, U is open< cl(A) N U c cl(A N U), for
all A € P(E).

Proof. Letx € cl(A)NUand N € N'(x),asU € N(x),then NNU € N (x),soNN (AN
U) # @, therefore x € cl(A N U). Reciprocally, if cl(A) N U < cl(ANU), forall A € P(E),
then for A = U, cl(U NU c cl(U nU) =0, socl(U) nU = int(U)° N U = @, which
implies that U < int(U), hence U is open.

Separable space. A topological space is called separable, if it has an everywhere dense
countable subset.

First countability. A space E, is called first countable or 1D-space, if each point of E, has a
countable basis of neighborhoods.

Second countability. A space E, is said to be, second countable or 2D-space, if the topology
of E, has a countable basis.

Example 5.2.

i) The space R is:

a) Separable, since Q is countable and cl(Q) = R.

b) 1D-space, since Vx € R, the countable family {]x - %, x + %[ ,n € N*} is a basis of
neighborhoods of x.

c¢) 2D-space, since the countable family {]r - %, r+ %[, n € N*andr € (@} is a basis of 7,,.
ii) The indiscrete space is separable, and 2D-space, since B=E.

iii) The discrete space is clearly 1D-space, but it is 2D-space, only if it is countable.

iv) The cofinite space is 2D-space, it is a discrete space if it is finite.
Proposition 5.2. Any 2D-space, is 1D-space and separable.
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Proof. It is clear that 2D-space is 1D-space. Let B = {B,,,n € N} a countable basis and

D = {x,,n € N}, x,, € B, then cl(D) = E, if not the open set 0 = cl(D) has no element of
D, impossible since there exists x,, € By, € 0.

Remark 5.2. In general, the separable space is not 2D-space, for example

T ={0,{[a,b[,a, b € R}, R} is a separable topology on R, which is not 2D-space.
Proposition 5.3. In the separable space, every disjoint collection of open sets is countable.
Proof. Let {O,, a €A} be a disjoint collection of open sets and D a countable subset of the
space E, with cl(D) = E. Suppose that {O,, @ €A} is uncountable. Since for every x € O,
and every €A O, N D # @, then Uy, (0, N D) # @ as {0,, a EA} is a disjoint collection,
this union is uncountable, therefore D is uncountable, contradiction.

The collection {U,, @ €A} of the subsets of E, is called a cover of E, if E CU,c, U,. We say
that, {U,, @ € d CA}is a subcover of {U,, @ €A} if, it is a cover of E. A cover of a space,
where the elements are open (respectively closed) is called open cover (respectively closed
cover).

Proposition 5.4. In 2D-space, any open cover has a countable subcover.

Proof. Let {O,, @ €A} be an open cover of a space £ and {B,,,n € N} a countable basis of t,
then for x € E, there exists (g, o) EAX N, such that x € B, € O,,. The collection {B,,n €
N c N} whitch contains By, is then finite or countable and the collection {0, ,n € N} cover
E, since E CUpey O,

5-2. First variation of the separation axioms

Another important type, of additional conditions, on a topological space, is provided by the
separations axioms i.e. distinct points or disjoint closed sets, may be separated by disjoint
open sets. In addition to the open sets, the separation axioms are required to complete the
structure of the topology. We will give these axioms, according to the increasing degree of
separation.
A space E is:
To (or Toy-space, or Kolmogorov space), if x, y are distinct points of E, there exists an open set
O, which contains one of the points but not the other.
T, (or T4-space, or Fréchet space), if x, y are distinct points of E, there exists: an open O,
which contains x but not y and, an open 0,, which contains y but not x, (O, and O,, are not
necessarily disjoint).
T, (or T,-space, or Hausdorff space, or separate space ), if x, y are distinct points of E, there
exist disjoint open sets O, and Oy, such that x € O, and y € 0,,.
Regular (or Regular space), if for a closed set F'in E, and x € FC, there exist disjoint open
sets O and O, such F € O and x € O,.
T3 (or Ts-space), if it is both T, and regular or T, and regular.
Normal (or normal space), if /" and G are disjoint closed sets, there exist disjoint open sets O
and O; such that F € Or and G € Og;.
T, or (or T4-space), if it is both T; and normal or T, and normal.
Completely normal, if 4 and B are disjoint, there exist disjoint open sets 04 and Og such that
Ac 0O4and B c Op.
Ts, (or Ts-space), if it is both T, and completely normal or T, and completely normal.
Example 5.3.
a) (N*, V") defined in example 2.3 g), is Ty-space. Indeed, if m,n € N*, m<n then, the open
set N,,, = {1,2, ..., m} containing m and do not containing n. In the other hand, since if
m,n € N*,m <n, any open N,, = {1,2,...,n} containing both n and m, so (N*, V') is not T;-
space. Then To#Tj;.
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b) The space R is Hausdorff. In fact, if x,y € R, x # y (x < y) there exists z €]x, y[, such
that,]x — %,Z[ N ]Z,y + %[ = Q.
c¢) The discrete space E, is Tg, T; and T,-space. Indeed, if x,y,z € E,x # y # z, the open {x}
not containing y, then E, is Ty the open {x, z} not containing y and the open {y, z} not
containing x, then E, is T4. As, the open {x} and {y} are disjoint, E is T,.
d) Let E = {a, b, c} with the topology t = {@, {a}, {b, c}, E}, where its elements are clopen.
Then a & {b,c},b & {a},c &€ {a} and {a} N {b,c} = @, so E is regular, since there is not open
sets containing b but not ¢ and no open set containing ¢ but not b. Therefore, E is not Ty-
space, so it is not T;-space and it is not T;. The only disjoint clopen sets are {a} and {b, c},
then E is normal but it is not T4-space.

The T;-space (i=0,...,5) are characterized by:
Proposition 5.5. Let E be a space. The following assertions are equivalent:
a) Eis T.
b) If, x, y are distinct points of E then cl({x}) # cl({y}).
c¢) If, x, y are distinct points of £, then x and y are not accumulation points of A = {x, y}.
Proof. a) = b). As, E is T and x, y are distinct points of E, there exists an open O 3 x, such
that {y} © 0¢ which is closed, then cl({y}) c 0¢, so x € cl({x}) and x & cl({y}) then
cl({x}) € cl({y}). b) = c). Since x, y are distinct points of £, by b) x & cl({y}) and
y & cl({x}), there exist an open O 3 x and an open U 3 y such that: 0 N {y} = @ and
UNn{x}=0,s00nN (A\{x}) = @ and U n (A\{y}) = @, then x and y are not accumulation
points of A = {x, y}. ¢) = a). If x is not an accumulation point of 4, there exists N € V' (x)
such that (N\{x}) N A = @, therefore there exists an open sets O,, x € 0, € N, then (O, \
{x})) NA = 0,soy & O,,. The same proof, for y, it suffices to replace x by y, hence E is T.
Proposition 5.6. £ is T Vx € E, the singleton {x} is closed.
Proof. let x € E, suppose that, there exists y € cl({x}) and y & {x} then, there exists an open
0, 3y, and x € O,, such that 0, N {x} = {x}, contradiction. Conversely, let x,y € E,x # y,
then y & cl({x}) = {x}, so there exists an open O,, 3 y, such that 0, N {x} = @, hence
x & 0,,s0FEisTy.
Corollary 5.4. In a T;-space E. The point x € E, is an accumulation point of a infinite part
A c E <every neighborhood of x, contains infinite points of 4.
Proof. Let x be an accumulation point of a part 4. Suppose that, there exists N € NV (x)
contains, a finite number of points of 4, and let F = {x4, ..., x,,} be this number, without
x (if x € A), as E is a T1-space, by the proposition 5.6, the singleton is closed, then F =
U™, {x;} is closed, F¢ is open, F¢€ N'(x), since N N F¢ € N (x), and (N N F¢)\ {x}) N
A=NNFn{x}*nA=FnFn{x}¢=0, contradiction with (N N F)\ {x}) N 4 #
@. It is clear that, without any condition on the space E, if N € V' (x), N contains infinite
points of 4, then (N \ {x}) N A # @, so x is an accumulation point of a part A.
Remark 5.3. By proposition 5 2 and corollary 3.1, the finite part of a T4-space, is closed, and
does not have accumulation points.
Proposition 5.8. £ is Hausdorff<the intersection of the closed neighborhoods of any x € E,
is reduced to the singleton {x}.
Proof. Let E be a Hausdorff space, x € E and V' (x) the collection of the closed
neighborhoods of x. Let's demonstrate that Nyep(x) N = {x}. Suppose that, there exists
Y €ENyen(x) N, and y # x, by the assumption, there exist disjoint open sets Oy 3 x,,0, 3 y,
witch implies that 0, c 0, ¢, therefore OyC € IV (x) (absorption property N, theorem 2.1),
since Yy ENyey(x) N, then ch € V' (x) contradiction (0, N ch = @). If now, Vx € E,
Nyenx) N = {x} then for x # y, there exists N € N'(x), such that y & N, therefore there
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exists an open 0,x € 0 € N,theny € 0, x € O c cl(0) c cI(N) = N, so y € cl(0)¢ and
0 N cl(0)¢ = @, E is then Hausdorff.
Example 5.4.
a) If, E is an infinite set, then cofinite space E is a T-space, but it is not Hausdroff space.
Indeed, Vx € E, {x}© is open then {x} is closed, by proposition 5.6 E is a T;-space. If, now
x, y are distinct points of £, and O is any open, such that x € O and y & O, then y € 0¢ witch
is finite and closed. Thus, there are no nonempty open sets disjoint with O. Therefore E is not
Hausdorff. Then T1#T,.
b) Let E be a non countable set, it is easy to verify that the collection 7., of all subsets of E,
with countable complements, union @ is a topology in E, called cocountable topology and
(E, Tc0c) 1s called cocountable space. E is T;-space but not Hausdorff. Indeed if, x,y € E and
x #y,as x € {y}¢ € 1,,., We can consider an open O containing x but not y.As 0¢ is
countable and contains no nonvoide open sets, then £ is not Hausdorff.
Proposition 5.9. Let £ be a space. The following assertions are equivalent:
a) E is regular.
b) Every element of E, has a basis of closed neighborhoods.
c) If x € E and, O is an open containing x, O contains a closed neighborhood of x.
d) For every closed part A C E, the intersection of all closed neighborhoods of 4 is reduced
to A.
Proof. a) = b). If x € E, and N € V' (x) a neighborhood of x, there exists an open O, x €
0 c N, since x & O° witch is closed, by a) there exist an open 0, 3 x, and an open
U>0Csuch that 0, N U = @, then 0, c U¢ € 0,s0x € 0, € U°cN, U€ is a closed
neighborhoods of x. b) = ¢). Let x € E, and O an open containing x, since O € N'(x), by b)
there exists a closed neighborhoods F of x, contained in O so, there exists an open O, x €
0O, c FcO,thenO, c cl(0,) c F c 0.c) = d). Let 4 be a closed set in E, suppose that
the intersection of all closed neighborhoods of 4 is not contained in 4, then there is x in this
intersection witch is not in 4, so x € 0 = A® witch is open, by ¢) there exists an open 0, 3 x,
such that x € 0, < cl(0,) < 0 = A€, then A c cl(0,)¢ < 0,°, s0 0,° is a closed
neighborhood of 4 which does not contain x, contradiction. Since 4 is in every closed
neighborhood of 4, A4 is in their intersection. d) = a) Let 4 be a closed set in £ and x an
element of E, witch is not in 4, since by d) 4 is the intersection of all closed neighborhoods
of A, there exists a closed neighborhood N of 4 such that x ¢ N i.e. x € N¢ = U witch is
open. Therefore, there exists an open O such that A € O € N, since O N U = @, then E is
regulat.
Example 5.5. Example of a space which is Hausdorff, but not regular, and hence not Ts. Let
S ={(x,y) € R%y = 0} be the subset of the Euclidian plane (R? ||.||), L = R X {0} =
{(x,¥) € R%y = 0} the subset of S, and for each (a,r) € S X R}, B,.(a) = {b € R%||a —
b|| < r}, the open balls of center a and radius r and let

B.(a)nSif aeS\L;
Or(a) = {(B (@ NS\ L)U{a}ifa€eL

. .

Then, the collection U = {0,(a), (a,r) € S X R%}, is a topology on S. If a and b are distinct
points of S, let ||a — b|| = 2r, then O,.(a) and O,.(b) are disjoint open subsets of S containing
a and b, respectively, hence S is a Hausdorff. Consider the point a = (0,0), the open set
0,(a), a € S and the open subsets of 0,.(a) which contain a sets of the form O, (a), where
O<s<r.Letb € {b € L,||a — b|| < s}. Open sets containing b contain sets of the form 0, (b),
t > 0. Since ||a — b]| < s5,0:(b) N O;(a) # @ and b € cl(0;(a)) but b & 0,(a), thus
cl(04(a)) is not a subset of 0,.(a), therefore S is not regular.
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Example 5.6. Let E = {a, b, c} and the topology t = {@, {a}, {b}, {a, b}, E}, the closed
nonempty sets in £ are {b, c},{a, c},{c} and E, since there are no nonempty disjoints closed
sets, then E is not normal. Because, for a and {b, c}, there is no open set containing {b, c}, but
not containing a, then E is not regular.

Example 5.7. Example of a space which is T; and regular, hence T3, but not normal, hence
not T,. Let S = {(x,y) € R% y > 0} be the subset of the Cartesian plane (R? ||.|]), L =
{(x,y) € R%y = 0} the subset of S, and for each (a,7) € S X R}, B,.(a) = {b € R% ||a —
B.(a)nSif aeS\L;
B.(b)U{a}ifa € L.

Then, the collection V = {0,.(a), (a,r) € S X R4}, is a topology on S. Let a, b in S, and
0<r<|a-b|,thena & 0,(b) and b & 0,.(a), so Sis T;. Let O any nonempty open in S,

then for every & € 0, there exists r > 0, such that £ € 0r(§) < 0. Since cl (01(5)) =
2 2

(b eR21IE bl <2) NS c0,(9).if €S\ Land Or(n) = {b € R, |n — b|| <2}, where
2

n = (x,%) when &=(x.0)€L. Thus, cl (05(5)) C 0,(§). Therefore, 05(§) < cl (05(5)) c

0,-(&) c 0, for every € € S, by proposition 5.9 ¢) S is regular, then it is T3. To demonstrate
that, S is not T, therefore it is not normal. Since, any subset of L is closed, the two subsets
F ={(x,0),x € Q}, G = {(x,0),x € Q°} are nonvoide disjoint closed in S. If, S is T4, there
exist two disjoint open Or O F and O; D G. For each a = (x,0) € G, there exists r, > 0,
such that 0, (a) © Og. Let {G,,} be, the sequence of the subsets of G defined by: Vn €

b|| < r}, the open balls of center a and radius r and let 0,.(a) = {

1
n
of I is arbitrarily close to G,,. Suppose that, for each interval / and for each n € N*, there
exists a subinterval J of Z, such that /] N G,, = @. Let the rational numbers be ordred in a single
sequence (Ug, Uy, -- ., Uy, --. ). We then construct a sequence of closed intervals I,, I, such
that I,,,, € I,,, u, € I, and I, N G,, = @. By the Cantor principal (see lemma 3.1), there exists
s € R such that, Vn € N*, s € I,,. Since u,, € I,,, then s is not rational, so for sufficiently large
n, s € Gy, therefore I,, N G, # @, contradiction. Hence, for some nEN™ there exists an interval
1, such that every subinterval of / contains points of G,,. Consequently, there are points of G,,,
arbitrarily close to (x',0) € F € O € O, then there exists r > 0 such that 0, ((x’,0)) € Op.

On the other hand, for each a = (x, 0) € G, there is a set 0,.((x,0)) € O, withr > % Hence

if, x is sufficiently close to x’, the sets 0, ((x,0)) and O, ((x, 0)) intersect, thus Or and O; are
not disjoint, therefore S is not T4 and not normal.

Proposition 5.10. £ is normal<every open set O contains a closed neighborhood of each
closed set F.

Proof. Since E is normal, G = 0and F are closed, there exist disjoint open O; D G, O D F,
Fc0rc0.¢cO, then O contains a closed neighborhoods 0.;¢ of each F. Inversely, let /" and
G are disjoint closed sets, since F € 0 = G, then O contains a closed neighborhoods S of F,
so there is an open Wsuchthat Fc W c S c 0.LetU =S¢ thenG c U,asWnU cSn
U=UNU = @, therefore W N U = @.

Corollary 5.5. Let 4 be a closed part of a normal space E, contained in an open O of E. Then,
there exists an open U, such that A c U c cl(U) c 0.

Proof. Since 4 and B = 0° are two disjoint closed in a normal space E, there are two disjoint
open U D A, W D> B,orU > A,0 > W, sinceU c WEthend c U c cl(U) cO.
Corollary 5.6. Let A be a closed part of a T,-space (E, T) and let B be a basis of . Then for
all x € A, there exist B,B' € B such that x € B c cl(B) c B’ c AC.

N* G, = {(x, 0)eaqar= } Now, it will be shown that, for some interval I c L, every point
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Proof. As A € 1, there is B' € B such that x € B' c© A as E is Ty-space, then {x} is closed.
As, {x} € B, which is open by the corollary 5.5, there is U € T such that x € U c cl(U) c
B'. Then, there is B € B suchthatx € B c U c cl(U) € B' c AC. Therefore x € B
cl(B) € B' c AC.

Proposition 5.11. E is completely normal< every subset S C E, contains a closed
neighborhood of each A c int(S), where cl(4) c S.

6-Topological Subspace, Product Topological Space

6.1. Topological subspace

The notion of, topological subspace, is a convenient way, to define and study new
topological spaces. Let A be a nonempty part of the space (E, ), the collection 74 defined by
the part 0, C E is an element of 74 iffy, there exists O € T suchthat Oy, = AN 0O isa
topology, in fact:
Op1-As, D, E€t,thenAN@=0€tandANE = A€ 14
042-As the family {O,, @ €A} of open sets in E, satisfies Uy, O, is also an open in E and
Ugea (AN 0g) = AN (Ugen Og) then AN (Ugen Og) € Ty,
043-As the finite family {O,, @ = 1, ..., n} of open sets in E, satisfies N_; O, is also an open
inEandNj_; (ANO,) =ANn(Ny-; 0,) then AN (NZ_; Oy) € T4
The pair (4, 74) is called a subspace of (E, T), and 7, is called the induced (or relative, or
trace) topology for A. It is clear that 74 is closely related to 7, i.e. T4 changes if T changes.

Example 6.1 In the space R
11

a) If A =10,1[, then, AN ]_5'5[ = [O,%[ € T4, but [0,%[ & 7. So an open in 4, is not
necessary an open in £ and an open in E, is not necessary an open in A.
b) If A=N,vn € N,NN|n—1,n+ 1[= {n} are open sets in N, while it is closed in the
space R.
Proposition 6.1. Let (4, 74) be, a subspace of a space (E, T), then
a) Every closed in 4 has the form A N F, where F is a closed in E.
b) Every neighborhood of x € A, has the form A N N, where N is a neighborhood of x for t.
Proof. a) Let G be a closed in A, then its complementary G4 in 4 is open in A, therefore
there exists an open O in E, such that G4 = AN 0,s0G = (AN 0)A =AAUu 0% =¢u
0¢4 =0 =AN0% = ANF, where F = OF is closed. b) Let N, be a neighborhood in 4
of x € A, then there is an open Oy in A, such that x € 04 < N, therefore there exists O in E
such that, O, = AN O0,let N =N, U O, as Ny € N by N, in theorem 2.1, N € NV (x) in E and
NycANN=AN(NyUO)=(ANNy)UANO)=N,UOy ©c Ny soNy, =ANN.
Proposition 6.2. An open (respectively closed) in (4, ) is an open (respectively closed) in
(E, 1), iffy 4 is an open (respectively closed) in (E, 7).
Proof. It suffices to demonstrate for open ones, that for closed ones is similar. If 04 € 14,
there is O € 1, such that 04, = AN 0, as A € 7, then 0,4 € 7. Reciprocally if, for every
Oet,An0O€Et,thenANE=A€T.

Let x in (E, T), IV (x) the collection of the neighborhoods of x, then My (x)={ Ny =ANN,
N € V' (x)} is the collection of the neighborhoods of x € A. Indeed:
Nyi-Let x € A, if Ny € N, (x), there exists N € NV (x), such that Ny = A N N, since by N; in
theorem 2.1, x € N then x € N,,.
Nya-Let {N,_; a €A} be a family of elements in N, (x), then for any a€A, there is N, €

N (x), such that Ny, = AN Ny 80 Ugep Ny, = AN (Ugep Ng), as by Ny in theorem 2.1,
Ugea Nog € NV (), then Ugen Ny, € Ny(X).
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Nys-Let {N,; a =1,...,n} be a finite elements of NV, (x), then for any a € {1,...,n}, there
exists N, € NV (x), such that Ny = AN Ny so Ng=q Ny, = AN (Ng=y Ng) as by N3 in
theorem 2.1, NG—1 Ny € NV'(x), then Ng=q Ny € Ny(x).
Ny4-Let My € A, containing Ny € Ny (x), then there is N € N (x), such that My = AN N. Let
M =M, UN,thenN € M, by N4 in theorem2.1 M € N'(x),asANM =AnNn (M, UN) =
(ANMy)UANN)=MyUMy, = Mgy, then My € N, (x).
Nys-Let x € A and Ny € NV, (x), there is N € NV (x) such that Ny = AN N , by N5 in theorem
2.1, there exists M € N'(x) (M € N),suchthat N € N'(y),VyEM.soM, =ANM €
Ny(x), My € Ny then Ny € Ny (y), forany y € M,.

Let (4, t4) be the subspace of a space (E,7) and B C A, then:
Proposition 6.3.
a) If 75 is the topology in B induced by t and g5 is the topology in B induced by t,. Then
Tp=0p.
b) If B is a basis of 1, then the collection B, = {A N B, B € B} is the basis of 7.
Proof. a) If Oy € 75, there exists O € 7, suchthat Oy = BN 0 € AN O € 1,4, then T5 C 14.
Inversely, if Ug € op, there exists 04E€1y, such that Us=BN 0y, as there is O € 1, such that
0,=ANO0,thenUs =BNANO=BNO €1y, thenty C 75. b) If O4ET,, there is O € T,
such that 0, = AN O, since thereis B € B,B € O,then By = AN B C 0,.
Proposition 6.4.
a) cl,(B) = Ancl(B), where cl;, (B) is the closure of B in 4.
b) int.,(B) o A N int(B), where int,, (B) is the interior of B in 4.
c) cl,(B) = cl(B) ©A is closed.
Proof. a) Let x € cl;,(B) < A, then VN, € Ny(x), Ny N B # @, since there exists N €
N(x),suchthat Ny = ANN,then® #ANNNB c NnNB.So x € cl(B),.therefore
x € Ancl(B).If now, x € AN cl(B)., and Ny € N,(x), there exists N € N (x), such that
N,=AnNN,asNNB#@,andNyNB=NnN(ANB) =NnNB,then NyNB # @, so
x € cl,(B). b) As, AN int(B) is an open in 4, containing in B, and int;, (B) is is the
greatest open in 4, containing in B, then int,,(B) > A N int(B). ¢) Since by a) cl,,(B) =
AN cl(B) = cl(B) witch is closed in E, proposition 6.2 implies that 4 is closed in E.
Inversely, if 4 is closed in E, then cl;,(B) = A N cl(B) is a closed set in E, containing B, then
cl(B) < cl;,(B) c cl(B), therefore cl,,(B) = cl(B).

A set B c A is said, to have a particular property relative to 4, if B has the property in
the subspace (4, 74). A set 4 is said to have a property which has been defined only for
topological space, if it has the property when considered as a subspace. If for a particular
property, every subspace has the property whenever a space does, the property is said to be
hereditary. If every closed subset when considered as a subspace has a property whenever
the space has property, that property is said to be weakly hereditary. Then we have the
following hereditary properties.

Proposition 6.5. Let (4, 74) be the subspace of the space (E, 7). Then, if E is:

a) First countable, then 4 is first countable.

b) Separable and 4 is open, then 4 is separable.

c¢) Hausdorff, then 4 is Hausdorff.

d) Regular, then A is regular.

Proof. a) Let x € A and let V,,(x) = {N,,, n € N} be a countable basis of neighborhoods of x
in E. Since for Ny € N, (x), there exists N € V' (x), such that Ny = A N N thus, there exists
ny € N, such that N, © N, then Ny, = A N N, © Ny, therefore the countable family
Nyn(x) = {Ny, = AN Ny, n € N} is a basis of neighborhoods of x € A. b) Let D be a
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countable part of £, such that c/(D) = E, then A N D is a countable part of 4, such that
cl(An D) = A. Since, if x € A (which is open), and N € N'(x) then AN N € N (x), so
(ANN)ND =Nn(AND) # @, therefore x € cl(AND).c) Letx,y € A, x # y, there are
two disjoint open O 3 x, U 3 y, therefore, there are in 4 two open 0, = AN 0 3 x and
Uy=AnU>3ysuchthat 0, NnU, =AN(0ONU)=0@.d)Letx € Aand F, aclosed in A,
with x & Fy, then there is a closed F in E, such that F;, = AN F, so x & F, by regularity of £,
there are two disjoint open in £, O 3 x, U D F, therefore there are in 4, two open 04 = A N
03x,Uy=ANUDANF =Fysuchthat 0, NnU, =ANn(0NU)=0Q.

Remark 6.1. In general, separability is not hereditary. Indeed, let (E, 7) be a topological
space, where 7 is the family of all parts of E, containing a fixed point a € E and @. Since, if
x € E,N € N(x), Nn{a} # @ then cl({a}) = E, therefore E is separable, while A = {a}*
witch has T, = P (4) is not separable. But, the separability is hereditary, when 4 is open in £,
in fact if D is a countable subset of £, with c[(D) = E then A N D is a countable subset of 4,
as for x € A and N, € N, (x), there exists N € V' (x), such that Ny = A N N, since A4 is open
then A € N(x),then ANN € N(x),s0(ANN)ND =@, so(ANN)N(AND)=N,nN
(AND) # @thenx € cl(ANnD)and cl(AN D) = A.

6.2. Product topological space

Let {(E4 T4), 1 < a < n} be a finite collection of topological spaces, and let E = [17_ E,
be the finite product space, thatis x € E, if x = (x4,...,Xg4,..., X), Where for every a €
{1,...n}x, €E,. I,y = (Y1,.--,Yar---, Yn) then x = y if, forevery a € {1,...,n},x, =
Vg Forany O, € 7,: The part E4 X...X E,_1 X Oy X Ey4q X...X E,, of E is called open
elementary cylinder of basis O, and the part I[1}_,0,, of E, is called open cylinder or open
paving or elementary open set of £. Then we have:

a) An open elementary cylinder of basis 0, € 7, is an open cylinder, where 0, = E,, for
every a € {1,...,n}.

b) An open cylinder is the intersection of the following open elementary cylinder: 01 X E, X
o X By s BE1X} U XE g4 X Oy X Egy1%...XEp,...E1X. .. XE,_1x0,. In fact, if x €nl,_; (E; X...X
E,_ 1 X 04 X Eqyq X...X Ey), then, forevery a € {1,...,n},x € E; X...X E,_1 X 0, X

Eqi1 X..X Ey,soforevery @ € {1,...,n}, x, € 0, i.e. x € [1}_,0,. The reverse is clear.

¢) The intersection of two open cylinder is an open cylinder, since for every a € {1,...,n}, if
Oy, Uy €Ty, then O, N U,ET, therefore (I17-,0,) N (I115-,U,) = N}-,(0, N Uy,).

d) Since, for every a € {1,...,n}, E, € 74, then E = [1}_, E, is an open cylinder.

e) If, there exists ay € {1,...,n} such that, O, = @, then ll,¢,0, = @.

Let t be the collection of parts of £, defined by: 2 € 7 if, for every x € E, there exists an
open cylinder containing x and contained in Q. That is the elements of 1, are the union of any
open cylinder. Then 7 is a topology on E, called the finite product topology on E and the pair
(E, 1) is called the finite product space of the topological spaces E,, 1 < a < n. Let us prof
that t is a topology.
0:-Since, for every a € {1,...,n}, @y, Ey € Ty, then @ = 17,0, E = I}_,E, € T.

O,-Let V be any index set, {.(25, p € V} a collection of the elements of t, for every § € V,
every x € (1, there exists an open paving Ppg, such that, x € Pg < (1, 30 x EUgey Pp C
UBEV .Qﬁ, as U[)’EV PB ZUBEV (17;;10“,5) = HaEA(UBEV Oa',ﬁ) and UBEV 00.',,8 € Ty, for cvery
a € {1,...,n}, then Ugey {25 € T.

Os-Let {.(23, B eE{L,..., k}} be a finite collection of the elements of 1, then for every
Be{1,..., k}, every x € (1p, there is an open paving Pg such that, x € Pg < (Jg,s0x €
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Nf=1 Pg CN_y 2, as Nf_y Pp =0y (T71045) = Mi—1(Nf=y Ogp) and Nf_; Oy €
Tq,then Np_; Qg ET.

Example 6.2.

a) Let the space R be, the product topology on R" = R X...X R, (n time) is defined by the
elements which are the union of the open paving I1_, I, where, for every a € {1,...,n}, I, is
the open interval in R.

b) If, {(Ey, 74), 1 < a < n}, is the finite collection, of the discrete topological spaces, then
the product space, E = II}_, E, is also, a discrete space, since, P = [I7_,0, with1 < a <n
Oy € 14 then if, fora € {1,...,n}, 0, = E,, P = E, and if there is some « € {1,...,n}, such
that O, = @, P = @, then the open setis £ or @,so 7 = {@, E}.

Remark 6.1.

a) When, {(E,, t,), @ EA} is an arbitrarily collection, the box topology, is a topology where,
its elements are union of the part I1,¢, 0, of E = Il E,, where, for every a €A, 0, € t,.
b) The family where, its elements are union of elementary open sets: I, 0, =

.....

product topology.

Let (E, 7) be, a finite product topology space, x € E, V' (x) the collection of
neighborhoods of x, and for every a € {1,...,n} N, (x,), the neighborhoods of x, related to
the topology 7,. Then, the family B(x) = {N = I1}-,N,, where Va € {1,...,n},N, €
Ny (x4)}, 1s a fundamental system of neighborhoods of x. Indeed, if N € B(x), there are
N4,...,Ng,...,N,, where for every a € {1,...,n}, N, € N,(x,) such that, N = I[I}_,N,.
Therefore, there is Oy, ..., O, ..., 0, where for every a € {1,...,n}, O, € 1, such that
Xq €0, Ny,sox €0 =1II}_,0, € N,as O € tthen N € V' (x) which implies that
B(x) € N (x). Inversely, let N € NV (x), there exists O € 7, x € O C N therefore there are
04,...,0,4,...,0, where, for every a € {1,...,n},0, € T, suchthatx € 0 = 1}_,0, C N,
since O, € N, (x,), then IT}_, 0, € B(x).

Note that for a finite produced space, several notions mentioned previously can be
introduced. We will introduce some one, let E = [1}_, E, be, the finite product space and let
A =1}, A, be the part of E, where for every a € {1,...,n}, 4, is the part of E,.
Proposition 6.6.

a) cl(A) =11}_.cl(A,).

b) int(A) = II}_,int(Ay).

c) Aisclosede Va € {1,...,n}, A, is closed.

d) If,va € {1,...,n}, A, is a subspace of E,, then A = [1]}_; A, is a subspace of E.

Proof. a) If x € cl(A) and N € V' (x), there are Ny € N (x1),...,N, € N(xy),..., N, €
N (xg) suchthat N = [1}_ N, and NN A =I1;_;(N, N A,) # @, then,

Va € {1,...,n},.N, N A, # 0,50 x, € cl(Ay),Va € {1,...,n},then x € [1}_,cl(A,)
Conversely, if x € I1}_,cl(A,) and N € V' (x), there are Ny € N (x4),...,N, €
N(xg),--., Ny € N(xy) suchthat N =I1}_;N,,as Va € {1,...,n},x, € cl(4,), then
Vae{l,....n},NyNA, #D,soNNA=1I}_;(N,NA,) # @ sox € cl(A). b) It suffices
to demonstrate that, if A = A; X A,, int(A; X Az) = int(A;1) X int(A;) equivalently
(int(A1 X A3))¢=(int(A,) X int(A2))C. Since (int(A1 X A2))¢ = cl((Ay X A)C) =
cl[(A1¢ X E3) U (E1 X A29)] = [cl(A1) X E2)] U [(E1 X cl(A2°)] =then (int(A; X
A2)C=intA,;Cx E;)U(Ey % intA,C=(int (A1) * int(Az))C. c) A is closed iffy

cl(A) = NJ-icl(Ay) = IP-,A, = Aiffy,Va € {1,...,n}, A, = cl(4,). d) Let O € 1, there
are 01 €1y,...,0,€T,,..., OnET, such that 0 = 1510, € T,and A; N 01 € T4,,..., A, N O, €
Tage 1 An N Oy € T4 L as Il (Ag N 0g)=(I15-1A,) N (I15=10,) = AN O, thenAisa
subspace of E.
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Proposition 6.7. The product space E = I1}}_, E, is Hausdorff< Va € {1,...,n}, the space
E, is Hausdorff.

Proof. Let for a € {1,...,n}, x4,V € E4, X4 # Ya, then

X=Xy, Xg-1,Xer Xgiir--Xn) F (X1, 0, Xq—1,Yar Xaqs1r-++,Xn) = y since Eis
Hausdorff there are two disjoint open sets O 3 x and 0' 3 y, therefore there are 0, 0; €
T1,...,04, 0,4 € Ty,..., 0y, O, € T, such that 0 = 17,0, and 0' = [1*_, 0,, as 17,0, N
nt_,0,=M%_,(0,n0,) =®,and Va € {1,...,1n}, x, € O,, Y4 € O, then: fora = 1,x; €
0,,y1 € 0 andVa # 1,x, € 0, N 0, # @, so O; N 0;=0 witch implies that E is
Hausdorff, for @ = 2,x, € 05,y, € O, and Va # 2,x, € 0, N0, # @,50 0, N0, =@
witch implies that E, is Hausdorff,...,for « = n, x,€0,,, ¥,€0, and Va = n, x, € 0, N O, #
@, so 0, N 0,=@ witch implies that E,, is Hausdorff. Inversely, let x,y € E, x # y there are
Xe» Ya € Eq, with x, # y, since E, is Hausdorff, there are two disjoint open sets 0, 3 x, and
0y DYy s0X €O =E{X..XEy 1 X0y XEpiq1 X..XE,,y €O =E; X..XE,_; X0, %
E, 41 X...X E, witch are two open sets in £, and 0 N 0’ = E; X...X E,_; X (0, N 0,) X

E i1 X..XE, =0.

Proposition 6.8. Let (E, 7) be a topological space. The diagonal 4 = {(x,y) € E%y = x} is
closed<EFE is Hausdorft.

Proof. If x,y € E, x # y then (x,y) & 4° witch is a open in E?, there are two open sets in E,
0 3 x,0'3 ysuchthat 4 = 0 X 0", 50 0 N 0" = @, thus E is Hausdorff. Inversely, let
(x,v) € A€ then x # y, since E is Hausdorff there are two disjoint open in E, 0 3 x,0'3 y,
then the open O X O’ of EZ satisfies (x,y) € 0 X 0' € 4€, so A€ is a neighborhood of all its
elements, therefore A€ is open and 4 is closed.

Example 6.3.

a) In (R”, t), where 7 is the product topology of usual topology in R. For n € N*, the sphere,
Sp_1={x € R, Y"_, x,% = 1} is a subspace of the finite product usual space R".

b) The cylinder S; X R is a subspace of the space (R?,1), where 1 is the product topology of
usual topology in R.

¢) The n-dimensional torus §;” = §; X...X S, (n times) is a topological subspace of
(Rn,t),where 1 is the product topology of usual topology in R.

d) Since the space R, is Hausdorff, then R" is Hausdorff.

7-Sequences, Limits and Continuity.

7.1 Sequences

A sequence of points, of a nonempty set £, isanmap x:n € N € N = x,, € E, denoted
{xn; ne N}; (xn)nEN or simply {xn}-
Definition 7.1. We say that, a sequence {x,} of a space E, converges to a point x € E, or that
x is a limit of the sequence {x,,} if, for every N € NV (x), x,, € N except, for a finite number
of indices. In other words, for every N € V' (x), there is ng € N, such that for every n €
N,n > ng, x,, € N. We then write: lim,,_,,x,, = x or x;, & x when n — o or simply x,, = x.
A sequence which is not convergent is said to be divergent.
Proposition 7.1. Let E be a topological space, x € E, B(x) a basis of neighborhoods of x.
Then: lim,,_.x,, = x <for every B € B(x), there is ng € N, such that for everyn € N,n >
No, X, € B.
Proof. If, lim,_,.x, = x then, for B € B(x) € N (x), there is ny € N, such that for every
n > ng, X, € B. Reciprocally, if N € N(x), there is B € B(x), such that B ¢ N, therefore,
there is ng € N, such that for every n € N,n > ny, x, € B c V, then lim,,_,,x, = x.
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Note that, ny in the definition 5.1, depends of the neighborhood N of x, and that, a limit of a
sequence, in an arbitrary space, may not be unique. Also, the definition 7.1 remains true when
n = no.

Proposition 7.2. In Hausdorff space, when the limit of the sequence exists, it is unique.
Proof. If the sequence {x,,} has two limits x and y in the space E, such that x # y, there is
two disjoint open O 3 x, U 3 y, therefore there are n4, n, € N, such that for everyn € N,n >
n4, X, € O and, for every n € N,n > n,, {x,} € U, then for every

n € N,n > max(nq,n;),x, € 0 N U = @, contradiction.

The converse of the proposition 7.2 is not true. There are spaces which are not Hausdorff in
which every convergence sequence has a unique limit.

Example 7.1. In the cocountable space E, which is not Hausdorff, the stationary sequence
{xn} (i.e. there exists ny € N, such that x,, = x,,, = x,Vn > ng) has only one limit. Indeed if,
there are two limits x,y € E such that x # y, since {x}¢ is a neighborhood of y, there exists
ny € N, such that Vn > ny, x,, € {x}€, so Vn = max(no, ny), X, = x € {x}¢ contradiction. In
the case when {x,,} is not stationary, for any x € E, the set N = ({x} U (UL, x,,))¢ isa
neighborhood of x, witch not contains x,,, therefore {x,} is not convergent in E.

Although a space in which sequences have unique limits is not necessarily Hausdorff, it is
must be Tj.

Theorem 7.1. If, in a space E, every sequence has at most one limit, then £ is T;.

Proof. If E is not T4, there are x,y € E, x # y such that evey open O containing x, contains
also y. Since the constante sequence {y}, converges to y, also converges to x as the limit is
unique then x = y, contradiction, thus y € O and E is T;.

It is possible to have T;-space, in which sequences do not have unique limit.

Example 7.2. The sequence {n} in the cofinite space N* which is T;-space, converges to any
p € N*, indeed if N € V' (p), N¢ contains a finite elements of N* say ny then Vn > ng,n €
N.

Example 7.3.

a) If,for every n € N, x,, = x, i.e. the sequence {x,} is constant, then lim,,_,,,x,, = x. Since,
forevery N € N'(x),x € N.

b) In the indiscrete space E, any sequence {x,}, converges to any element x € E. Indeed, the
only neighborhood of any point x is E.

c¢) In the discrete space E, the sequence {x,}, converges to x € E < {x,,} is stationary.
Indeed, if x € E, any part 4 of E, containing x is a neighborhood of x, since there is ny € N,
such that for every n € N,n > ng, x,, = x, then there is ng € N, such that for every n €

N,n = ng, x, € 4, so lim,,_.x, = x. Now, if lim,,_,..x, = x, because, {x} € N (x), there
exists ng € N, such that, for every n € N, n > ny, x,, € {x}, so there is ng € N, such that, for
every n € N,n > ng, x,, = x, i.e. the sequence {x,,} is stationary.

d) In the space R, the sequence, {%} converges to the unique limite 0. In fact, for any € > 0,
there is nog€ N*, such that, ni < g,50Vn > ny, % < ni < g, equivalently VI(0, €), there is

0 0
no € N*, such that, for every n € N*,n > no,% € 1(0,¢), i.e. limn_m% = 0, since the space R
is Hausdroff, the limit is unique.

e) The sequence, {%} diverges in the discrete space R. Because, if, there is x € R, such that
limn_m% = x, then for {x} € N'(x), there is ny € N*, such that, for everyn € N*,n >

1 11 _
no,— € {x}, so ———, then 0=1, contradiction.
n ng ne+1
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Definition 7.2. A subsequence of a sequence {x,} in the set £, is the sequence
{x(p(n)}c{xn}where the function, ¢:n € N » ¢ (n) € N, is strictly increasing.
It is clear that ¢ (n) > n,Vn € N. then:
Proposition 7.3. Any subsequence of a convergent sequence, is convergent and, has the same
limit of the sequence.
Proof. let {xw(n)} be a subsequence, of a convergent sequence {x,}, in a space E, if x € E is
a limit of {x,,}, for every N € W' (x), there is ny € N, such that, for everyn € N,n > ng, x,, €
N, as p(n) > @(no) = no, then X,y € N S0 Xp(ny) — X.
Remark 7.1. The proposition 7.3 indicates that, if a sequence has two subsequences, which
converge towards two different limits, then the sequence is divergent. For example in the
space R, which is Hausdorff, the sequence {(-1)"}, has tow subsequence {1} and {-1}, which
converge to 1 if n is even and to —1.if n is odd. Then {(-1)"} is divergent.
Proposition 7.4. If all subsequences, of a given sequence converge and they have the same
limit, then, the sequence converges towards this limit.
Proof. Let xbe the common limit of all subsequences, of a given sequence x,, in the space E.
If, x is not the limit of the sequence{x,, }, there is N € V' (x), such that for every n € N, there
ism € N, m > n, and x,,, € N, as the function ¢:n € N » @(n) = m € N is strictly
increasing, so the subsequence {x(p(n)} satisfies, the following: there is N € V' (x), such that
for every n € N, there is (n) € N, ¢(n) = n, and x, ) € N, i.e. x is not the limit of the
subsequence {x(p(n)}, contradiction.

Let 4 be a part of the space E. If the sequence {x,,} € A has a limit x, then for every
N € NV (x), there is ng € N, such that, foreveryn € N,n > ng, x, E Nso(N\ {x}) N A #
@, i.e. x € A the set of accumulation points of A, as cl(4) = AUA' therefore x € cl(A). If
now x € cl(A), is there a sequence in 4, which converges towards x”. The answer is given by
the following proposition, whose proof, is based on the fact that, if {N,,, n € N} is a countable
basis of neighborhoods of x € E, then the collection {B,,,n € N} where B,=N}-; N; is also, a
countable basis of decreasing neighborhoods of x.
Proposition 7.5. In 1D-space E, if x € cl(A), there is a sequence {x,} c A, witch converges
to x.
Proof. Let x € cl(A) and {B,,n € N} a countable basis of decreasing neighborhoods of x.
Since, for every n € N, B, N A # @, there is a sequence {x,,} € B, N A, which converges tox.
Indeed, if N € V' (x), there is some n, € N, such that B,  c N, since, for everyn € N,n >
No, By, € By, then for every n € N,n > ny, B, € N, then for everyn € N,n > no,x, € B,
N, so x, — x.
7.2-The adherent value

Let {x,,} be a sequenc in the space E. For any n € N, let A4,, = {x;, k = n} be. An element
x, of the space E, is called an adherent value (or a limit point) of the sequence {x,,}, if
VN € N (x),and Vn € N, N N 4,, # @, equivalentely, if VN € NV'(x) and Vn € N, there is
k > n such that, x;, € N.

If {x,,} converges to x, then x is an adherent value of {x,,}. Indeed for N € N'(x), there is
no € N,Vp € N,p > ng,x, € N, then for everyn € N, there exists k =p+n € N,k =
n (k = p > ny), such that x; EN. If, x is an adherent value of {x,}, then x € cl({x,}), since
VN € N (x),N n {x,} # @. But, an adherent element is not necessary an adherent value, as
shown in the following example.
Example 7.4. In the space R:

a) The sequence {%} has 0 as an unique adherent value (its limit) and Vn € N*, % are the
adherent elements witch are not the adherent values.
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b) The sequence {(—1)"} is divergent, but it has tow adherent values 1 and —1.
Proposition 7.6. In a Hausdorff space, the only adherent value of a convergent sequence, is
its limit.

Proof. If, there exists an adherent value y € E of the sequence {x,},y # x = im0 Xy,
there are tow disjoint open O 3 x, U 3 y, then for every n € N, there exists (k, 1) € N? such
that for m = max(k,l) > n, x,,, € O N U, contradiction.

As a direct consequence of the proposition 7.5, we have.

Proposition 7.7. In 1D-space, if x is an adherent value of the sequence {x,,}, there exists a
subsequence {xq, (n)} of {x,,} witch converges to x.

Proposition 7.8. The set of the adherent values, of the sequence {x,}, in the arbitrary space E,
is the closed A =N,,5( cl(4,).

Proof. Let x € A, an adherent value of the sequence {x,,} and N € V'(x), then for every n€EN,
there exists k € N, k > n such that x, € N,so foreveryn €N, NN A4, # ®,sox € cl(4,),
therefore x €N,,5¢ cl(4,). Inversely, if x EN,5o cl(4,), x € cl(A,),Vn € N, so VN €
N(x),vn € N,N N A,, # 0, therefore there exists k € N, k > n and x;, € A4,,, then x € A.

7.3 Limit and Continuity

Functions on spaces are important tools for studying properties of spaces and for
constructing new spaces previously existing ones. Let (E, 1), (F, d) are tow topological
spaces, xo an accumulation point of E, [ € F, and the map f:E — F.
Definition 7.3. [ is called, a limit of f(x) when x tends to x, and we write lim,_,, f(x) = [,
or f(x) = [, when x = x, if, for every neighborhood V of [, there exists N € N (x,) such
that f(N) c V, or equivalently for every open U containing [, there exists O € t, xo € Osuch
that f(0) c U.
Proposition 7.9. In Hausdorff space, the limit when it exists is unique.
Proof. If f has in xo € E, two limits [,I' € F, and [ # I, there are two disjoint open in F,
U3 LU 31U, thus there are two open 0,0' € T, xo € O N 0’ such that, f(0) c
Uand f(0") cU',then f(ONO) c f(O)Nf(O)cUNU =0@,s0 f(ONO") =0,
therefore O N 0’ = @, contradiction.
Definition 7.4. f is said to be continuous at a point xo € E, and we write lim,_,, f(x) =
f(x0), 0r f(x) = f(x0), when x — xo, if for any neighborhood V of f(x,), there exists
N € V' (xo) such that f(N) c V, that is to say that f(x,) € F, is a limit of f(x) when x tends
to xo.
Since N c f7(f(N)) c f~1(V), then f~*(V) € N (x0), s0 lim,_,, f(x) = f(x0), if for each
neighborhood V of f(x,), f~*(V) € NV (x,). If, this property holds for each point x € E, f is
called continuous on E, or simply continuous.
Proposition 7.10. Let (E, 1), (F, 0), (G, p) are topological spaces, if the map f: (E, 1) —
(F, o) is continuous in xo € E and the map g: (F, o) — (G, p) is continuous in f(xo) € F,
then the composition map g o f: (E, ) = (G, p) is continuous in X.
Proof. Let W be a neighborhood of (g © f)(x0) = g(f (x0)), since g is continuous in f (xo),
then g~* (W) is a neighborhood of f(x,), as f is continuous in x,, then f™*(g"*(W)) = (g °
)W) € NV (xo).
Theorem 7.2. The following assertions are equivalent:
1) fis continuous.
2) The inverse image of open sets is open.
3) The inverse image of closed sets is closed
4) Forany A c E, f(cl(A)) c cl(f(4)).
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Proof. 1) = 2) Let U € o and x € f~*(U), then f(x) € U witch is a neighborhood of f (x),
since f is continuous in x there is N € V' (x) such that f(N) < U. Therefore, there is
O€et,x€E0cNcfYf(N))cf*U),sof*U) et 2)= 3)LetSbeaclosedinF,
then S¢ is an open, by 2) f71(S) = f1(S)¢ € 7,50 f1(S) isclosed in E. 3) = 1) Let

x € E, V aneighborhood of f(x), there exists U € o, f(x) € U c V, as U is closed, by 3)
FHUS = Y (U)C isclosed in E, so f*(U) € tand x € f*(U) c f1(V), then f*(V) €
N (x), since x is arbitrary then f is continuous.The demonstration will be closed, if we
demonstrate 3) & 4). 3) = 4) Since, cl(f(A4)) is closed in F, by 3) f~*(cl(f(4))) is
closedin E, as f(4) < cl(f(A)), then A € f7*(f(4)) c f(cl(f(4))), it follows that
fcl(A) € F(f(cl(f(A))) < cl(f(A)). 4) = 3) Let S be a closed in F, since
FLFTHSN) € cl(fF(fTH(S))) € cl(S) = S, then

FHSELSETHEN) € LTSN < FHl(S)) = f7(S), so cl(fT(S)) ©
FHS) c cl(F1(S)), so f71(S) is closed.

Proposition 7.11. If f is a continuous function from a space E into the space R. Then, for
every z € E and every € > 0, there is an open O in E containing z, such that, for every

x,y€0,|f(x)-fl<e
Proof. As f is continuous then, forall z € E and ¢ > 0, f 1 (1 (f(z),g)) = 0 c E is open

and containing z. Using the definition of the continuity of fat the point z, we have for every
X,y €0, f), f) € 1(f(2),%). Therefore, |f(x) = fO)] < If () = f(2)] +
fG) —f@ <i+i=e.

The relation between, the sequences and the continuity in a 1D-space, is given by the
following theorem:
Theorem 7.3. If E is 1D-space, then: lim,._,, f(x) = f(x,) <for every sequence {x,} C E,
converging to xo, f(x,) converges to f(x).
Proof. Let {x,} C E be a sequence witch converges to x,, and U an open in F containing
f (x0), since lim,_,, f(x) = f(x0), there exists an open O 3 x,, such that f(0) c U,
therefore there exists ny € N, such that for every n € N,n > ng, x,, € O then f(x,) € U.
Conversely,
if f is not continuous, there is some open U such that f ~1(U) is not open in E. Then,
(f~Y(U) )¢ is not closed in E, so there is some x in cL((f ~1(U) )¢) which is not in
(f~1(U) )C. By proposition 7.5, there is a sequence {x,,} in (f ~1(U) )¢ witch converges to x.
As, x € f~1(U), thus f(x) € U, because for every n € N, x,, € (f "1(U) ), then x,, is not in
f(U), so f(x,) is not in U. Therefore the sequence {f (x,)} not converges to f (x),
contradiction.

As a direct consequence of the theorem 7.3. We have
Corollary 7.1. If E is 1D-space, then: lim,,_,, f (x) = | <for every sequence {x,} C E, such
that lim,,_,., X, = Xo, we have lim,_ . f (x,) = L.

Note that, the notion of continuity is closely related to the topologies defined on £ and F.
A map may be continuous for one topology, and not continuous for another, as shown in the
following example:
Example 7.5.
a) The function f:(R, 7,,) = (R, 7,,), defined by f(x) = x, Vx € R is continuous on R, it is
also continuous from (R, 74;5}) to the space (R, 7,,) but fis not continuous from (R, 7,,) into
(R, T4i5]), since for the neighborhood V = {f(x)} = {x} of f(x), f~*(V) = {x}, which is not
an usual neighborhood of x.
b) We can demonstrate that the collection T = {@, R} U {]a, +o[,a € R} is a topology on R.
The function f: (R, 7) - (R,, 7,) defined by f(x) = x% Vx € R is not continuous on R,
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since it is not continuous in 0, since there is § > 0 such that a neighborhood (0, §) of

f(0) = 0 don't contains any image of any neighborhoods N of 0. As, we suppose there is

N € NV (0), such that f(N) c I(0, §) then there exists a € R, such that 0 €]a, +oo[, and
f(a,+x[) =R, c f(N) c] — 6, 5[ impossible.

Example 7.6.

a) Let t and t’ tow topologies on E, if T € 7’ then, the identity map i: (E,7") — (E, 1)
defined by: Vx € E, i(x) = x is continuous on E. In fact, if 0 € 7,i’*(0) =0 €T c 7'.

b) Let f: (E, t4;5) = (F,0) be amap and ¢ any topology on F, then f is continuous on E, in
fact VU € a, f1(U) € 74

c) Let f: (E,t) = (F, T;4is ) be a map, where 1 is any topology on E, then f is continuous on
E,in fact VU € T4, U =@ or F then f*(U) =@ or E so f }(U) € 1.

d) Let f: (E,7) = (R, t,,) be a continuous function on £, since {0}, ]-00,0] are closed and
10,+o[ is open in the space R, then: A = {x € E,f(x) =0} = f'({0}); B={x € E,f(x) <
0} = f%(] — ,0]) are closedin Eand C = {x € E, f(x) > 0} = f%(]0, +o[) is open in E.
d) Let E be a space and F a Hausdorff space. Then, the set A = {x € E, f(x) = g(x)}, where
f,g:E — F are continuous is closed. Indeed, for all x € A¢ f(x) # g(x), as F is Hausdorff,
there are U € V' (f (x)) and W € NV (g(x)) such that U N W = @. Therefore, there are

N € N(x)and V € NV (x) such that f(N) c Uand f(V) c W. Asforanyy e NNV €
N(x), f(y) €Uand g(y) € W, then f(y) # g(v),soy € A°. Hence, NNV c A°, so

A€ € V(x) thus itis open.

Proposition 7.12. Let (E, 7) and (F, 0) are two topological spaces, if 7’ is a topology on E,
such that tct’, and the map f: (E,t) = (F, 0) is continuous on E, then f: (E,t") = (F,0) is
continuous on E.

Proof. Let U € o, since f: (E,t") = (F, o) is continuous on E, then for U € o, f *(U) € T,
since T € 7', then f*(U) € 7'.

Lemma 7.1. Let (4, t4) be a subspace of a space (E, T), then the canonical injection j: A = E,
defined by Vx € A4, j(x) = x is continuous on 4.

Proof. Let O € 7, since j*(0) = {x € 4,j(x) = x € 0} = AN O € 1, then j is continuous
on A.

Remark 7.2. The lemma 7.1 allows us, to find the topology of a subset 4 of a space E, by
saying that the topology 7, is the coarser topology on A, which that the canonical injection j is
continuous.

Lemma 7.2. Let (4, t4) be a subspace of a space (E, 1), if f: (E,t) — (F, 0) is continuous on
E, then the restriction of f to 4 thatis g: (4,t4) — (F,0) is continuous in 4.

Proof. It suffices to remark that: g = f o j and use proposition 7.10.

Lemma 7.3. Let (E, T) be, the finite product space, i.e. E = II}_,E,. For every a €
{1,...,n}, the coordinate projection, T,: (E,7) = (E,, T4), defined by:

Vx = (X4,...,Xg,---,Xn) € E, my(x) = x, are continuous and surjective.

Proof. Leta € {1,...,n}, 0,€1,, then;1(0,) = {x € E, my(x) = x, € 0,} = E; X...X
Eq_1 X 04 X Egyq X...X E, € 1. So, for every a € {1,...,n}, m, is continuous. As m (E) =
{t (x) € E,, x € E}=E,, forall a € {1,...,n}, then 1, is surjective for all « € {1,...,n}.
Remark 7.3. The lemma 7.3 allows us, to find the product topology on E, by saying that the
topology 1 is the coarser topology on E, such that all of the coordinate projection T, are
continuous.

Let (E,7) and (F, o) are topological spaces, where F = [1}_, F, is a finite product space of
to spaces (Fy, d,), a € {1,...,n}. Then, the map f: E — F has n components
(fv-far-- fn), where Va € {1,...,n}, fo: (E, 1) = (F,,0,), thatisVx € E, f(x) =
(f1(x), .., fa(X), ..., fu(x)) and:

Lemma 7.4. f is continuous on E < Va € {1,...,n}, f, is continuous on E.
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Proof. Since Va € {1,...,n}, f, = m, o f where ,: (F,0) = (F,, 0,) are the continuous
coordinate projections, if f is continuous on E by proposition 7.10 Va € {1,...,n}, f, is
continuous on E. Inversely, let U € g and x € f~1(U), so f(x) € U, there is an open cylinder
P =1IM%}_,U,, where Va € {1,...,n}, U, € 0, such that f(x) E P c Uie. x € f}(P) c
f1(U), since f71(P) = f*(I1*-,U,) thenVa € {1,...,n}, fo(x) € U, orVa €

{1,...,n},x € £,"*(U,), then fX(P) =n2_, £, *(Uy,), as Va € {1,...,n}, f, is continuous
on E, £, *(U,) € T therefore f1(P) € 7, s0 f1(U) € N'(x),Vx € f~1(U), it follows that
YU er.

8-Homeomorphism, Open and Closed Maps, Urysohn Lemma

8.1-Homeomorphism, Open and Closed Maps

The notion of homeomorphism is fundamental in topology, a homeomorphism is an
isomorphism of topological structures. When two topological spaces are homeomorphic any
property true for one is true for the other.
Definition 8.1. Let (E, 1), (F, 0) are two topological spaces. The map f: E — F is said to be
an homeomorphism if, f is biunivoque and bicontinuous i.e. f is bijective and both f and its
inverse map f~': F — E are continuous. When there exists an homeomorphism betwin E and
F, we say that £ and F are topologically equivalent ( or homeomorphic).
It is clear that:
Lemma 8.1. The composition of two homeomorphisms is a homeomorphism.
Example 8.1.
a) The function f: R = R, defined by f(x) = ax + b,Vx € R, where a € R* and b € R are
two given constants, is an homeomorphism.

b) The function f: R =] — 1,1[ defined by f(x) =

homeomorphism.

c¢) The exponential function f: (R, 7,) = (R}, 1), defined by f(x) = e*,Vx € R, is an
homeomorphism.

d) The function f:]0,1[—]a, b[, defined by f(x) = (a — b)x + b,Vx €]0,1[ , where a and b
are two given constants, is an homeomorphism i.e. ]0,1[ and ]a, b[ are homeomorphic.

e) Any bijective map, on a discrete space into a discrete one, is an homeomorphism.
Remark 8.1. It is not true that, the bijective continuous map is an homeomorphism. Indeed,
the function f: (R, 74;5) = (R, 7,,), defined by f(x) = x, Vx € R is one to one, continuous
but 7 (R, 7,) = (R, T4is) is not continuous.

Proposition 8.1. Let E; X E; be a product space and (a4, a;) € E; X E,. The two maps

g1: E1 = E1 X {a,} defined by g1(x) = (h1(x), h2(x)) = (x,a;),Vx € E;and g,: E, =
{a,} X E;, defined by g»(y) = (a1,y),Vy € E, are two homeomorphisms.

Proof. g, is an homeomorphism. since, the components h4, h; of g4 are bijective and
continuous and its inverse g7 1 = my: E4 X {a,} = E4, (x,a;) » m1(x, a;) = x is continuous.
By the same g, is an homeomorphism.

Corollary 8.1. Let E; X E, be a product space, F a topological space, (a4, a;) € E1 X E;. If,
the map f: E; X E; — F is continuous, then the tow partial maps f1: E; — F, defined by
f1(x) = f(x,a2), Vx € E1 and f5: E; — F, defined by f2(y) = f(a1,y),Vy € E; are
continuous.

Proof. It suffices to note that: f; = f o g; and f, = f o g, and apply proposition 8.1 and
proposition 7.10.

Remark 8.2.

a) Corollary 8.1 is true for a finite product topological spaces.

x
1+|x|

,Vx €] — 1,1], is an
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b) The inverse of the corollary 8.1 is not true. Consider the function f: R* - R, defined by
flx,y) = % if (x,¥) # (0,0) and £(0,0) = 0, since f(x,x) = % # £(0,0), the function f

is not continuous in (0,0), then it is not continuous on R?, but f1(x) = f(x, a,) = %, if
x# 0, f1(0) = 0 and fo(¥) = f(a,y) = —=2—, if y # 0, f»(0) = 0 are continuous on R.

a*+y?

The introduction of the open map, (respectively of the closed map), is motivated by the
fact that, the image of an open set (respectively of a closed set), by a continuous map not
always an open set (respectively a closed set), as shown in the following example: the
function f: (R, 1,) = (R,, 7,), defined by f(x) = x? Vx € R, is continuous, but f(] —
1,1[) = [0,1], by the same the exponential function g: (R, t,,) — (R}, ), defined by
g(x) = e*,Vx € R, is continuous but g(] — oo, 0]) =]0,1].

Definition 8.2. Let E and F are two topological spaces. The map f: E — F is called:

a) Open if for any open O in E, f(0) is an open in F.

b) Closed if for any closed set C'in E, f(C) is a closed set in F.

Example 8.2.

a) If A is an open subspace (respectively a closed subspace) in a space E, the canonical
injection j: A = E is open (respectively closed).

b) The homeomorphism is both open and closed.

Corollary 8.2. Let E = 17}, E, be the finite product space. For every a € {1,...,n}, the
coordinate projections my: E — Ey; x — m,(x) = x, are open.

Proof. If O is an open in E, there are 0; €14,...,0,ET,..., O, €T, such that 0 = [17_,0, € T
then 7, (0) = {my(x) EE,,x € 0} = E, N Oy = Oy € Ty Then m, is open for all ¢ €
{1,...,n}.

Remark 8.3. It is not true that, the coordinate projection is closed, indeed the set C =

Uns1 ([n,n + %] X [0,1 - ﬂ) is a closed in the space R?, and m,(C) = {m(x,y), (x,y) €

C}={ER(xY) ECI={y ERY €U, [0,1 -]} =Ussy [01-2] = [0,1[. 50

m,: R? - R is not closed.

Corollary 8.3. If a map f over a space E, into a Hausdorff space F is continuous, the graph
Gr ={(x,y) EE XF,y = f(x)}is closed.

Proof. Since, the map h: E X F — F X F defined by, h(x,y) = (hi(x,y), h2(x,y)) =
(f(x),¥),V(x,y) € E X F is continuous, since its components f and m, are continuous, as
the diagonal A € F X F is closed, then h™*(4) is closed, as h™*(4) = {(x,y) € E X
F,(f(x),y) €4} ={(x,y) € E XF,y = f(x)} = G, thus Gy is closed.

Remark 8.4. In general, the converse of the corollary 8.3 is false. Consider the function
f:(R,7,) = (R, t,) defined by f(x) = %, ifx # 0,f(0) = 0, the graph G = {(x,y) €

R?, xy = 1} U ({0,0}), since the function h: R* - R, defined by h(x,y) = xy, V(x,y) € R?
is continuous on R?, then Gy = h™*({1}) U {(0,0)} is closed, but f is not continuous on 0,
therefore it is not continuous in R.

Corollary 8.4. A sequence {x,} = {(x1",..., x4, ..., x1)} of 1D-finite product space E =
}_,E, converges to x = (X1,...,%Xg,...,Xp) € E & Va € {1,...,n}, the component
sequence {x2} converges to x, in E.

Proof. Since by the lemma 7.3, Va € {1, ..., n}, the coordinate projections 7, are continuous.
If {x,,} converges to x then Va € {1,...,n}, the sequence {my(x,)} = {x;} converges to
ma(x) = x,. Inversely, if N € V' (x), there are Ny € N (x1),..., Ny € N'(xg),..., Ny €
N(x;,), such that N = I1}_; N, since Va € {1,...,n}, the sequence {x}} converges to x,,
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there is some n, € N, such that Vvn € N,n > n, we have x}} € N,, so there is ny =
max{n,, 1 < a < n} such that Vn € N,n > ny, x,, € N, therefore {x,,} converges to x.

Note that, several results obtained for a finite product space remain valid for the product
space, whose proofs of someone are not too far from those obtained for a finite product
spaces: Let {(E,, T,), @ EA} be a collection of the topological spaces and let E = I1,¢,E,be
the induced product space. Then we have:

a) If, for every a €A,

i) E, is 1D-space, then E is 1D-space.
ii) E, is 2D-space, then E is 2D-space.
iii) E, is Separable, then E is separable.

b) A sequence {x,} of the product space Econverges to x € E if, for every a €A, the
component sequence {x/ } converges to x, in E,.

c¢) For all « €A, the projection map ,:x € E - x, € E, is continuous open and
surjective.

d) The map f from a topological space F into E, is continuous< for every a €A, the
map f,=m, ° f from F into E, is continuous.

Let {(E,1); (F,, T,), @ €A} be a family of the spaces , F = II,c,F, and let T =
{fu: E — F,; a €A} be a family of mappings.
Definition 8.3. We say that:

a) T separates points, if for every x,y € E, x # y, there is some a €A, such that
fa(x) # fo(y) in F,.

b) T separates points and closed sets, if for every closed part A € E and every x € A€,
there is some a €A, such that f,(x) & cl(fa(A)).
Definition 8.4. The map e: E — F defined by: forall x € E, e(x) = [l eafo(x) ie. fo(x) €
F, for all @ €A, is said to be the evaluation map.
Lemma 8.2. (Embidding Lemma). If, for all f € T, f is continuous and if, T separates
points and separates points and closed sets. Then e is an embedding i.e. e is a
homeomorphism betwin (E, 7) and the subspace (e(E), g) of F.
Proof. It is obvious that, e is onto, as T separates points then e is also one-to-one. Since,
fa=m, © e and f, is continuous for all @ €A, then e is continuous. It remains to prove that, for
all O € t, the image e(0) is a neighborhood of each of its points, therefore it is open. Let
y € e(0) be, there exists x € O such that y = e(x), as x & 0¢ which is closed in E, because
T separates points and closed sets, there is some i €A, such that f;(x) & cl( fi (OC)). As

c c
(cl(ﬁ- (OC))) is open in F;, and 7r;: F — F; is continuous then 7r; <(cl(fi(06))) ) is open

c
in F, therefore U = e(E) N ;! ((cl(fi(OC))) ) € 0. Since, (1r; o €)(x) = f,(x) €
clfi0CCthen, y=ex€mi—1clfiOCC, therefore y€/l. It remains to prove that /ced. Let zel/

be, there is x’ € E, such that z = e(x') € ;! ((cl(ﬁ-(Oc)))C>, as f;(x') € (cl(fi(OC)))C,

then f;(x") & f;(0¢) and x’ & O€, thus x" € O, which implies that z = e(x") € e(0). It
follows that e(0) € NV (y), for all y € e(0), thus e(0) € o.

8.2. Second Variation of the Separation Axioms, Urysohn Lemma

In this section, we introduce two new types of separation axioms (the stronger separation
properties). The first involves to use of closed neighborhoods in place of open sets in axioms
T,, the second concerns the existence of the Urysohn function for a subset 4 and B of the
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spaceF, i.e. a continuous function f: E — [0.1], such that f(4) = 0 and f(B) = 1. A space £
is said to be:
Tz% (or TZ%-space or completely Hausdorff space), if for x,y € E (x # y), there exist open

sets 0, 0" containing x and y respectively, such that c/(0) N cl(0") = @.
T,1 (or T,1-space), if 4 is a closed subset of £ and y is an element of A€, there is a Urysohn
2 2

function for 4 and {y}. E is said to be Completely regular space, or Tychonoff if, £ is T,
and T,1.
2

The following implications, specifies the relationships between both first and second
variation separation axioms:
Te=2T,=>T:=>T,=>T, =T,

Ts = completely normal.

T, = normal.

T; = regular.

Note that the implications are not reversible.

A property is said to be, a topological property (or topological invariant), if whenever
one space possesses a given property, any space homeomorphic to it, also possesses the same
property. Similarly, a property is called a continuous, open, or closed invariant if any
continuous (respectively open, closed) image of a space possessing the property also
possesses the property. All the separation properties are topological properties. However,
certain of the properties are preserved under less restrictive maps if. (E, 7), (F, o) are two
topological spaces and f: E — F is closed one to one, and E is Ty, T, Hausdorff, or
completely Hausdorff, then Fis Ty, T1, Hausdorff, or completely Hausdorff. In particular if
T C 1’ are topologies for E, that is T’ is an expansion of 1, the identity map i: (E,7) — (E, ")
is closed bijective and continuous, therefore it is an homeomorphism, then if (E, 7) is Ty, T4,
Hausdorff, or completely Hausdorff, (E, 7) is also Ty, T1, Hausdorff, or completely
Hausdorff. The stronger separation properties are not in general, preserved under expansion.

Every subspace of a Ty, T, Hausdorff, completely Hausdorff, regular, completely regular
or completely normal space is Ty, T4, Hausdorff, completely Hausdorff, regular, completely
regular or completely normal. But only closed subspace of normal space need be normal.

Most separation properties are, however, preserved under products. Let {(Ey, 7,), @ €A}
be a collection of the topological spaces and let E = I1,¢, E,be the induced product space.
Then

a) E is Ty, T4, Hausdorff, completely Hausdorff, regular or completely regular space, iffy
for every a € A, E, is Ty, T1, Hausdorft, completely Hausdorff, regular or completely regular
space.

b) If E is normal or completely normal, each E, is normal or completely normal, but the
converse does not hold.

Theorem 8.1 (Urysohn Lemma). If 4 and B are two disjoint closed sets, in a normal space E,
there is a Urysohn function for 4 and B. i.e. the normal space is completely regular.

Proof. Since A € B¢ = 0, which is an open, by corollary 5.5, there exists an open 01 such
2

that A € 01 C cl (01) C 04, by the same, for A € O: there is an open A C 01, such that
AcO:c él(Ol) c 201 and for cl(01) € O, there is :m openOs such that cz(él) c0scC
cl(05) € 04,50 A € 01 C cl(01) € 0s € cl(01) € 05  cl(03)  Oy. By iteration,
Va 64{1, 2" n e Ni, there e;ist opéns Oa 5121ch tha: for 0 <4r <s, 0, ccl(0,) c 0.
Let's define, for all x € E, the function f (x) - 1,ifx € B and f(x) = inf{r,x € O, and
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x &€ B}, thenifx €A C O«, f(x) = inf{%,n € N*} = 0, since 0 <%S 1,Vn € N*,
o

Va € {1,...,2"}, then 0<f(x)<1, Vx € E. It remains to demonstrate that, f: E = [0,1] is
continuous. Let U an open in the subspace [0,1] of the space R, there exists |a, b[C R, such
that U = [0,1] N]a,b[=]a,1]if0 <a <1< b,orU =[0,b[,ifa<0<b <1 Let

x € f'(Ja,1]), then a < f(x) < 1, so there is o > a, such that x & O, . For so €]a, o],

cl(0s,) € O, then x & cl(Os,) or x € (cl(OSO))C, s0 f1(Ja, 1]) =V, (cl(04))€ witch is an
open in E. If now, x € f7*([0, b[), then 0 < f(x) < b, so there exists no € N*, such that
0<f(x) < % =710 < ni < b, then x € O, and f~*([0, b[) =U, <}, O, witch is an open in E.

Remark 8.5.

a) The Urysohn lemma is true in any space homeomorphic to [0,1], in particular in any
interval [a, b]. That is for two disjoint closed 4 and B in a normal space E, there is a
continuous function g: E — [a, b], such that g(A) = a and g(B) = b. It suffices to take
g = min{b, max{a, f}}, where f: E — [0,1] is a continuous function.

b) If, for two disjoint closed parts A and B of the space E, there is an Urysohn continuous

function f. Then E is normal. In fact, for any open U in [0,1], f~1 ([O,i[ N U) is an open in
[0,1], containing A, and for any open V in [0,1], f~1 (E, 1] n V) is an open in [0,1],

containing B. As f~1 ([O,i[ N U) nft (E, 1] N V) = @, then E

We need the following lemma, to demonstrate the extension theorem of continuous
functions defined on closed part of a normal space (Tietze-Hurysohn Theorem).
Lemma 8.3. If 4 is a closed part of the normal space E. The following properties are
equivalent:
a) The bounded continuous function f: A — R, has a bounded extension continuous function
over E.
b) The continuous function f: A — R, has an extension continuous function over E.
Proof. a) = b). Let f: A - R, be a continuous function. Then, the function ¢: A = [0,1]

defined by ¢ = L, is bounded continuous on 4, by a) there is an extended continuous

1+f
function g: E - [0,1],1.e. g = @, on A. Then B = g~ *({1}) is closed in E, and A N B = @, if
not there is some xo € AN B, then g(xo) =1 = %&))Q, contradiction. By the Hurysohn

lemma, there is a continuous function h: E = [0,1], such that h(4) = 1 and h(B) = 0. Since,
the continuous product function i = gh: E — [0,1], satisfies Y (4) = g(A)h(A) = g(A) then

Y is also an extended continuous of @. Let f: E — R,, defined by f = % ifyp # 1, and

7 . . a y(A) gA) p(4) f(4) a
f=0,ify =1,since f(A) = o 1sd -~ Lo — 1A 1+ f(A) = f(A), then f
is an extended continuous function of f. In the case where f: 4 - RZ, we will do the same
demonstration by considering the function —f: E = R,. If, now f: A = R, we use the same
argument for the composed continuous function |.| o f: A = R, where |.| is the absolute
value function on R. b) = a). Let f: A — [0,1] be a bounded continuous function. By b) the

continuous function ¢: A = R,, defined by ¢ = #, 0 < f(x) < 1, has an extended
continuous function g: E - R, Since B = g~*({0}) is closed in E and A N B = @, by the

Hurysohn lemma, there is a continuous function h: E = [0,1], such that h(4) = 1 and
h(B) = 0. As the continuous product function ¢ = gh: E — R, is also an extended
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continuous of ¢. Let f: E — ]0,1[, defined by f = %, then f is an extended continuous of f

to E.

Remark 8.6. Since in a) the function is bounded then, there is a, b € R, such that f(x) €

[a, b], who is homeomorphic to [0,1], so the proof remains valid for [a, b] and since ]0,1] is
homeomorphic to R, the conclusion remains valid for R.

Before stating Tietz's theorem, let us recall that if C;, (E) denotes the space of functions
defined on the space E which are bounded and continuous, the map f € C,(E) — ||f]|| =
sup,eplf ()| € (R, |.]); is a norme i.e. for every f,g € C,(E) and every A € R: ||f|| =
0= f=0;lIAfIl = [Alllfll and [If + gll < lIfll + llgll. The restriction of the map |||, to
the subspace A € Cp,(E) is also a norme. We come back in detail to this notion in the chapter
on normed spaces later.

Theorem 8.2 (Tietze-Hurysohn theorem). If 4 is a closed part of the normal space E. Then
any bounded continuous function f: A = R, has a unique extension continuous function over
E.

Proof. We can obviously take, f: A - [—1,1]. Because the two disjoint parts A, =

{x €EAf(x)<-— %} and B, = {x EAf(x) = i} are closed in E (see, proposition 6.2) and £
is normal then it is completely regular, by Hurysohn lemma there is f, € C,(E) such that
fo(4y) = —§ , fo(By) = iand —% < fox) < é, for every x € E, so ||foll = § It follows that

lf — folla = su I(f = fo)(x)] < 2 Applying the same argument, for the function
olla Pxea 0 3 Applyng g
2~ fo):A = [-L1], there s f; € Cy(E), lIfull = Sand |2¢F = fo) = ]| <Zor
2
”(f — fo) —§f1”A < (g) . By iteration up to n € N, there is f,, € C, (E), |||l = iand
2 n n+1
”(f —fo) — éfl - (g) fo—— (2) In ) < (é) (*) Because, the functions series
%) 2 k . 2 k
Yo 9k (x) where g (x) = (5) fie(x), Vx € E, satisfies: | g, (x)| = (5) fk(x)| <

2\k 2\k 1/2\k o .
(5) lfi. ()] < (5) I fill = 3 (§) , for every x € E, then Y.}, gi (x) is uniformly convergent

to the continuous function g, defined en E, therefore it is simply convergent to the continuous
function g defined on E. As from (*), ||f — gl|4=0, then the restriction of g into A is f.

9-Connectedness

9.1-Connected space

In this chapter, we introduce the idea of connectedness, which is a topological property
related to the separation axioms, it examines the structure of topological spaces from the
opposite point of view. Intuitively, a topological space is connected if it is all in one piece. To
make this precise, the parts 4 and B of a space E, are said to be a separation of £, if E = AU
Band AN B = @. Then:
Definition 9.1. A space E, is said to be connected, if there is no separation of £ in two
nonempty open sets. £ is said to be disconnected if; it is not connected i.e. £ can be written as
the union of two disjoint nonempty open subsets.
Proposition 9. 1. Let E be a topological space. The following assertions are equivalent:
a) E is connected.
b) E has no separation by two nonempty closed sets.
c¢) E has nontrivial two open separation, i.e. the only separation of £ is @ and E.
d) E does not have any nontrivial clopen sets, i.e. the only clopens of E are @ and E.
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¢) Any nontrivial part 4 of E, has its boundary bd (4) # .

f) There is no surjective continuous function, from £ to a discrete two point space.

g) Any continuous function from £ to a discrete two point space is constant.

Proof. a) = b). If, there are two nonempty closed sets D and G in £, suchthat DN G = @
and E = D U G then D¢, G are two disjoint open sets in £ and D¢ U G¢ = E, contradiction
with a). b) = c). If, there is two non trivial separation open subsets O and U, then E = O U
Uand 0 NU = @, so 0¢,U° are two disjoint closed sets in £ and E = 0¢ U U¢,
contradiction with b). ¢) = d). If, there is a nontrivial clopen subset A in E, then: 4 and A®
are two disjoint separation clopen of E, contradiction with ¢). d) = e). If, there is a
nontrivial part 4 of E such that bd(4) = @ = cl(4) N cl(4%), if x € cl(A), x & cl(A°) then
x & A® or x € A, so Ais closed and if x € cl(A°), x & cl(A) then x & A, or x € A then AC is
closed it follows that 4 is open, therefore A is clopen, contradiction with d). e) = f). If
there is a continuous function f from £ to a discrete space F = {a, b}, then the nontrivial
subset {a} in F is clopen therefore, by continuity the nontrivial subset f~*({a}) is clopen in E,
so bd(f*({a})) = f*({a}) n (f *({a}))¢ = @, contradiction with e). f) = g). If, there is
a continuous function from £ to a discrete space F = {a, b}, witch is non constant, there are
x,y € E,x # y such that f(x) = a and f(y) = b then, a,b€f(E), so F = {a, b} c f(E) then
f is surjective, contradiction with ). g) = a) If, E is written as the union of two disjoint
nonempty open subsets O and U, then the function f: E = F = {a, b}, defined by: Vx €
E,f(x)=a,ifx € 0,and f(x) = b, if x € U, is such that f*({a}) = 0 and f*({b}) = U
so, f is continuous, nonconstant, contradiction with g).

Example 9.1.

a) Let E = {a,b,c}, T = {0,{a},{a, b}, E}, clearly (E, 7) is connected.

b) The indiscrete space is connected. The only clopen sets, are the trivial sets @ and E.

c¢) The space R, is connected. Since the only clopen sets are @ and R ( see example 2.2, d)).
d) The singleton space is connected, since the only clopen are E = {x} and 0.

e) The discrete space is disconnected. Since VA C E, {A} is clopen.

f) The finite Hausdorff space containing at last two elements, is disconnected, indeed

Vx € E,{x} is clopen.

Definition 9.2. A subspace 4 of a space E is a connected set, if it satisfies the definition of
connected space under induced topology. 4 is disconnected if, there exist two open O and U
inE suchthat AcOUU,ANONU=0,AN0#*@andANnU # Q.

Example 9.2. In the space R.

a) The subspace R* is disconnected, since R* =] — 00, 0[U]0, +oo[ and | — o0, 0[N]0, +o0o[=
@.

b) The subspace Q is disconnected, since Q = (Q N ]—00, V2 D U (Q N ]\/7, +00D and

(@n]-v2[)n(@n]v2,+]) = 0.

¢) In (E, 7.o5). Any infinite part 4 is connected, but any finite part B is disconnected . Indeed,
if the infinite part 4 is disconnected, there exist two open O and U in E, suchthat A c O U U,
ANONU=0,An0#=@andANU # @, then A c (0 N V) = 0° U U® witch is finite,
contradiction. If B = {by,..., by, ..., by} is finite, in a T;-space (E, rcof), then B is closed and
B ={b,}U{by,..., by,..., b}, with two closed disjoint {b1} and {b,,..., by, ..., b,}, then B
is disconnected.

Theorem 9.1. In the space R, a part A € R, is connected<4 is an interval.

Proof. If, A4 is not an interval, then A4 is disconnected, indeed, as 4 is not an interval, there are
x,y € A,x < y,suchthat [x,y] € A, sothereis a € [x,y] and a € A. The sets A N] — o0, a|
and A N]a, +oo[ are a separation of 4. Conversely, if 4 is a disconnected interval, there is two
open Oand Uin E, suchthat A= (ANO)U(ANU)andANONU=0@.Letx,y EE, x <
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yx€ANOandy € ANU,asx,y € A, witch is an interval, then [x, y] € A, since the set
B=ANnO0ON|[x,y] =0n|[x,y] € [x,y] then B is bounded, there is b € [x, y] such that

b=supB,sobeANOorbeANU.If,b € AN O, there exists & > 0, such that [b,b+
g] cAandAﬂ[b,b +g] cANO,since b € [x,y] and b & U,thenb<y,sox<b+g<
y,indeedifb<y£b+§,theny€AﬂOﬂU:(Z),thereforeb+§€B,sob+§Sb,
contradiction. If, b € A N U, there exists p>0, such that [b —g,b] cU,andA N [b —g,b] c
ANU,since b & O,thenx<bafortiori,x<b—§<y,indeedif,b—§$x<b,xEAn
00U=®,thereforeb—§€ UNn|x,y]l,sinceONUN[x,y]cANONU = @, then

b — g €0N[x,y]so,b<b-— g, contradiction. Thus, b € [x,y] € E and b € E witch is an

interval, impossible.

Example 9.3.

In the space R, the subspaces N, Z, Q¢are disconnected. Because, hey are not intervals of R.
Proposition 9.10. If, 4 is a connected subset of a space E, and there are two open sets O and
UinE,suchthatt ANONU =@, andAcOUU,thenAc OorAcU.

Proof. if, AZ O and A € U, there are x,y € Asuchthatx € O andy € U,since Ac OU U,
thenx € ANUandy € AN O, so 4 is a partition of the two nonempty open A N U and A N
0, then A4 is disconnected, contradiction.

Proposition 9.11. If, 4 is a connected subset of a space E, and B a subset of £, such that:

A c B c cl(A), then B is connected, in particular cl(A) is connected.

Proof. If, B is disconnected, there are two nonvoide open sets O and U in E, such that:
BNO+@3,BNU+#0,BNONU=0andB cOUU.If,x € BN O, thus x € cl(A), since
0 € N(x),then O N A # @, by the same U N A # @. Moreover, A € O UU so 4 is
disconnected, contradiction.

Remark 9.1.

a) If, 4 is a connected subspace of a space E, and cl(A) = E, then E is connected. But, if 4 is
a subset of a space E, such that cl/(A) = E, then A4 is not always connected, for example in
usual R, cl(Q) is connected, but Q is disconnected.

b) If, 4 is a connected subset of a space E, the int(A), the intersection and the union are not
always connected. Example in E = {a, b, c,d} with T = {@, {a}, {b}, {a, b}, E} the parts

A ={a,b,d}and B = {a, b, c} are connected, but int(A) = {a, b} = A N B is disconnected.
In Hausdorff space the singletons are connected but their union is disconnected.

Proposition 9.12. Let £ be a topological space. If, 4 is a connected part of £ and B a
nonvoide part of E, which satisfy: AN B # @ and A N B¢ # @. Then A N bd(B) # .
Proof. If, AN bd(B) = @, as E = int(B) U int(B%) U bd(B), then A = U U V where
U=Anint(B)andV = A n int(B"{C}) are disjoint open sets in a subspace A4, then 4 is
disconnected, contradiction.

As noted in the remark 9.1 b), in general, the connectedness is not stable by the union and
the intersection. However, under suitable conditions, one can have stability for the union, as
shown in the following proposition.

Proposition 9.13. A collection of connected parts, of a topological space, is stable for union,
if the intersection of its elements is not empty.

Proof. Let {A,, @ €A} be, a collection of connected parts, in a space £, and A =U, ¢, 4,.
Since for every a €A, A, is connected, there exist two disjoint open U,, W, in A, such that,
A, c U, or A, € W,. Thus, there exist two open O, and O/, in E, such that U, = A, N O,,
W, = A, N O0,. As forevery a €A, A, # @ thenVa €A, (U, # 0if W, =@)and (W, # @
ifU, = @), then, if W, = @, A =Ugep Ay SUgen Uy € AN (Ugenr 0,) = AN 0 = Uy where
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0 =Uge, Oy is a nonempty open in E. Let V, = AN 0', where 0’ =Uge, O, is an open in E,
then V, = A NUgep 0fF =Ugep (Ag N OL) =Ugen W, = 0. Because, A = U, U V, where

V4 = @, then 4 is connected. The same argument used in the case when W, # @ and U, = @,
yields to the same result.

Proposition 9.14 (Bolzano theorem). Let f be a continuous map, from a connected space E,
into the space F. Then, the range f(E) is connected.

Proof. Let f be a continuous map, from a connected space E, into the space F. If, the range
f(E) is disconnected, there exists a non trivial clopen part B € f(E), so f™*(B) is a non
trivial clopen in E, witch implies that £ is disconnected, contradiction.

As, a direct consequence, of the proposition 9.14 and theorem 9.1, we have:

Corollary 9.1. The image of any interval in the space R, by a continuous function from R
into R is an interval.

Corollary 9.2. If, E is a connected space, f is a continuous function from £, into R, and

a,b € f(E). Then, for every every 1 € [a, b], there exists x € E, such that f(x) = A.

Proof. By proposition 9.14, f (E) is connected in R, therefore, by theorem 9.1 f(E) is an
interval, then for a, b € f(E), [a,b] c f(E), thus if 1 € [a, b] then A € f(E),so there exists
x € E, such that f(x) = A.

Corollary 9.3. Let f be a continuous function, defined from the interval / in R into R. The
following assertions are equivalent:

a) f is an homeomorphism from 7 into f{1).

b) f is one-to-one.

¢) f is strictly monotone.

Proof. a) = b) clear. b) = ¢). If, f is not strictly monotone, there exist a, b, c,d € I, such
thata < b and f(a) > f(b); c < d and f(c) < f(d). The function g: [0,1] = R, defined by:
vt € [0,1],g(t) = f(ta+ (1 —t)c) — f(tb + (1 — t)d) is obviously continuous and

g(0) <0< g(1), by corollary 9.2 there exists u € [0,1] such that g(u) = 0 i.e. f(ua +
(1—-wu))=f(wb+ (1—-u)d),butua+ (1 —u)c <ub+ (1—1t)d,then f is not one-to-
one, contradiction. ¢) = a). As f is continuous and strictly monotone, then f is one to one.
It remains to prove that, the inverse function h = f*: f(I) — I, is continuous or equivalently
f is open. Let L be an open interval in I, there exists an open interval J in R such that
L=1Inj,thenf(L)=f({UN]J)cf(),since f(L) is connected then f (L) is an interval. As
f is bijective and strictly monotone, f (L) is also open, so h is continuous.

Theorem 9.2. The product topological spaces E = I1,¢,E, is connected iffy, Va €A

,the space E, is connected.

Proof. Since E is connected and Va €A, the projection ,: E = E, is continuous, by
proposition 9.14, m, (E) = E, is connected. Conversely, let x,y € E, if y differs from x by
only one component x,, then x,y € Y = llgo{xg} X Eg X [l 4{xp}, since by proposition
8.1 E, and Y are homeomorphic, then Y is connected. If now, y is arbitrary, using g) in
proposition 9.1, we shall demonstrate that, any continuous map f: E = F = {a, b} is constant,
iLe.Vx,y € E,f(x) = f(y). If f(x) = a, because {a} is open in the discrete space F and f is
continuous then f~*({a}) is an open in E, containing a, there exists an elementary open set

x €0 c f*({a}),soVi€l={ay,..., a,} the component x;of x belongs to 0; then

z = ((x)ier» Wi)igr) € O and f(z) = a. The passage from z to y is given, by modifying only
a finite number of components, whose indices are in I. According to the above step f is
constant for any modified component, so f(x) = f(y) = f(z) i.e. f is constant.
9.2-Components

Definition 9.3. Let £ be a topological space and x € E.
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a) A component of £, is the maximal connected part in E.

b) A component of x, is the maximal connected part of £, containing x. It will be noted by
C(x).

Remark 9.2.

a) A connected part of a space E, not strictly included, in any other connected, part of this
space, is a component of E.

b) C(x) is connected (see, proposition 9.13).

¢) C(x) is closed. Indeed, cl(C(x)) is connected then cl(C(x)) € C(x) < cl(C(x)).

d) In the connected space, C(x) = E.

Example 9.4.

a) Since in Q, the singleton are connected, for r € Q, C(r) = {r}.

b) In the subspace R*, if x €] — 00, 0[, then C(x) =] — o0, 0[ and if x €]0, +oo[ then C(x) =
10, +oo].

c¢) The subspace QxR of the space R? has for components, the lines {r} X R, where r € Q.
Proposition 9.15. The components, of a space E, form a separation of E.

Proof. Let {C,, @ €A} be a collection of components of the space E. i). Suppose there exist
different a, f €A, such that C, N Cg # @, by the proposition 9.13, C, U Cp is a connected
containing C, and Cg, which are the maximal connected part in E, contradiction. ii), let x €
E, since the singleton {x} is connected, there exists ay €A such that x € {x} c C,,, so

X EUgen Cy.

From proposition 9.15, it follows that C'(x) is an equivalence class of x, i.e. the relation R on
E, defined by: Vx,y € E, xRy & y € C(x) is an equivalence relation.

Corollary 9.4. Any part 4 of a space E, is a union of a family of two by two disjoint
connected parts.

Proof. By the proposition 9.15, the components of a subspace 4 form a separation of 4.

9.3-Localy connected space
Definition 9.4. A topological space, is said to be locally connected, if any element of this
space, has a fundamental system of connected neighborhoods.

Example 9.5.

a) In a space E, any element X€E, is contained in its connected component. Indeed, Vx € E,
{x} is connected, since the connected component of x, i.e. C(x), is the maximal connected set
in E containing x, then x € {x} c C(x).

b) The space R is locally connected, since Vx € R, 3§ > 0; such that the neighborhood
I(x,6) of x, is connected.

¢) The discrete space E, is locally connected, since {x} is a connected neighborhoods of x.

d) The cofinite space E, is locally connected, since the open sets in E is an infinite part, then
any neighborhood is connected.

e) The subspace Q, is locally disconnected, since Ve > 0; the neighborhoods Q N I(x, €) of x
in @, are not connected.

Remark 9.3.

a) A connected space is not necessary locally connected. In fact, the function f:]0.1] - R?,

defined by: Vx €]0.1], f(x) = (x, sin G)) is continuous and ]0.1] is connected, by Bolzano

theorem, f(]0,1]) = A = {(x, sin G)) ,0<x < 1} is connected in R?, therefore the
subspace cl(A) of the space R?, is connected. As, cl(A) = AU B, where B = {0} X] — 1,1].
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Since, Vy €] — 1,1], (0, ¥) has not a connected neighborhood in B, then cl(A) is not locally
connected.
b) A locally connected part, in topological space, can not have its closure, locally connected.

In fact, in the space R, the subspace A = {%, ne N*} is locally connected, but cl(4) = AU

{0} is not locally connected, since Ve > 0, the neighborhood cl(A) N] — &, €[ of 0 in the
subspace cl(A) is an infinite part which is disconnected.

The following theorem gives a characterization, of the locally connected space.
Theorem 9.2. A space E, is locally connected<any connected component of any open in E is
open.
Proof. Let C be, the maximal connected part of an arbitrary open O in E, and x € C c O,
since E is locally connected, there exists a connected N € N'(x). As N € O,then N c C, by
N, in theorem 2.1 and proposition 2.2, C is an open neighborhood. Inversely, let x € E and
N € N (x), there exists an open O in E, such that x € O c N, since a connected component
C(x) of x is an open in O, then C(x) is a connected neighborhood of x, therefore E is locally
connected.
Corollary 9.5. In a locally connected space, the connected component is open.
Proof. Let C be, the connected component of E and x € C, as E is locally connected, there
exists a connected N € V' (x), therefore N  C, then by N, in theorem 2.1 and proposition
2.2, C is an open neighborhood of x.
Corollary 9.6. The collection of the components of any nonempty open in the space R, is
finite or countable.
Proof. Let O € 7., since the space R is locally connected, by theorem 9.1; theorem 9.2 and
corollary 9.4, the components of O, are two by two disjoint open intervals of R. Since
cl(Q) = R, their intersection with Q is not empty. Let / be one of these intervals, and
x €1 NQ,itisclear that I = C(x) in O, as I contains at last one element of Q, then the
collection of the components of O, are finite or infinite countable.

9.3 Path and arc connectedness

Path and arc connectedness, related to the existence of certain continuous applications,
from the unit interval, into a part of a space.
Definition 9.5. Let £ be a topological space and the nonvoide part A € E.
a) Continuous application, from [0,1] into 4 is said to be path.
b) The one-to-one path is called arc.
c) A is said to be path connected if, for every pair of points @ and [ in A, there exists a path f
such that f(0) = a and f(1) = . a (respectively ) is called the origin (respectively the
end) of the path.
d) A is said to be locally path (respectively locally arc) connected if, every x € A has a
fundamental system of path connected (respectively arc connected) neighborhoods.
e) A is said to be arc connected if, for every pair of points & and [ in A4, there exists an arc f
such that f(0) = a and f(1) = .
f) The maximal subsets with respect to path (respectively arc) connectedness are called path
(respectively arc ) components.
g) We say that a path crosses a part B of a space E if, there exists x in [0,1] such that
f(x)EB
Remark 9.4. Since in the space R, the interval [a, b] is homeomorphic to [0,1], it is
equivalent to define a path on [a, b].
Corollary 9.7. Let B be a part of the space E. If, a path crosses both B and B¢, then it crosses
bd(B).
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Proof. Since, there exist x,y € [0,1], such that f(x) € B, f(y) € B, [x,vy] c [0,1], f([0,1])
is connected and f([x,y]) < f([0,1]), by proposition 9.12 f([0,1]) N bd(B) # @, then there
exists z € [0,1], such that f(z) € bd(B).

Example 9.6

a) The space R, is arc connected, since for every a, b € R, the continuous function f from
[0,1] into R, defined by Vx € [0,1], f(x) = (b — a)x + a, satisfies f(0) = a and f (1) = b.
b) The subspaces Q, and Q¢, in the space R are not arc connected.

Corollary 9.8. Every arc connected space E is connected.

Proof. Suppose that £ is disconnected, then there exist two disjoint open O and U in E, such
that E =0 UU. Leta € 0 and 8 € U, since E is arc connected, there exists an arc f such that
f(0) =aand f(1) = . Let f([0,1]) = F witch is connected, as the nonvoide open F N O
and F N U form a partition of F, then F'is disconnected, contradiction.

Remark 9.10. The converse in corollary 9.8, is not true, returning to remark 9.3.a) fora € A
and B € B there is no arc connected.

Similar results of connected spaces are obviously valid for arcs connected, let us quote:
Corollary 9.10.

a) The image by a continuous map, of an arc connected space is arc connected.

b) A collection of arc connected parts, of a space, is stable for union, if the intersection of its
elements is not empty.

c¢) The product space E = I, ,E, is connected< Va €A, the space E, is connected

It is also easy to verify that:

Corollary 9.10. Both connected and locally arc connected space are arc connected.

10-compacteness, separation and continuity

10.1 Compact space and separation

The closed and bounded interval [a, b] in the space R satisfies the Borel-Lebesgue
property, i.e. every open cover of [a, b] has a finite subcover. Therefore, several important
results in the space R are closely related to this type of interval as: Weierstrass-Bolzano
theorem, Hein theorem, Weierstrass theorem, Rolle theorem,...etc. In this chapter, we will
introduce a special and important topological spaces called compact spaces, whose closed and
bounded intervals in the space R are a particular case.
Definition 10.1. The space E is called:
a) Compact, if it satisfies the Borel-Lebesgue property, i.e. every open cover of £ has a finite
subcover.
b) Countably compact, if every countably open cover of £ has a finite subcover.
c¢) Sequentially compact, if every sequence has a convergence subsequence.
d) Lindelof, if every open cover of E, has a countably subcover.
Definition 10.2. A nonvoide subset 4, in a space E, is compact if, the subspace 4 is compact.
Proposition 10.1. A nonvoide subspace A4, in a space E is compact&every collection of open
of E, which cover A4, has a subcover.
Proof. Let {O,, @ €A} be a collection of opens in E, such that A =U ¢, Oy, since {A N
O, @ €A} is the collection of open sets in A satisfying A =U,ec, (A N O,) and 4 is compact,
there exists a finite open subcover {A N 0y, 1 < i < n}. So, A =V}, (A N Oai) =AN
(U?=1 Oai), hence A =UiL; O,,. Conversely, let {U,, @ €A} be a collection of opens in 4,
such that A =U ¢, U,, there exists a collection {O,, « €A} of opens in E, such that A =
Ugea (AN0,) =AN (Ugep 0,), where U, = AN 0,,Va €A, then A =U,e, O,. By
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hypothesis, there exists a finite open collection {0y, 1 < i < n} such that A =U{L; O, witch
implies that A = A N (UfL; Og,) =UiL; (AN Og,), then A is compact.

Example 10.1.

a) 2D-space, is Lindelof (cf, proposition 5.4).

b) The finite space is compact.

¢) The subset A = {%, ne N*} in the space R is not compact, since their subsequences

converges to 0 € A. But A U {0} is compact, because in the hausdorff space if the
sequence{x, } converges to x € E, the subset A = {x,,} U {x} is compact, in fact if, the
collection {0,, @ €A} of open in E, is a cover of 4, there is some @ €A, such that x € O,
then there existes ny € N, such that for everyn € N,n > ng, x, € 0, so A C (U?;’Il Oai) U
0, by proposition 10.1, 4 is compact.

d) A discrete space is compact (respectively Lindelof)<it is a finite (respectively countable)
space, indeed if E is finite, then E =U,¢, {x,}, where the indices set A is finite and if E is
countable, then E =U ¢y {x,}-

e) The space R is Lindelof, but it is not compact. In fact, R =U,,cn+] — n, n[, but there is not
a subcovert of these open cover.

f) The discrete R, is not compact. In fact, there is no subcovert of the open cover {{x}; x €
R}.

g) Let E be a non countable set a € E and F = {a}, the family 7, = {P(F), E} is a topology
on E and (E, t,) is Lindelof.

Lemma 10.1. Let £ be a topological space, the following assertions are equivalents:

C;1-E is compact.

C,-Every family of a closed subsets, whose intersection in empty, has a finite subfamily,
whose intersection is empty ( the finite intersection property).

Proof. C;=C,;. Let {F,, @ €A} be a family of a closed subset, such that N ¢, F, = @, then
(Nges E)C =Ugen E,© = E, since E is compact there exists a finite open subcovert

{Faic, 1 < i < n} of the open cover {F,, a €A}, therefore UL, FaiC =E,so (UL, Faic)c =
Ny By, = @. C;=Cy. Let {0, @ €A} be an open cover of E, then (Uge, 0)¢ =

Ngea 0g =Ngen E, = @ where F, = 0, witch is closed, by C, there exists a finite closed
subsets {F,,, 1 < i < n} such that N}, F,, = @, so (N}, Fal.)c =Ul, Faic =UiL, Oy, = E,
then E is compact.

Corollary 10.1. In the compact space, any nonempty closed collection, totally ordered by
inclusion, has a nonempty intersection. In particular any intersection of nonvoide decreasing
sequence of closed sets has a nonempty intersection.

Proof. If the collection has an empty intersection, as the space is compact, it has a finite
subcollection whose empty intersection, contradiction with the finite subcollection has an
nonempty minimum which is its intersection.

We will give, in the form of a lemma, an equivalent of the Weierstrass-Bolzano theorem.
Lemma 10.2. Any infinite part of a compact space has at last an accumulation point.
Equivalently, any part of a compact space without accumulation points is finite.

Proof. Suppose that there exists an infinite part 4 of space E, which has no accumulation
point, then for every x € E, there exists an open O, containing x and only one element of A
(this element is x € A). Since, the family {O,, x € E'} is an open cover of £, which is compact,
it has a finite subcover {O,,,1 < i < n}, then A cU;_, O,, and 4 has at most n elements, so it
is finite, contradiction.

As the accumulation point is an adherent element, by the proposition 7.5 and the lemma
10.2, we have:
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Corollary 10.2. Any sequence in the compact 1D-space has a convergence subsequence.
Proof. Let A = {x,,} be a sequence in the space E, as A is a countable part it is an infinite part
in the compact space, so by lemma 10.2, A has an accumulation point x € cl(A). Because E is
1D-space, by proposition 7.5, there is sequence {x,,} © A, which converges to x i.e. there is a
convergence subsequence {x(p(n)} of the sequence {x,,}

Corollary 10.3. In the compact space, if a sequence has only one limit point, it converges
towards this limit point.

Proof. By proposition 7.8, the set of the limit points, of the sequence {x,,}, in the arbitrary
space E, is the closed A =N,,5 cl(4,,), where A,, = {x); k = n}, for all n € N. Let a be the
unique limit point of 4 and N € V'(a) an open neighborhood, because {cl(4,) N N¢,n € N}
is a decreasing sequence of closed sets whose empty intersection, if not there exists x €
cl(A,)) N N€¢,vn € N, then x € A and x # a, contradiction. Therefore, there exists no € N
such that cl(AnO) NN¢ =0,so cl(AnO) C N as, for every n = ny, cl(4,) < cl(A,0)), which
implies that, for every n = ny, cl(4,) € N, hence x,, € N, it follows that x,, — a.

Note that, in every space, neither direction of the equivalence holds, betwin the compact space
and the sequentially compact space.

Theorem 10.1. The Lindelof sequentially compact space is compact.

Proof. Suppose that, the space E is not compact, there is some collection {O,, @ €A} of open
cover of E, which has no finite subcover, as E is lindelof, there is some countable open
subcover {O,,n € N} of E. The sequence {x,} defined by: for every n € N*, x,, €U}, O, has
by assumption a subsequence {x, )} which converges towards a € E, as {O,, n € N} covers

E, there is some p € N such that a € 0,, because X, e_fUi.p:(Il) 0; then, for every ¢ (n) =

D) Xp(n) & Op, contradiction with the definition of a. Then £ is compact.

Remark 10.1. As by proposition 5.4, 2D-space is Lindel6f, then the theorem 10.1 is valid, in
2D-space i.e. If, the 2D-space E is sequentially compact, then E is compact.

With the same arguments used in lemma 10.1, we have:

Corollary 10.4. Let E be a topological space, the following assertions are equivalents:
CC;-E is countably compact.

CC,-Every family of a countably closed subsets, whose intersection is. empty, has a finite
subfamily, whose intersection is empty (finite countably intersection axiom).

It is obvious that, any compact space is countably compact, but the reverse is not always true.
A condition ensuring that, countable compactness implies compactness is given by:

Lemma 10.3. Any countably compact 2D-space, is compact.

Proof. By the proposition 5.4, any open cover {O,, @ €A}, of the 2D-space E, has a countable
subcover {0,_,n € N}, since E is countably compact there exists a finite I < N, such that

E =Upe; Oy, , then E is compact.

Lemma 10.4. A compact Hausdorff space E, is normal.

Proof. It suffices to demonstrate that £ is a Tz-space. By using proposition 5.9, ¢) it remains
to demonstrate that, if x€EF and O is an open containing x, O contains a closed neighborhood
of x. Let x € E and O an open containing x, suppose that every N € N (x) (the set of a

closed neighborhoods of x), N € 0¢ = F and consider a finite family of a closed
neighborhoods of x, denoted M (x), as Nnens(x) (NNF) = (nNer(x) N) NF=MnNF #

@ where NNew r(x) N =M € M;(x) and E is compact by C; in lemma 10.1, (nNeNf(x) N) N
F # @, since by proposition 5.8, Nnewp N = {x}, then{x}NF #@ie.x €EF

contradiction.
Compactness is weakly hereditary:
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Proposition 10.2. Any closed part in a compact space is compact.

Proof. Let 4 be a subspace of the space E, and let {G,, @ €A} be a collection of closed set in
A such that Ny, G, = O, as there exists a collection {F,, « €A} of closed sets in E, such that
Ngen Ga=Ngen (A N F)=0, where G,=A N F,, Va €A, as 4 is closed in E, by proposition
6.2, the collection {A N F,,Va €A} is closed in a compact E, therefore there exists a finite
subcollection {A N F,, 1 < i < n} with N, (An Fai) =An(nk, Fai) =QorNi.; G, =
@, so the subspace 4 is compact.

Proposition 10.3. In Hausdorff space, every compact subspace is closed.

Proof. Let 4 be a subspace of the space £. We will show that A€ is open. Let x € A¢, since E
is Hausdorff for every y € A, there exist two disjoint open O, 3 x and 0y, 3 y,as A =

Uyea O, and A is compact by proposition 10.1, there exists a finite collection {OJ’i’ 1<i<n}
such that A =U{_, 0,.. As 0 =N, O, is an open containing x, and

Ocnl, oyf:(u{;l Oyi)c = A€, then AC is a neighborhood of the arbitrary x, by proposition
2.2, A® is open and 4 is closed.

Note that, there exists a space, which is not Hausdorff, but every compact subsets in the space
is closed.

Example 10.2. It is shown in example 5.4 b) that, the cocountable space E is not Hausdorff,
but any compact subspace in this space is closed. Note that the infinite subsets of E are not
compact, indeed, if 4 is an infinite subspace of E, then A = B U {a4, a,, ...}, where

{aq, a,, ...} is a countably infinite subspace of 4 and B its complement in A. Let for avery

n € N*, 0,, = {@p41, Ans2, .- }¢, then the collection {0, n € N*} of open sets in E, is a cover
of A witch has not a subcover, therefore 4 is not compact. But, the finite or countable subsets
of £ are compact and closed. Therefore every compact sets in the cocountable space is closed.
Corollary 10.5. If, every compact subspace in a space E is closed, E is T;.

Proof. Let x an element of a space E, as {x} is compact, by the assumption it is closed, using
proposition 5.6, E is T;.

The following example shows that the converse of the corollary 10.5 is false.

Example 10.3. It is shown in example 5.4 a) that the cofinite spaceE is T,. But there exists a
compact subset of £, which is not closed. Let 4 be a nonempty subset of E, U any open cover
of A it is clear that any U € ‘U is infinite and U°¢ is finite, hence it contains at most a finite
number of points, say n of 4. The number of open sets from U needed to cover these n points
does not exceed n, hence the maximum number of sets from U needed to cover 4 isn + 1.
Therefore 4 is compact subset of £ with finite complements are not closed.

Lemma 10.5.

a) Compactness of subspaces in any space is stable by the finite union.

b) Compactness of subspaces in Hausdorff space is stable by intersection

Proof. a) Let I be the finite set of indices, {4;, i € I} be a finite family of compact subspaces,
A =U;; A; and let {O,, @ €A} be a collection of open subsets in the space E, witch cover 4,
since Vi € I, A; =Ugen O,, and A; is compact, by proposition 10.1, there exists a finite subset
{ari, 1 < k <n}of A, such that Vi € I, A;=Ug_; Og,;, S0 A =Uj¢; (U, Oa'k,i) witch is a
finite open subcover, then 4 is compact. b) Let {A,, @ €A} be a family of compact
subspaces, A =N, e Ay, as Va €A, A € A, and by proposition 10.3, A, is closed, A is
obviously closed, proposition 10.2 implies that A is compact.

Being given, the importance of closed and bounded intervals, in real analysis, we will
present here, one of the demonstrations of their compactness using the Borel-Lebesgue
property.

Theorem 10.2. (Borel-Lebesgue). The bounded and closed interval in the space R is compact.
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Proof. Let a, b are two elements or R and let {O,, « €A} be a family of opens in R, which
cover A = [a, b], we will prove according to the proposition 10.1 that there exist a subcover
of A. For that, consider the subset H of 4 defined by: x € H <there is a finite I CA, such
that [a, x] =U;¢; O;. As [a,a]={a} then a € H. We will prove that, H is clopen in the connexe
subspace A = [a, b], then by proposition 9.1 d), A = H. Let us show that H is an open in the
subspace 4. Let x € H, by construction there exists a finite I CA, such that [a, x] =U;¢; O;,
there is some i € I, such that x € 0;, so x € A N O0; which implies that, H € A N O0;. If now
YyEANO;,y €Aandy € [a,x], because [a,X] is an interval, then [a, y] € [a, x], it follows
that y € H, hence H is open in 4. It remains to prove that. cl(H) € H. Let z € cl(H), as
cl(H) c cl(A) = A, then, there is some €A such that z € A N Og, it follows that (A N

Op) NH=AN(OgNH)+ @, thusOg NH + @.Lets € Og N H,as s € H, there is a finite
I cA, such that [a, s] =U;¢; O;. It is obvious that, if z < 5,z € H, when s < z,[a, z] =

[a,s] U [s,z] . As, s,z € Og then [s,z] < Op Then [a, z] = (Ui 0;) U Op, which is a finite
subcover, it follows that z € H, so A = H, therefore, there exists a subcover of 4 which
implies that 4 is compact.

Corollary 10.6. The part 4 in the space R is compact<it is bounded and closed.

Proof. As 4 is bounded, then 4 is contained in some interval [a, b] witch is compact, because
A is closed, by proposition 10.2, 4 is compact. For the inverse, as 4 is compact in a Hausdorff
space R, by proposition 10.3 4 is closed, also 4 is bounded, in fact, for every x €4, there is
some n € N*, such that x €] —n, n[, so A CU,cn*] — n,n|, as A is compact, there is a finite
set N © N*, such that A cU,cy] — n, n[=]max,,cy (—n), max, ey (n)[, then 4 is bounded.

10.2 Compact space and continuity

A property is said to be a topological property (or topological invariant ) if whenever one
space possesses a given property, any homeomorphic to it also possesses the same property.
Similarly, property preserved by continuous (respectively open or closed) functions are called
continuous (respectively open or closed) property or continuous (respectively open or closed)
invariant. Compactness are continuous property.
Proposition 10.4. let £, F are two topological space and let f:E—F be a continuous map: If,
A is a compact subspace in E, then f(A) is a compact subspace in F.
Proof. Let {U,, @ €A} be a collection of opens in F, which covers f(A4), by continuity of f
the elements of the collection {f*(U,), @ €A} are open in E as f(A) =Ugen Uy, and
AC fHF(A) = f (Ugen Uy) =Ugen f1(Uy), then { f71(U,), a€EA} covers A, which is
compact, there exists a finite set I CA, such that A CU,¢; f~(Uy), then f(A) c
f(Uger FHULY) CULe F(FH(UL)) ©Uge Uy, by proposition 10.1 f(A) is compact.
As a direct consequence of the proposition 10.4, we have:
Corollary 10.7. If, a map f from a compact space E into a space F'is continuous. Then, f(E)
is a compact subspace in F.
Proof. It suffices to take A = E, in the proposition 10.4.
Corollary 10.8. If, a map f from a compact space E, into a Hausdorff space F is continuous,
then f is closed. Moreover, if f is one to one, then fis an homeomorphism.
Proof. It suffices to demonstrate that f is closed. If, C is closed in the compact space E, by
proposition 10.2, C is compact, as f is continuous from C into F, by proposition 10.4, f(C) is
compact in a Hausdorff space F, by proposition 10.3, f(C) is closed. As, the inverse map f~*
from F into £ is continuous, f is then an homeomorphism.
Theorem 10.3 (Heine theorem). A continuous function, from a compact space E into the
space R, is bounded and reaches these bounds.
Proof. By corollary 10.7, f (E) is compact, the corollary 10.6 implies that f (E) is closed and
bounded in R. Let M = supf (E), then Ve > 0, there is some x, € E such that M — ¢ <
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fxg)) SM<M+egsoVe>0,I(M,e)N f(E) # @, therefore M € cl(f(E)) = f(E), then
there exits x; € E, such that M = f(x,). By the same, if m = inff(E), Ve > 0, there is some
Xe € Esuchthatm—e<m< f(x,) <m+eg,s0Ve > 0,I(m,e) N f(E) # @, therefore

m € cl(f(E)) = f(E), then there is x, € E, such that m = f(x;).

Remark 10.2. In the case when, the space is not compact, the continuous function can be
bounded but not reaches these bounds or not bounded. For example, the function f: R — RY;

x +— e” is continuous but not bounded above. While the function f: R — R; x — is

1+|x|
continuous and bounded, but not reaches these bounds.

Subsequently, we will give, the proof of the Tyckonoff theorem, concerning the
compactness of any product of compact spaces. For that, we need to recall the famous Zorn’s
lemma, which is used to prove Alexander subbase theorem bellow. Let (E, <) be a partially
ordered set i.e. a binary relation < is: reflexive, antisymmetric, transitive, and £ may contain
elements x, y such that neither x < y nor y < x holds, such pair of elements is said to be
incomparable. One example is E = {{1}, {2}, {1,2}}, with set inclusion C as a partial ordering.
It is clear that {1} and {2} are not comparable. A pair x,y € E are comparable if x < y or
y < x or both. A partially ordered set £ is said to be totally ordering, where every pair of its
elements is comparable. An upper bound (if it exists) of a subset 4 of a partially ordered set
E is an element u € E such that x < u for all x € A. Note that, the upper bound need not be
an element of 4, but it must be an element of £. A maximal element (if it exists) of a
partially ordered set £ is an element M € E, such that, if M < x for some x € E, then x = M,
in other words, there is no x € E such that M < x but x # M. If a maximal element exists for
a totally ordered set, then it must be unique. Consider the set A={®,{1},{2},{3},{1,2}}, with
set inclusion C as a partial ordering. The maximal elements are {1,2} and {3} and if, we view
A as a subset of the set E = {1,2,3}, then the upper bound of 4 is the element {1,2,3}. The
partially ordered set E is called inductive if, any totally ordered part of £, has an upper
bound. We are now ready to formulate Zorn's lemma.

Zorn's lemma. Every nonempty inductive, partially ordered set, has at last one maximal
element.

Lemma 10.6. (Alexander subbase theorem). Let (E, T) be a topological space and S a
subbases of 1. If every open cover of E by the elements of §, has a subcover, then E is
compact.

Proof. Suppose that, £ is not compact. Then, there is some open cover of £, with no finite
subcover. Let F be, the collection of all open covers of E, with no finite subcover, provided
with a partially ordered set inclusion. Let A = {U,, @ €A} be the collection of subsets of F
witch is totally ordered, then: its upper bound, U =U, e, U, has no finite open subcover.
Indeed, if U contains a finite open subcover, {U;, 1 < i < n}, then for each i, there exists

a; €A, such that U; € Uy, as A is totally ordering, there is some a €A, such that {U;, 1 <
[ < n} c U,,, therefore this finite subcover cannot cover £ . It follows that, A is nonempty
inductive, partially ordered subset of F, by Zorn's lemma, there exists M € F such that for
every @ €A, U, € M. As, the set W = M N S is an open cover of E. If not, there is some
x € E, that is not in any element of W, as M covers E, there exists 0 € M, containing x. As

S is a subbasis of 1, there are a finite open S,...,S; € S such that x enj’-‘zl S: € 0. Because,

j
for every j € {1, ...,k}, S; € M, in not, x would be an element of some member of W. By
maximality of M, for each j, the open cover M U{S j} of E, contains a finite subcover

M; v {Sj} where Mjis a finite union of sets in M, then, for each j E = M; U {Sj} , SO
Ecnf, (Mus;) =(nf< S)u(nfe, M;) c 0 u (U, M;), witch is impossible by
construction of M. Because, W is an open cover of E containing in §, by assumption it has a

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 52



Elements of Mathematical Analysis | 2021

finite sucover, this is a contradiction, with the fact that, W is contained in M. Therefore, the

collection F must be empty, so that £ is compact.

Theorem 10.4 (Tychonoff theorem). The product space, E = 1, E, is compacte Va €A

the space E, is compact.

Proof. As Ya€A, the coordinate projection m,: E — E, is continuous, then if £ is compact,

by proposition 10.4, m,(E) = E, is compact. Conversely, we will prove that if, Va €A, E, is

compact, then E = [1,c,E, is compact, by using Alexander subbase theorem and the

following lemma:

Lemma 10.7. Let {(E,,t4), 0EA} be a collection of a compact topological spaces and let

E = ¢, E, be a product space. Then, any open cover U = {n;1(0),0 € 1.} of E, has a

finite subcover.

Proof. Let, for every a €A, U, = {0 € 14, m;1(0) € U}. We claim that, there is some a €A,

such that U, covers E, . If not, for every a €A, there exists x,€E,, witch is not containing

in any 0 € U,, so x, € O€, therefore for every 0 € U,, m;*({x,}) c n;1(0°) =

(r;1(0))C, then nal({xa}) is not containing in any ;1(0) € U, witch is by assumption a

cover of E, contradiction. Choose a such that U, is a cover of E,, by compactness, there are a

finite subcover O4,..., Op,, as E = mz*(Ey) = m (UL, 0;) =UL, m;*(0;), then

{n;1(04),..., T[,;l(On)} is a finite subcover of E.

To finish the proof of the theorem, take as a subbase in the product topology E, the collection
= {n;1(0), 0 € 1.}, where a EA. Any collection of § which covers E, by lemma 10.7 has

a ﬁmte subcover, thus by Alexander subbase theorem, E is compact.

Corollary 10.9. The part 4 in the space R® is compact<it is bounded and closed.

Proof. As A4 is compact in the Hausdorff R®, by proposition 10.3, A is closed and it is also

bounded, if not Vn € N*, there is some Xx,, € A such that, ||x,|| > n, so {x;,} has no

convergent subsequences, as by corollary 10.2, 4 is sequentielly compact, contradiction.

Conversely, as 4 is bounded, then A < I1}*,[a;, b;], where V1 < i < n, the constants

a;, b; € R. Borel-Lebesgue and Tychonoff theorems say that IT/L; [a;, b;] is compact, because

A is closed, by proposition 10.2, 4 is compact.

Example 10.4.

a) The ellipse E = {(x, y) € R?, % + % —-1= 0} where, the constants a, b € R, is a
compact in R?. Because, the function f: R? — R, (x,y) — f(x, y) = x—2 + y—2 —1is

continuous, then 4 = f7*({0}) is closed. Moreover V(x,y) € A,—2 <1 andy < 1, then

(x,y) € [—a,a] X [=b,b],s0 A C [—a,a] X [—b,b]. A is closed and bounded in R?, by
corollary 10.9, it is compact.

b) Let R be a space, the sphere S,_; = {x = (x1,...,%j,...,%,) E R, YL x2 — 1 =0} is
compact in R, Because, the function f: R* — R,x — f(x) = Y-, x? — 1 is continuous,
then S,_; = f~*({0}) is closed. Moreover, V1 < i < n,x? < 1,then S,_; € IIl-,[—1,1]
witch is compact, thus S;,_; is compact.

¢) As the circle S; is compact, then the torus (5;)?,p € N* is compact.

Definition10.3. Let {(E;, T3), A EA} be a family of spaces, such that for all 1 €A, (E;, T) is
homeomorphic to [0,1] usual. Then the product space IT)c,E; is denoted I and it is called a
cub.

As a consequence of the Tychonoff’s theorem, and because the subspace [0,1] is compact and
Hausdroff. We have:

Corollary 10.10. For any set A, the cube " is compact and Hausdroff.
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10.3 Locally compact space

Starting from the fact that, in non compact space R, the closure of an open interval is
compact, we will define a new topological space:
Definition 10.3. The part of topological space is called relatively compact, if its closure is
compact.
It is easy to see that:
a) Any interval in the space R is relatively compact (since its closure is closed and bounded)
b) Any compact is relatively compact (E = cl(E)).
¢) Any part of the relatively compact part is relatively compact (see, proposition 10.2).
d) Any part of a compact space is relatively compact (see, proposition 10.2).
e) The finite union of relatively compact parts is relatively compact (cl(A U B) = cl(A) U
cl(B) witch is compact).
f) The intersection of relatively compact parts is relatively compact (cI(Ngep Ag) €
Ngea CL(A,) witch is compact)
Definition 10.4. The space E, is said to be locally compact, if every element of £, has a
compact neighborhood.
It is clear that, in a space E, if an element has a basis of compact neighborhoods, then it has a
compact neighborhood, therefore E is locally compact. For the reverse, we have:
Proposition 10.5. In locally compact, Hausdorff space E, any element has a basis of compact
neighborhoods. Therefore E is regular.
Proof. By assumption, every x € E has a compact U € IV (x), as E is Hausdorff, by
proposition 10.3, U is closed. If now, we take an open O € N (x), then U N O is an open
neighborhood of x in U. Because, from proposition 6.5, ¢) and lemma 10.4, U is a normal
space, by proposition 5.9, b) U N O contains a closed neighborhood W of x in the subspace U,
so W is compact. As, there is some closed C in E, such that W = U N C, then by proposition
6.2, W is a closed neighborhood of x in E, containing in O. Therefore W is both closed and
compact neighborhood of x in E, so by proposition 5.9, b) E is regular.
Example 10.5.
a) A compact space E, is locally compact. In fact, £ is an open neighborhood of each its
elements, as it is compact then, it is locally compact.
b) The discret space is locally compact. In fact, any element is open and compact.
c¢) The space R is locally compact, since Vx € R, there is n € N* such that x € [—n, n] witch
is a compact neighborhood.
d) In the space R, Va, b € R, ]a, b[ is locally compact. It suffieces to see that for every
x €]a, b[, the interval [x — §,x + §], where § = %min(|x —al, |x — bl), is a compact
neighborhood of x.
e) In the space R, Q is not compact nor relatively compact nor locally compact. In deed,
cl(Q) = R, then Q is not closed, so it is not compact nor relatively compact. If Q is locally
compact, and V' is a compact neighborhood of 0 in Q, then V contains the closed
neighborhood of 0 of the form A = Q N [—a, a], where a € R}, A4 is then compact. Clearly,

for any x € Q¢ N [—a, a], the decreasing sequence of closed sets {An =AN [x — %, x+

17, n€N~*in A, has an empty intersection, which contradicts the corollary 10.1. So @ is not
locally compact.

Proposition 10.6. The finite locally compact subspaces is stable by intersection.

Proof. Let x € A =N}, A;. Because, V 1 < i < n, x belongs to the locally compact A;, there
is some compact N; € NV;(x), where V 1 < i < n, V;(x) is the set of neighborhoods in 4;. So
N =N}, N; is a compact neighborhood of x then 4 is locally compact.
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Remark 10.3. The union of two locally compact subspaces is not necessarily locally compact.
In fact, A = {(x,y) € R% x > 0} and B = {(0,0)} are locally compact subspaces in R?, but
A U B is not locally compact subspace, because (0,0) has no compact neighborhood in the
subspace A U B.
Proposition 10.7. The closed (respectively open) subspace of the locally compact, Hausdorff
space is locally compact. In particular the open in the compact, Hausdroff space is locally
compact.
Proof. Let x be an element of the closed subspace C of the locally compact space E, there is a
compact neighborhood N of x in E, as by proposition 10.3, N is closed, then C N N is a closed
neighborhood of x in C containing in the compact N, by proposition 10.2, C N N is compact.
Let now O an open subspace in E, as O is a neighborhood of any its element x, by proposition
10.5, there is some compact neighborhood of x, containinig in O, then O is locally compact. If
O is an open in the compact Hausdorff space £, which is locally compact then O is locally
compact.
As a direct consequence of the proposition 10.6, and proposition 10.7, we have:
Corollary 10.11. The finite intersection of closed (respectively open) subspaces, of the
locally compact, Hausdorff space is locally compact.
Proposition 10.8. The finite product of locally compact space is locally compact.
Proof. Let E = 1]~ E; be a finite product of the spaces E;.and x = (X4,...,Xj,...,Xp) € E As,
V1< i <n,x; €E; which is locally compact, there exists a compact neighborhood of x;, say
N;, then N = II;L | N; is a compact neighborhood of x in E.
Example 10.6. The spaces R" and S; X R are locally compact.

At the end of this section, let us give some useful results on the Lindelof space, which will
be used in the following chapter.
Lemma 10.7. The open cover of the closed set in a Lindelof space has a countable subcover.
Proof. Let F be a closed set in a Lindelof space E and let {O,; a € A} be an open cover of F.
As FC is an open, and the collection {0,; @« € A}UF ¢ is a cover of E, there is a countable
subcover {0,; n € N} of E. Then, the collection {0,; n € N} \ F¢ is a cover of F, since if
x € F,thus x € E \ F¢, therfore x € (U ey 0,,) \ F€.
The following lemma will transform a regular lindel6f space into a normal space.
Lemma 10.8. (Normality Lemma). Let A and B be subsets of a space E and let {0,,; n €
Nx*and On’; neN*be two sequences of open sets such that
a) A CU pen Oy;
b) B U yen- Or,L;
c¢) Foreveryn € N*, cl(0,) N B =@ and cl(0;,)) N A = Q.
Then, there are two disjoint open sets U and V suchthat A c Uand B c V.
Proof. Define the two set sequences {4,;; n € N*} and {B,;; n € N*} as follows: A; = 0,

Ap =0, 0 (Uicy cl(Oi’))C and B, = 05, N (Uicp cl(Oi))C then for every n € N*, 4,, and
B,, are open. So U =U,en+ Ay and V =U, e+ By areopen,Ac U, B c V,andU NV =
@,indeed: if x € A by a) there exists n, € N*, such that x € 0,,, because for every n € N*,
cl(0) N A = @ then x & cl(0y, ), S0 x €U;y, cl(0)), thus x € (Ui<n0 cl(O{))C, therefore
x € Ay, © U. By the same argument B c V. Let now x € U, we will show that x ¢ V.
Because x € U, there is j € N* such that x € A, then x €U;; cl(0;) hence x ¢ O; for all

c
i<j,sox &B; foralli <j.Letforj <m,B,,=0,, N (U]-Sm cl(Oj)) . We know that

c
X €Ajasj<m,x €Vjpy cl(Oj), sox ¢ (Ujsm cl(Oj)) , therefore x € B,,,. Conclusion for
alln € N*, x € B, thenx ¢ V.
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Theorem 10.5. Every regular, Lindelof space is normal.
Proof. Let 4 and B be two disjoint closed set a space E. As, E. is regular, for every x € A
there exists two disjoint open sets U containing x and V containing B such that U NV = @, by
proposition 5.9 ¢), U contains a closed neighborhood F of x, so there is an open O, containing
x such that x € 0, ¢ F c U, thus x € cl(0,) c U, therefore cl(0,) NB=@. Because the
family {O,, x € A} covers the closed set 4 and the space E is Lindelof, by lemma 10.7, there
is a countable subcover {0, n € N} of 4 such that for every n € N, cl(0,) NB=0. By the
same argument there is a countable subcover {0,,, n € N} of B such that for every n € N,
cl(0,,) NA=@. The conditions of the normality lemma 10.8 are therefore satisfied, so there are
two disjoint open sets containing respectively 4 and B, so E is normal.

Since 2D-space is Lindeldf, it is straightforward that.
Corollary 10.12. The regular 2D-space is normal.

11-Nets and filters

11.1 Nets.

We have seen in the previous chapters that: In a 1D-space an adherent point of a part of
space is a limit of the sequence containing in this part. In a Hausdorff space, the limit of a
sequence when it exists is unique. In a 1D-space, a limit of a function in the neighborhood of
a point is the limit of the image of any sequence, which converges to this point. To obtain in
some natural way, the above results as well as others. We will introduce the concept of the
generalized sequence or the net, which is defined to general the sequence and to overcome the
short coming of the sequence. The net allows us to find results obtained by the sequences
without additional conditions on the space. Let E be any set and let (D, =) be a directed set
i.e. D is partially ordered and every two elements of D have an upper bound.

Definition 11.1. Let the map f:d € D » f(d) = x,; € E be. The subset {x;,d € D} of E is
called a net and it is denoted (x4) 4ep-
Definition 11.2. Let E be a space and x € E

i) The net (x;) 4ep is said to be converges to x and we write x; — x, if for every N €
N (x), there is d, € D such that for every d € D, satisfaying d > d,, we have x; € N

ii) x is said to be an adherent value (or a limit point) of the net {x,,} € E, if VN € NV (x),
and Vd € D, there is k € D,k = d such that x;,, € N.

Note that if x is an adherent value for (x4)4ep. Then Vd € D, the set A;={x;, € E, k > d}
satisfies, for every e,d € D, cl(A,) N cl(A;) # @. Indeed, thereis [ > e and [ > d, so
Ay c A, NAy ccl(Ap) Ncl(Ay). Therefore for any finite part I € D, Ngep cl(Ag) #= @

Before giving in a general space, a characterization of the closure by nets. Note that if
(x4)aep 1s a net in the subset 4 of the space £ which converges to x € E then x € cl(A).
Indeed if, N € V' (x) there is d, € D, such that for every d € D, satisfaying d > d,, we have
Xq € N,then x; € N N A, so x € cl(A). The converse is given without E being 1D-space.
Proposition 11 1. For every x € cl(A), there is a net in A which converges to x.

Proof. If x € cl(A), forevery N € N'(x), NN A # @, (N (x),2) being directed, thus there
is a net (Xy)yen(x) iIn N N A, then for every V € NV (x), satisfying V 2 N, we have xy € V, it
follows that x5y — x.

Let E and F are two spaces and let x be an element of £. We have the following equivalence
without £ being 1D-space.

Proposition 11 2. The map f: E — F is continuous in x <&fore every net (x4)gep in E
converging to x, the net (f (x4))q4ep converges to f(x) in F.

Proof. Let V € V'(f(x)), because, f is continuous in x € E, there is N € V' (x) such that
f(N) c V. As the net (x4)4ep converges to x, there is dy € D such that for every d € D,
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satisfaying d > d,, we have x; € N, so f(x;) €V, it follows that f(x;) —

f (x). Conversely, if f is not continuous, there is an open U in F such that f ~1(U) is not open
in E. Then, (f "1(U) )¢ is not closed in E, so there is x in cL((f ~1(U) )¢) which is not in
(f~1(U) )C. By proposition 11.1, there is a net (x4)4ep in (f "1 (U) )¢ witch converges to x.
As, x € f71(U), thus f(x) € U, because for every d € D, x4 € (f~1(U) )¢, then x, is not in
f~Y(U), so f(xg) is not in U. Therefore, the net (f (x4))4ep not converges to f(x),
contradiction.

Recall that (see example 7.1), a convergence sequence can have a unique limit without the
Hausdorff property. This is not the case for the nets, if every net have a unique limit, then the
space is Hausdorff:

Proposition 11 3. A space E is Hausdorff<every net has a unique limit.

Proof. Let (x;)4ep be a convergence net in the Hausdorf space E. If the net has two distinct
limits x and y in E, there are two disjoint open set O, 3 x and Oy, 3 y, so there are d; and
d, in D such that for every d € D satisfying d = d; and d = d, we have x4 € 0, N 0,
contradiction. Conversely, suppose that £ is not Hausdorff i.e. there are two different points
x and y in E such that every (N,V) € N (x)N (y) satisfies N NV # @. Let

(Z(N,V))(N NN COXN () be anetin N NV, then for every U € N (x) with (N,V) = (U,E)

ie.U2Nand E 2V, we have z(y ) € U it follows that (Z(N'V)) converges

(NV)EN (X)X (y)

to x. By the same, we have (Z(N'V)) converges to y as the limit is unique,

(NVIEN (X)XN (V)
contradiction.

Definition 11.3. A subnet of the net (x ) 4¢p is a net (x‘l’(k))kex’ where (K, >) is a directed

subset of D and the map ¢: k € K — @ (k) € D is such that:

i) Ifk > 1, then (k) = ¢@(1) (¢ is order preserving).

ii) For every d € D, there is k € K such that ¢ (k) = d (¢(K) is cofinal in D).
Before giving, a characterization of compact spaces by the net. Note that, it is obvious to
check, that, the finite intersection property<all directed and decreasing family of closed sets
has a nonempty intersection.
Theorem 11.1. A space is compact<every net has a convergence subnet.
Proof. Let (x;)4ep be anet in E . As, the family ({cl(4,),d € D}, 2), where for every
d € D, A; = {x;, k = d}, is directed and decreasing, and E is a compact space, then
Ngep Ccl(Ay) # 0. Let x ENgep cl(Ay) then, for every d € D and for every N € NV (x),
N N Ay # @, so, there is k = d such that x;, € N. Consider the set D = {(d,N) € D X
N (x) such that x; € N}, then (D, >) where, for every (d,N), (e,V) € D; {(d,N) =
(e,V)} & {d = eand N 2 V} is a directed set. It is clear that the binary relation > is
partially ordered and for every (d, N), (e,V) € D; there is an upper bound p of d and e in D.
AsNNV € N(x),then (NNV)NnA, # @, there is, [ = p such that x, € N N V. Thus
(I, N n V) is an upper bound of (d, N) and (e, V) in D. In the other hand, the projection
f:(d,N) €D+ f(d,N) = d € D is obviously an order preserving and it is surjective, then
f (D) is cofinal in D, thus (xf(d’N))(d M)ep is a subnet of the net (x ) sep. If now, N € N'(x),

then, for every d € D, N N A; # @, so there is k > d, such that x; € N, then (k, N) € D. By
definition of D, for every (e, V) € D, satisfaying (e, V) > (k, N), we have x, = x¢(. ) € N,
80 Xf(qn) — X. Conversely, if E is not compact, then there is a family F of closed sets in £
such that, every finite sets of F has a nonempty intersection, but the intersection of all its
elements is empty. Let D be the collection of all finite subfamily of F. It is clear that (D, 2)
is a directed set. We can choose a net (xg)gep Where xg € Npep F. If, there is a subnet
(xf(e))eED of (xg)gep Witch convergence to x in E. By assumption, there is F € F such that
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x & cl(F) =F,sothereis N € N'(x), NNF = @, then, xz & N for all B 2 {F}, As f(D) is
cofinal in D, there is e’ € D such that f(e") 2 {F}. Also, it exists &'’ € D, such that, x¢() €
N,.foralle > e”. Let ! an upper bound of e’ and e”, then we must have x¢;) € N. As

f() 2 f(e") 2 {F}, also x¢(;) € N, contradiction. So the net does not have a convergence
subnet.

Don't believe that a subnet is a subsequence; if not as in the compact space any sequence has a
convergence subsequence ( see Lemma 10.2) then by the theorem 11.1, the compact space is
sequentially compact which is false.

Definition 11.4. A net in £ is universal or an ultranet, if for every A C E, the net is either
eventually in 4 or eventually in A€.

Proposition 11.4. Every net has a universal subnet.

11.2-Filtres

Along with the net, we introduce filters, general notions of limits and we show that most of
the results obtained using nets can equally well be proven using filters. Let £ be a set, P(E)
the family of all parts of E and F, the nonempty subfamily of P (E).
Definition 11.5. F is said to be a filter if:

Fl-Q) E :F

F,-If, AAB€ Fthen ANB € F.

F;-If for A € F, thereis B © A, then B € F.
It is obvious that E € F and if A,B € F,then AUB € F.
Definition 11.6. The nonempty subfamily B of the filter F is said to be a basis of F. If, for
every A € F, there is BE B such that B c A.
It is clear that, if B is a basis of the filter F. Then

B,-0 ¢ B.

B,-For every A,B € B, thereis C € B suchthat C € AN B.
Conversely, any part B ¢ P (E) satisfying B; and B, generates a unique filter F on E such
that, for every A € F, there is BE B with B c A.
Example 11.1.

a) Let x € E and F(x).the family of all parts of E containing x. Then F(x) is a filter in E.
Such a filter is said to be a trivial filter. In the case where E is a space, V' (x) is a filter on E.

b) B = {B,,n € N}, where B, = {p € N, p = n}, for every n € N, is a basis of the filter,
called a basis of Fréchet filter on N.

¢) If, A is nonvoide part of the set E, , then B = {X € P(E),X 2 A} is a basis of the filter.

d) B = {[x, +oo[, x € R} is a basis of the filter on R, called a basis of the filter of the
neighborhood of +oo.

e) If, A is a part of the space E and x € cl(A), then B = {N N A,N € N (x)} is a basis of
a filter, called a basis of the adherent filter to 4 on x.
The family (§, 2) of all filters on the set E is a directed set. A filter U € & is said to be an
ultrafilter if, it is maximal i.e a filter on £ which contains either 4 or A, for all A € E. For
example, a trivial filter is an ultrafilter. The importance of ultrafilters lies above all, in the
following proposition.
Proposition 11.5. Every filter has an ultrafilter.
Proof. It remains to demonstrate that (&, 2) is inductive. If, {F,, « € A} is a totally ordering
collection of &, then the filter U,ep F,, is an upper bound of &, then (§, 2) is inductive. So,
by Zorne’s lemma it has an maximal element U € .
Proposition 11.6. Let £ and F are two sets and amap f: E — F.If, B is a basis of the filter
on E, then f(B) is the basis of the filter on F, called the image filter basis.
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Proof. @ ¢ f(B), if not there exists A € B, A # @, such that f(4)=0,as A C f‘l(f(A)) =
f~1(®) = @, contradiction. Also f(B) # @, since for every A € B, f(A) € f(B). If now,
U,W € f(B), there are A, B € B such that f(A) = U and f(B)=W, therefore there is C € B,
such that C € AN B, then f(C) c f(ANB) c f(A) N f(B)=U NW.By By and B,, f(B) is
a basis of a filter on F.

Definition 11.7. We say that a point x of the space E is a limit of the filter F on E, or F
converges to x and we write, limF = x, if F contains any N € IV (x)

Definition 11.8. We say that a point x of the space E is a limit of the basis B of the filter F on
E, or B converges to x and we write [imB = x if, for any N € NV (x), there is B € B, such
that B € N.

It is obvious that if the filter F is generated by a basis B then: limF = x <& [imB = x.
Proposition 11.7. The space E is Hausdorff < the limit of the basis of the filter on £, when it
exists is unique.

Proof. Suppose that the basis B has two different limits x and y. As, the space E, is
Hausdorff, there are N € V' (x) and N' € V' (y) whose N N N' = @. Because limB = x and
limB = y, there are A,BE B such that Ac N and Bc N’, therefore ANB = @ € B,
contradiction. Conversely, if x,y € E, x # yand all N € V' (x) and N' € NV (y) satisfy

N N N' # @. Then, the basis B={N NN',N € N(x) and N' € N (y) } is such that for all
NeN(x)andallN' e N(y),B=NnNN'€ B,B c N and B c N’, then B converges to

x and y, contradiction.

Lemma 11.1. The family of the closed sets has the property of the empty intersection<the
directed decreasing family of the closed set has a nonempty intersection.

Proof. Let (A, =) be a directed set and let (D, 2), where D = {F,, @ € A} be a decreasing
family of the closed sets in the space E, then (D, 2) is directed. Suppose that Ngep F, = O,
by assumption there is a finite I € A, such that N,¢; F, = @. Then there is i € I, with F; = @.
As, forevery j€E I, j =i, F; 2 F; 2 F; N Fj, then F; N F; = @ and, as (4, =) is directed, there
isk € I suchthatk > iand k = j, thus F; 2 F, # @ and F; 2 Fy, therefore F; N F; # @, the
contradiction. Reciprocally, let D = {F,, « € A} be a family of the closed sets in the space E.
Suppose that for any finite [ € A, Ny Fy # 0. Let L = {Gﬁ,ﬂ € V} be, where (V,>) is
directed and for all B € V, Gg =Nge; Fo p- Then (L, 2) is a decreasing directed family of the
closed sets, which by hypothesis Ngey Gg # @, $0 Ngey (nae, Fa,ﬁ) # @ or N ayevxi Fap #
@, which implies that Ngep F, # 0.

Definition 11.9. We say that, the point x of the space E, is an adherent point of the filter F on
E,if x € cl(A) for every A € F . The set cl(F) of all adherent points of F, is called the
closure of F, and it is equal to Ner cl(A). This definition is obviously valid for the basis of
the filter.

Lemma 11.2. A filter on the space £ has an adherent point <the ultrafilter has a limit.
Proof. Let U be an ultrafilter, as the filter, by hypothesis U has an adherent point x € E, then
forall A€ Uandall N € N(x), NNA # @. As the family F = {(NNnA),A€ Uand N €
Nxis afilter on E, Vx2F, U/2F, and 7/ is maximal, then 7/=F. As /2N, then for all

N € N(x), N € U, so U converges to x. Inversely, let F be a filter on E, by proposition 11.5,
F has an ultrafilter U, as by hypothesis, U converges to x € E, then for all N € NV (x), Ne U.
Because, fore all N € N'(x) andallA € F; N AEUbyF,, NNA€ U,thus NNA+ @,
therefore x is an adherent point of F.

Corollary 11.1. When the filter converges to a unique point it adherent is reduced to this
point.

Proof. If, F converges to x € E, then forall N € N (x), NE F;soforall A€ F,NNAEF,
thus N N A # @, therefore x is an adherent point of F, as x is unique then cl(F)={x}. If not
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there is y € cl(F) and y # x, because by proposition 11.7, the space E is Hausdorff, there
are N € N(x) and N' € NV (y) suchthat N N N’ = @. Because N € F,then NN N' #= @
contradiction.

Lemma 11.3. The directed decreasing family of the closed sets has a nonempty intersection
©a filter in the space E has an adherent point.

Proof. Let Fa filter in the space E. the family A = {cl(A), A € F} provided with the relation
2 is a directed decreasing family of the closed sets in the space E, indeed if A, B € F with

B D Athen cl(B) 2 cl(A)asANB € Fthencl(ANB) € A, and cl(B) ncl(4A) 2

cl(A N B), by assumption Nyer cl(A) # @. Then, there is x € cl(A), forall A € F i.e. x is an
adherent point of F. Conversely, let B = {F,, a € A} be a directed decreasing family of the
closed sets in the space E, then B is a basis of the filter F on E. If x is an adherent point of F,
then for all A € F, x € cl(A). As, forall @ € A, F, € F and cl(F,) = F,. Then for all a € A,
X € F,, therefore Nyep F, # 0.

Definition 11.10. Let f a map defined from the set £ into the space F. The point [ € F is said
to be a limit of f according to the basis B, and we write limf (B) = [ or limgf = L. If. for all
V € V(1) there is B € B, such that f(B) < V. The closure of f denoted cl(f), is the closure
of f(B), is equal to Ngep cl(f(B)).

Theorem 11.2. The map f from the space E into the space F is continuous in x € E <for
every convergent basis B to x, f (B) converges according to B to f(x).

Theorem 11.3. The space E is compact< any filter on E, has an adherent point .

Remarque 11.2. The proof of the theorem 11.3, is a straightforward consequence of the
lemmas 11.1-11.3. This theorem can also be used, to give an elegant demonstration of
Tychonoff's theorem, by comparison with that given by the nets.

Remarque 11.3. If, (x;) 4ep is a net in the space E, then the family F < P(E), defined by:

A € F <there is d€ D such that x, € A4, for every e > d is a filter on E, which eventually
contain the net (x;)4ep- This filter has the same limits as (xy)4¢p. Conversely if, F is a filter
on E , one can consider the directed set (F, 2). Then F converges to a point x EE <>any net
(x4) aeF, With x, €4, for all A € F converges to x.

As a consequence of the proposition 11.7 and the theorem 11.3, we have.

Corollary 11.2. In the Hausdorff compact space. The filter converges iffy it has a unique
adherent point.

Proof. Let F be a filter on E which convergences to the limit x € E, as £ is Hausdorff, x is
unique, so by the corollary 11.1,.cl(F) = {x}. Conversely, let x € E be a unique adherence of
F. Then, F convergence to x, if not there is some open O € NV (x) not contained in F, such
that forall A € F, x € cl(A) and O N A # @. As, the family {cl(4) N 0¢, A € F}is clearly a
directed decreasing family of the closed sets of £ which is compact by lemma 11.1 and the
theorem 11.3, N ex(cl(A) N 0°) # @. Therefore there is y € Nyer(cl(A) N 0C),s0y €
cl(A) N O, for all A € F, then y is an adherent point of F different from x, contradiction.
Example 11.2.

a) If E=N, B a Fréchet basis, and f:n € N+— y, € F. limf(B) =1 <forall V € N (1)
there is B € B, such that f(B) c V < forallV € N (1), there is ny € N, such thaty,, € V,
foreveryn >n, vy, — 1

b) If, E=R, B a basis of the neighborhood of + ., and f: R — F.If, limf (B) = ], then
for all V € V(1) there is B € B, such that f(B) c V = forallV € N'(l), thereisa € R,,
such that forevery x > a, f(x) €V & lim,_,,, f(x) = L

c) If, f: E — F, where E and F are two spaces, x, € E and B is a basis of the trivial filter
N (%), then Limx—>x0 f(x) = f(xo) & limf(B) = f(xo).
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12 Compactification

Let £ and F two topological spaces. We say that £ embeds into a topological space F, if it
is homeomorphe to a everywhere dense subset of F. Being given a non compact space, it is
natural to ask the following question: Can you add some things to this space to make it
compact? Other ways, is there a way to embed this space into another which is compact?.
Under suitable conditions, the answer is affirmative. The process to imbed the non compact
space into a compact one is called compactification. The main idea of the compactification,
comes from the fact that an open space of a compact and hausdorff space is locally compact
(see proposition 10.7). This leads us to concentrate primarily on the compactification of
locally compact Hausdorff spaces. There are several paths to follow to compact a space. The
most “efficient” or the “smallest” one in the sense that the embedding only misses one point is
the Alexandroff-compactification or a point-compactification. Let's also mention the two
points-compactification, the most general of all compactifications is the Stone-Cech-
compactifcation. In the sequel, we will mainly focus on the first and last compactification
paths.

Definition 12.1. The space E is called a compactification of a given space E, if E is a
Hausdorff compact space and containing a everywhere dense part which is homeomorphe to
E. In other words, if E is a Hausdorff compact space and there is a map f: E — E such that
f:E — f(E), is a homeomorphism and cl(f(E))=E. A compactification of a topological
space E, when it exists, is denoted by (E, f).

Two compactifications (E, f) and (E f ) of the same space E are called equivalent if there is

a homeomorphism h: £ — E such that h(x) = x, for every x € E.

Let (E, 7) be a locally compact Hausdorff space and let E = E U {w} be, where w & E
called a point at infinity of £ and let T = TUo be, where o is the collection of all set Uin £
containing w, whose U°E is a compact in E
Theorem 12.1. (Alexandroff-Compactification). The space (E T ) is a unique (up to an
equivalence) Alexandroff-compactified of E.

Proof. We will prove that the couple (E , T ) is the Hausdorff compact space, such that £
embeds as a everywhere dense part of E.

a) Let us show that (E, %) is a topological space.

0,-Since® €Etandt C 7T,then® €T.Asw € E and E€ = @ which is a compact in E,
then £ € 7.

0,-let {U,, @ €A} be a collection of elements of 7. There are three cases:

Case 1. AllU, areint then U = Uy U, € Tand hence U € T.

Case 2. All U, are in o, then, for every a €A, there is a compact K, in E such that K, =
U, E, then Uge, Uy = UaEA(KaCE) = (NgeaKy)CE, as Nyep K, is a compact of E, then
UgeaUg ET.

Case 3. There are two collection {U;,i € I} in T and {Uj,j € ]} in o such that {U,, a €A} =
{U;,i € U{U;,j € J}. Let's pose U =U;¢; U; and V =Uj¢; Uj, then UgenaUy, = UUV, where
by the case 2, V = K°E with K a compact in E. Therefore,

UUV = UUK‘e = (U°E)CEUKCE = (U°E N K)E, because UE N K is a closed in the
compact K, it is a compact in E, then UUV € T

05-Let {U,, 1 < a < n} a finite collection of the elements of 7. As above there are three
cases:

Case 1. All U, areint then U = N3-,U, € Tand hence U € T.
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Case 2. All U, are in g, then, for every @ € {1, ..., n}, there is a compact K, in E such that

K, = U,°E, then N%_,U, = ﬂg=1(1(ac3’) = (N%_,K,) E, as N%_, K, is a compact of E, then
NR_U, ET.

Case 3. There are two collection {U;,i € I } in T and {U-,j € ]} ino such that {U,,1 < a <
n=Ui, ie/UUy, J€/. Let's pose U=[la=1nliand V=nj€/l/, then Na€AUa=UNV, where
by the case 2, V = K°E with K a compact in E. Therefore, U NV = U N K°E, since E is
Hausdorff, by proposition 10.3, K is closed, then U NV € 7, therefore UNV € T

b) Let us show that E is compact.

Let {U,, & €A} be a collection of elements of T such that £ = U, Uy, then there is a, €A,
such that w € U, so Uy, = Koff where K, is a compact in E, then E= Kg, U Uy, . It follows
that (UgeaUq) \ Ug, = Kq,, and there exists a finite I €A such that (Uye Upg) = Ko, U

Ug, = E, thus E is compact.

c) Let us show that E is Hausdorff.

Let x be an element of E different of w, then x € E which is locally compact, therefore x has
in E a compact neighborhood K (K is then closed), because w € K2 € T and KN K°E = @,
then E is Hausdorff.

d) Let us show that cI(E) = E

Let x be an element of £ and @ #UE T containing x if, U € tthen U NE = U # 0, so

x € cl(E). If now U € o there is a compact K in £ such that U = KEthen U N E = K2 n
E=KENE =K # @,sox € cl(E).

e) Let us show that E is unique, in the sense that if E is another Alexandroff compactified of

E, then E is homeomorphic to E. Let E = E U {w'}, where w’ # w is the point at infinity of
E.Ttis clear that, the map f: E — E defined by for every x € E, f(x) = {Z)}lff); E_Ea’)

is an homeomorphism. Indeed f is biunivoque, bicontinuous on £, and also, continuous in w,
because if W is an open in E containing f(w) = ', there is a compact K in E such that

K = WE, as f~1 is continuous from E into E, then f~1(K) = f~1(W)°E is a compact in E,
so f~Y(W) is an open in E, containing w, therefore f is continuous in w.

f) Clearly E is homeomorphe to E = wCE.

Remark 12.1. Two homeomorphe, locally compact Hausdorff spaces, are the same
compactification.

Example 12.1.

a) In the space R. The locally compact Hausdroff subspace ]0,1], embeds as a subset of a
compact Hausdorff space [0,1] via a natural inclusion map j: 10,1] — [0,1] = ]0,1] U {0},
defined by: for every x € ]10,1] j(x) = x, so cl(j(]O,l])) = cl(]0,1]) = [0,1]. Then [0,1] is a
Alexandroff-compactification or one point compactification space of ]0,1].

b) In the space R. The locally compact Hausdroff subspace ]0,1[ embeds as a subset of
[0,1] =]0,1[ U {0,1} via a natural inclusion map. This map misses two points 0 and 1, then
[0,1] is a two points-compactification space of ]0,1].

¢) In the space R. The interval ]0,1[, embeds as a subset of a compact Hausdorff space

S; = {(x,y) € R?, x2? + y? = 1} (the unite circle ), via the function f:]0,1[ — R? defined
by: f(x) = (cos(2mx), sin(2mx)), for every x in ]0,1[. This function misses only the point
(1,0) in S;. Then S, .is a Alexandroff-compactification of ]0,1[

d) As, the space R is homeomorphe to ]0,1[, then if R is a compactification of R, R is
homeomorphe to the circle S;. So, §; is also a compactification of R.
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e) The interval ]0,1[ in the space R, embeds into the compact Hausdorff [0,1]V, via a for
example, the function £:]0,1[ — [0,1]N defined by: f(x) = (x,1,1, ...), for every x in ]0,1].
) Let R = R U {+00, —00} be, (in this case the two points at infinity of R are w =+o0 and

w' = —o0) enjoyed by the topology ¥ = 1, U T where, 7 is the collection of the subsets U of R
such that, U = [—a,a]’& = [—o0, —a[ U ]a, +0], where a € R*. Then R is the two points-
compactified of R. (to chek !).

g) Another two points-compactification of the space R is as follows: The space R is locally
compact, Hausdroff. cl(R) = R = R U {+00, —}. R is compact, indeed, if {U,, a €A} is a
open cover of R, there are two elements fB and y in A such that Up = [0, a[ and U, =

b, +0], where a and b are two constants in R, it follows that the collection {U,, @ €
A\g,yis a open cover of the compact @4, then there exists a finite set /in A |,y such that
{U,, a € I} covers [a, b], thus {U,,a € [} U {UB U Uy} covers R.

h) In the space R, the compactified of ]0,1[ U ]3,4[ is homeomorphe to a figure eight, thought
of as a subspace of the space R%. More generally, the compactified of the union of disjoint
open intervals is homeomorphe to n circles in R?, that are disjoint except for a single
common point.

i) Let R be the space, the compactified of any open ball in R? is homeomorphe to the two

dimensional unit sphere S, in R3 via the usual stereographic projection : S, \ {(0.0.1)} —

R? defined by: (x,v,2) — n(x,v,z) = (é'é)’ which is biunivoque and bicontinuous (to

chek!). Therefore the compactified of two disjoints open balls in R? is homeomorphe to a
subspace of R3 consisting of two spheres touching at only a single point (kissing spheres).

Before talking about the “largest” path of compactification. Remember that, the locally
compact Hausdroff space is regular (see, proposition 10.5). We still have better: a locally
compact Hausdroff space is completely regular space or Tychonoff space. Because its one
point-compactification is compact and Hausdorff, hence it is normal (see, lemma 10.4),
therefore it is completely regular, and every subspace of a completely regular space is
completely regular.

Starting from the following basic question which arises, when we want to compact a
topological space. If £ is the compactification of the space E, under what conditions, can a
continuous real-valued function ¢ defined on E, be continuously extended in £?
Obviously, ¢ must be bounded, because ¢ will carry the compact space E into R, and
compact parts of R, must be bounded. But being bounded is not enough. A standard example

is p(x) = sin G) defined in ]0,1], @ (x) is bounded and continuous in ]0,1], but it is has no
extended continuous over [0,1]. Historically, this problem of continuously extending any
bounded, continuous real valued function defined on £ motivated the development of the
Stone-Cech-compactifcation, which will be exhibited after the following existence results:
Corollary 12.1. Let E be a topological space and let h be an embedding from E to a compact
Hausdorff space F. Then, there is a unique (up to equivalence), compactification (E f ) of E,
such that there is an embedding j from E into F, with the property that j(f(x)) = h(x) for
every x € E.

Proof. Because the map h: E — h(E) is a homeomorphism, and F is a compact Hausdorff
space then F = cl(h(E )) C F is a compact Hausdorff space (see, proposition 10 2).
Therefore (E" f ) is a compactification of E. Clearly E embeds into F via the natural inclusion
map, j: E — F, which has the required properties. To demonstrate the uniqueness of the

compactification (E f ) up to equivalence. Suppose (E f ) is another compactification of £

that embeds into F via a map j: E — F such that Jj(f(x)) = h(x) for every x € E. Then,
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J(f(E)) = h(E). We must first, demonstrate that: j (E ) = cl(h(E )). Becausef , Is compact

and the map j is continuous then j (}E:? ) is compact in a Hausdorff £, so it is closed (see,
proposition 10.3), therefore cl(h(E)) = cl(j(f(E))) < cl (j (ﬁ)) =j (E) Conversely, as

cl(f(E)) = E. then j (E) = j(cl(f (E))). as, by the continuity of j, we have j(cl(f (E))) <

cl(j(F(E)) = cl(h(E)), s0 j (E) € cl(h(E)). Therefore, j () = E. Because, the map:
jTloi:E — Eis obviously a homeomorphism, with the required property, then the
compactification (E f ) is unique up to equivalence.

Remark 12.2. The corollary 10.11 says that, the compactification £ acts as an intermediary
compact Hausdroff space, between the space E and the compact Hausdroff space F. There is
no hope of finding an interesting “largest” compactification, that can always act as an
intermediary as in the above result. A space can be embedded into its one-point
compactification £ and so any such E could not be largest than E.

Definition 12.2. Let £ be a Tychonoff space. The Stone-Cech compactification of E, is the
unique (up to equivalence) Hausdorff compact space denoted by S (E), satisfying the
following universal property: If f is a continuous function from E into a compact Hausdorff
F, there is a unique continuous function ff from B(E) into F such that ff oi = f. Where i
is a homeomorphism map, from E into f(E).

Theorem 12.2. The Tychonoff space has a Stone-Cech compactification.

Proof. Let E be a Tychonoff space, following the theorem 8.3 (Urysohn lemma), the set of
the continuous function from E into the [0,1] is nonempty. Let T={f,,, « € A} be the
collection of such functions. Consider for every a € A, the space, F = [[4eal,, Where for
every a € A, I,=[inff,(E), supf,(E)], which is homeomorphic to [0,1], therefore by
corollary 10.10, the cube F = I? is compact and Hausdroff. As obviously, the family T is
separates points and closed sets in £ witch is Hausdorff (the singletons are closed), then T
separates points as well. By the lemma 8.2 (embidding lemma), the function f: E — F =
[Maenl, defined by: for every x € E, f(x) = [[geafoa (%) is an embedding. We will check that,
the space B(E) = cl(f(E)) in F is the Stone-Cech compactification of E. Since S(E) is a
closed subspace of the cub I2, then it is a compact Hausdroff. From the corollary 12.1, there is
a unique (up to equivalence), compactification (8(E), i) of E, such that there is an embedding
Bf from B(E) into F, with the property that Sf o i = f. It remains to prove that the desired
application Sf is well defined and unique. As, §(E) is a Hausdroff compact space, therefore
it is normal. Since E'is closed in f(E) and for every a € A, f,: E — 1, is continuous and
bounded, by the lemma 8.3 and the Tietze-Hurysohn theorem 8.2, there is a unique
continuous extension function Sf, of f, defined from S (E) into I,. The, the function ff from
B(E) into F defined by: for every x € B(E), Bf (x) = [laeaBfyx (%) is a unique extended
continuous function of f. Therefore (B(E), i) is the Stone-Cech compactification of E.

separation axioms,
metric compact space, metrizability

13.1-Metric space and separation axioms

Before giving the properties of metric spaces, we will give a very interesting result related to
the countability and separation axioms.

Proposition 13.1. A metric space is 1D-space.
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Proof. Let x an element in the metric space £ and N € IV (x), there exists r > 0, such that
B(x,7) c N, therefore there exists n € N* such that B (x, %) C B(x,r) c N, the sequence of

sets {B (x, %) ,n € N*} constitute a system of countable neighborhoods of x, then £ is 1D-

space.
Theorem13.1. Let E be a metric space. Then, E is separable iffy it is 2D-space.
Proof. As if O is an open in of the metric space (E, t4), containing the element x of E, there

exists r > 0, such that B (x, g) C B(x,r) € 0, therefore there exists ng € N*, such that

B (x, nio) CcCB (x, %) Since E has an everwhere dense part D = {x,,,, m € N}, then B (x, nio) N
D # @, so, there exists mg € N such that x,, € B (x, nl) which implies that x € B (xmo, ni),
asVy €B (xmo,ni), d(x,y) < d(x,xpy,) +d(xpy,y) < ni < r,then B (xmo,ni) cO0.

Therefore the collection {B (xm, %) ,(m,n) € N x N*} is a countable basis of 74, then (E, t4)

is 2D-space. For the reverse, let {B,, n € N} be a countable basis of 74, then the countable
collection D = {x,,, where Vn € N, x,, € B,,} is everwhere dense in E. Indeed, if x € E and
N € IV (x) there exists no € N* such that x € B, € N, as x,,, € By, then B, N D # @, which
implies that NN D # @, so x € cl(D).

Proposition 13.2. A metric space is Hausdorff space.

Proof. Let x,y € E,x + y then B (x, g) and B (y, g), where r = d(x, y), are two disjoint
open sets in E, since if there exists z € B (x, g) NnB (y, g), thenr = d(x,y) <d(x,z) +
d(z,y) < §+ g = r. So, E is Hausdorff.

Definition 13.1. The sequence {x,,} in the metric space (E, d ) converges to x € E, iffy for all
€ > 0, there is ny € N* (n, depends to ¢) such that for all n > n,, [x, € B(x,¢) &
dx,an<e Equivalently, limz—+codx,xn=0.

Not that, the definition 13.1, remains true when the inequalities n > n, and d(x, x,,) < ¢, are
large.

Proposition 13.3. In a metric space, any convergence sequence is bounded. The reverse is
false.

Proof. If {x,} converges to x in the metric space (E, d ), then for € > 0, there is N € N* such
that for all n > ng, d(x, x,) < &.let &' = max, .y d(x, x,,) then, {x,,} € B(x,r) where

r = max(g, €"). The reverse is false, as in the usual metric space (R, d,,), the sequence
{(=D"}

Proposition 13.4. Let 4 be a nonvoide part of a metric space (E,d), and a € E. Then:
a)a€cl(Ad) &d(a,A) =0 Ve>0,3a, €4; 0<d(a,a)<e.

b) Forr > 0, the set N,.(A) = {x € E,d(x, A) < r} is an open neighborhood of 4.

¢) cl(A) =Ne- (M(A)).

Proof. a) It suffices, to demonstrate the first equivalence, the second one comes from the
property of the infimum. Let a € cl(A), since d(a,A) < d(a,x) Vx € A, then 0 < d(a,A) <
d(a,a) = 0,so0d(a,A) = 0. Inversely, if d(a, A) = 0, for any >0, there exists a, €

A; d(ag, a) < €, then a, € B(a, €) therefore B(a,e) N A # @, then a € cl(A). b) Let x € A,
since d(x,A) < d(x,y),Vy € A, then 0 < d(x,A) <d(x,x) =0 <r,s0x € N.(A) and

A c N,.(A). As, for xéN,.(A) and p = r — d(x, A), the open ball B(x, p) c N,.(4), then
N,.(4) is open. So for r>0, N,.(A4) is an open neighborhood of A4. ¢) If, x € cl(A), then
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d(x,A) =0< %,Vn € N*, sox € N1(A4),Vn € N* then cl(4A) CNyey- <N1(A)>, if now

x € N1(A),vn € N*, then d(x,A) < %,Vn € N*sod(x,A) = 0, from a) x € cl(4).

Corollary 13.1. Let (E, 7) be a space, a € E, AC E, and le d be a metric on E. Then T is a
topology induced by d, iffy the following statement holds:

a € cl(A) in (E, 1) ©forall € > 0, there is a, €4 such that d(a, a,) < €. (x)

Proof. As (E, d) is a metric space, by the proposition 13.4 a), the statement (*) holds.
Conversely, let O € T be and a € O then, there is r > 0 such that B(a, €) c 0. If, not, for all
£>0,B(a, &) N 0¢ # @. Then, there is a, € 0, such that d(a,a,) < &,so a € cl(0°) =
0°¢, contradiction.

Theorem 13.2. A metric space is a T,-space.

Proof. Let F and G are two closed sets in a metric space E, and the two sets O = {x €
E,d(x,F) <d(x,G)}and O; = {x € E,d(x,G) < d(x, F)} by proposition 13.4, b) Oy and
O; are open sets containing respectively F and G. In addition Or N O; = @, indeed, if
Z€0rNO0;thend(z,G) <d(z,F)and d(z, F) < d(z, G), so d(z,G)-d(z,F)<0<d(z,G)-
d(z,F), impossible. Therefore E is normal because it is Ty, then it is a T,-space.

As a consequence of the above results, and the relation between the separation axioms, we
have:

Corollary 13.2. The metric space is To, T4, T2, T3, T4, regular and normal.

Definition 13.2. Two distances d; and d,, on a non-empty set £, are said to be equivalent,
and we write d; -~ d,, if there are two, strictly positive real numbers a and £, such that:
ad; < d, < fdq,ie adi(x,y) < dy(x,y) < Bd(x,¥),Vx,y EE.

Example 13.1. In the n-dimensional Euclidian space R", n € N*, d,, d, and d, are
equivalents. Indeed, a) do, < di < Vnde. b) de < d; < Vnd; < ndy. ¢) From a) and b)
%dl < d, <vnd,. Thendy, — dy — dy ~ do,.

Proposition 13.5. Let d,;and d,, are two distances on E, if there exists y € R} such that:
dy <yd,. Then, 74 C 14,
Proof. If, x € O € 7,4, there exists 1>0, such that B, (x,7) = {y € E,d,(x,y) <r } c 0, as

d; <y d,, then Bz(x,i) = {y €E, dy(x,y) < ]Z/} C B;(x,71),s0 O€T,,.

It is straightforward to check that:
Corollary 13.3. Two equivalent distances define the same topology and exchange the
sequences convergence i.e. {x, } converges in (E, d) iffy, {x,,} converges in (E, d").
Definition 13.3. Two metrics d and d’ over the space E, are said to be, topologically
equivalent or t-equivalent. If, the identity map i: (E, 74) — (E, T47), is a homeomorphism, i.e.
d and d’ induce the same topology.

By, the corollary 13.3, the equivalent distances are t-equivalent. But, the converse is not
true.

Example 13.2. Let (E, d) be a metric space, then the distances d and § = % are t-equivalent
but are not equivalents. It is clear that § < d, but if there exists, a strictly positive real number
@, such that ad < § then d(x,y) < i, Vx,y € E, with implies that, in (R, d), d(x,y) =

lx —y| < i,Vx,y ER,s0d(x,0) = |x| < i,‘v’x € R, then for x = Za—l, we have 2 < 1

impossible.

Definition 13.4. Let 4 be a nonvoide part of the metric space (E, d). The restriction d, of d
todiedy: AX A - R,,is ametric on 4 called the induced metric from d and (4,d,) is
called metric subspace of the metric space (E, d).
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Let 74, be, the associated topology to the metric subspace (4, d4) and 7¢ the induced
topology of 7, on 4. Let x € A, By, (x,7) (respectively B,(x, 7)) the open ball in (4, d,)
(respectively the open ball in (4, t$). Note that, B,(x,7) = A N B(x, 1), where B(x,r) is the
open ball in E, centered in x, with radius 7 > 0 and By, (x,7) = B4(x,7), indeed if y €
Bg,(x,7),y € Aand dy(x,y) = d(x,y) <r,soy € AN B(x,1) = By(x,71), if now,

vy E€By(x,7r) =ANB(x,7),theny € Aand d(x,y) < 1,50 dy(x,y) = d(x,y) < r implies
y € By, (x,7). Then:

Corollary 13.4. 7§ = 74,

Proof. If, U € t4 and x € U, there exists r > 0, such that B, (x,7) = AN B(x,r) c U, since
the open ball B, , (x, ) centred in x, with radius r in (4, d,), is contained in B, (x, 1), then

Ue€ertgy,,so ‘L'jf C 74,. Now, if x € U € 14, there exists v > 0, such that By, (x,7) < U,
since B4(x,7) € By, (x,7), then U € 74, s0 Tq, C ¢,

13.2-Compact metric space

Before giving a characterization of a compact metric space, we will demonstrate the following
property.

Lemma 13.1. In a metric space the assertions a) and b) are equivalent:

a) Every infinite part has an accumulation point.

b) Every sequence has a convergence subsequence.

Proof. a) = b). Let A = {x,,} be a sequence in the metric space E, as A is a countable part it
is an infinite part by a) A has an accumulation point x € cl(A). Because E is 1D-space, by
proposition 7.5, there is sequence {x,,} € A, which converges to x i.e. {x,,} has a convergence
subsequence. b) = a). Let 4 be the infinite part in the metric space E. As A containing a
sequence {x,} which has a subsequence {x(p(n)} that converges towards x, then x is an
accumulation point of A.

The study of compact metric spaces is based on the following fundamental lemma.
Lemma 13.2. If, in the metric space (E, d), any sequence of the closed part 4 in E, has a
convergence subsequence in 4. Then, for any open cover U = {U,, a € A} of A, there is
r > 0 such that for all x € A, B(x,r) is containing in at last one of the element of U.

Proof. Suppose that, for all € > 0, there is x, € A such that B(x,, &) & O, for all « € A.

Then, for all n € N*, there is x,, € 4, such that B (xn, %) ¢ U, forall a € A. As there is a

subsequence {x(p(n)} of the sequence {x,,} which convergesto a € A = U,ep U, = cl(4),
then there is i € A, such that a € U, thus, there is p > 0, such that B(a, p) < U,. Because, for

1 1
all x € B (xp00, %), d(@%) < d(@, %)+ d(pe %) <3+ d(a Xpm), and 2pm — a,
then for g > 0, there is ny € N* such that for all n > n,, d(a, xw(n))< g, when n — 400 in

the inequality we obtain d(a, x) < § < p, then B (x(p(n),%) c B(a,p) c U,, for all n > n,,

contradiction.

We have shown in lemma 10.2 that, in a compact space, every infinite part has an
accumulation point, and under the supplementary 1D condition see corollary 10.2 every
sequence has a convergence subsequence. In a metric space which is 1D-space, we also have
the reciprocal.

Theorem 13.3. In a metric space (E, d). If, every infinite part has an accumulation point, then
E is compact.

Proof. Let O = {O,, @ € A} be an open cover of the closed E, by the lemma 13.1, there is

r > 0 such that for all x € E, B(x,r) is containing in at last one of the element of O. Let
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X1 € E, then E c B(xy,7) € 0;, where O, € 0, so E is compact. If not, there is x, € E such
that d (x4, x,) = r and B(x,, 1) € 0,, where 0, € 0,s0 E € B(xy,7) U B(x,,7) € 0, U 0,,
so E is compact. After a finite number of iterations, we obtain p-balls

B(xy,1),B(x,,71), ..., B(xp, r) which cover E and therefore p-open 04, 0, ..., O, which cover
E, so E is compact. The points xq, x5, ..., Xp satisfy d(xl-, xj) > r for i # j. If the number of
the points x;, X5, ..., X, ... is infinite, by assumption the sequence {x,,}, has an accumulation

point x € E. Then, forg > 0 there is i € N*, such that 0 < d(x, x;) < gand forg > 0 there is
j € N* such that 0 < d(x, xj) < g As, r < d(xi,xj) <d(x;,x)+ d(x, xj) < g +§ <r,
contradiction. Conclusion, there is only a finite open bulls centered in x4, X5, ..., X, with
radius r > 0, such that E CU’; B(x;, 1) CUzl’ 0;, then E is compact.

As a direct consequence of the lemma 13.1 and theorem 13.3, we have.
Corollary 13.5. In a metric space E, if any sequence has a convergence subsequence, E is
compact.
Lemma 13.3. A part 4 of the metric space (E, d) is relatively compact iffy, any sequence in
A, has an adherent value in E.
Proof. Let {x,,} be a sequence in 4, as Ac cl(A) c E then {x,} is a sequence cl(A), which is
compact, there is a subsequence {x(p(n)} of {x,,} converging to x € cl(A), then x is an
adherent value of {x,,} in E. Conversely, let {x,,} be a sequence in cl(A), then for every
n € N*, there is a,, €4, such that lim,,_,,, d(x,, a,) = 0. As, by assumption the sequence
{a,} has an adherent value a € cl(A), there is a subsequence {a(p(n)} of the sequence {a,,}
which converges to a. Because, 0 < d (a, x(p(n)) < d(a, a(p(n)) + d(aw(n), x(p(n)), and
lim,,_, d(xq,(n), a(p(n)) =0, then d(a, x(p(n)) — 0, therefore cl(A) is compact.
Lemma 13.4. Let f be a map, from a metric space (E, d), into the topological space (F, 7).
Then, f is continuous on E iffy, f is continuous on any compact of E.
Proof. If, f is continuous in E, then it is continuous in any subset of E. Therefore, it is
continuous in any compact of E. Conversely, let {x, } be a converging sequence to x in E. As,
by corollary 13.5, the set {x, x1, x;, ... } is a compact in £ and f is continuous on this compact,
then f(x,) — f(x), so f is continuous in the arbitrary x in E. Thus, f is continuous on E.
Lemma 13.5. A compact metric space is separable.
Proof. Let (E, d) a metric space, because for all n € N*, the collection {B (x, %) ,X EE } is
an open cover of E which is compact, there is a finite set of points of E, say A, =
{xl, Xp, wees xk(n)} such E =U'f(n) B (xl-, %) It is clear that, the part A =U,,5; 4, is a countable
subset of E. It remains, to show that, cl(4) =E. Let x € E be, and x € E then there is n, € N*
such that B (x, nio) C B(x, €). On the other hand, there is j € {1, ..., k(n)} such that x €

B (xj,l) for all n € N*, then Xj €B (x, i). Therefore, forall x € E andallx € E, @ #
n n

0

B (x, ni) NA,cB (x, ni) NA c B(x,e) N A. As for every N € N'(x), thereisr > 0, such
0 0

that B(x,r) € N,then N N A # @, hence x € cl(A).
Remark 13.1. As by the theorem13.1, a metric space is separable iffy, it is 2D-space. Then, a
metric compact space E is 2D-space.Therefore, £ has a countable basis constitute of the open

balls. More precisely, the collection B =U,,5; B,,, where for alln € N*, B,, = {B (xl-, %), 1<

[ < k(n)} constitutes a basis for the induced metric topology of E. Indeed, for any open O in
E and any x € O, there is r > 0, such that B(x,r) c 0. Therefore, there is n, € N* such that
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B (x, ni) cB(x,r)c0.Asx €E =U'1‘(n) B (xli) there is j € {1, ..., k(n)} such that
0
x €EB (xj,%) for all n € N*, thus x € B (xj,nio). It remains to check that, B (xj,%) c B(x,r).

1 1 1 1
Lety € B (x,;), asd(x,y) < d(x,xj) + d(xj,y) < ~ + = whenn — oo, d(x,y) < - <r.
So,y € B(x,r) c 0.

13.3-Product Metric space
Let (E;,d;), 1 < i < n be a finite collection of metric spaces, it is obvious to check that the
space E = II{E; provided with one of the three distance D; (x,y) = »1d;(x;, yi), D2(x,y) =

/Z’l‘ d?(x;, y;) or Do, (x,y) = max,<;<p d;(x;,v;), for all x,y € E, is a metric space.

Furthermore, D, < D, < D; < nD,,, i.e. D;,D, and D, are equivalent and if 7 is the induced
product topology of 74, 1 < i < n, then T = 7pp_. It suffices to consider By, (x,7) =
7B (x;,r), where B(x;,r) = {y; € E;, d;(x;,y;)) <r},1<i<n.

In the case, where the collection {(E,,, d,,),n € N} of metric spaces is countable. In general

we cannot define D1 because the series )¢ d,, (x,,, V5,) is not always convergent. On the other
1 dn(XnYn)

hand, by considering the distances on E,, (x,,, y,) 2 Trd (o)

which are t-equivalent to

the distance d,,, for all n € N*. We can define forall x,y € E d(x,y) = X7 Zin—lfz(’z’;'y T;;))

which is well defined, whose induced topology 7, is identical to the product topology .

Where for r > 0 and x € E, the collection {B,,(x,7),1 < n < i}, with B,(x,7r) =

{y € dn(cn,yn)
" 14+dn (Xn,yn)

T =14 Let,for1 <n < i, B,(x,7r) then B(x, p) of E, where 0 < p < zin < r is containing in

o 1 An(nyn) An(Xn.yn)

B, (x,7). Because, if y € B(x, p), d(x,y) = X3 27 Thdy, ey Tl o)

for p2™ <r,B(x,p) €SB (x, an) C B, (x,r).Conversely, let B(x, p) be in E, then for

< r}, 1 < n < i constitute a basis of this product topology. To prove that

< p then < p2", so

1<n<iB,(x,v) € B(x,p), where r = g. Because, if y € B, (x,7), then %ﬁ for
1 <n <i. As for i big enough, Zﬁlzin — 0, for r > 0, there is i € N* such that for all
o i dpn(Xn,yn) i i dn(Xn,yn)

. oo 1
n > i, we have Zi+12_n <r.S0,d(x,y) = X1 2" 14dp(xnyn) 1 "

yeo L _dnlnyn) <r(Z§ zi") + r<r(2‘{° zin) + r=2r=p.

i+1gn 14+dn(xn,Yn)
Example 13.3. let [, = {x = {x,} € R, X x2 < + } be, the set of summable square

numerical sequences. The function d: I, X I, — R* defined by d(x,y) = /X7 (xn — v)?,
for all x,y € 1, is a metric. As (x,, + y,)* < 2(x2 + y2), d(x,y) is well defined. The
conditions m,) and m,) in the metric’s definition are obviously checked. Concerning the

condition m3) it suffices to take the limit when k — oo in the inequality: /Z’f(xn —V)? <

\/Z’f(xn —-z,)%+ \/Z’f(zn — y,)2, where x,y,z € L,.

Definition 13.5. A space (E, 1), by is said to be metrizable if, there is a metric d in E, such
that the topology 7, induced by d is equal to 7.

As we have already seen, a metric offers one of the most important definition of the
topology of a space, and that a metric space is 1D-space and it is normal. Therefore, in a space
devoid at least one of these two properties, it is impossible to define the topology using a
metric. However, we have the following theorem, which is relatively simple in comparison

2" 1+d (X, Yn)
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with to other metrization theorems and it is an highly useful result, for determining whether a
given space is metrizable.

Theorem13.4. (Urysohn’s metrization theorem). The regular, 2D-space is metrizable.

Proof. As E is regular and 2D-space, by, corollary 10.12, £ is normal and has a countable

basis B = {B,,,n € N}. By corollary 5.6, we can consider the family of all pairs (B;, B;) of B,
with cl(B;) € Bj, clearly this family is countable, so we can write the pairs as Py, Py, ..., By, ....
Since, B,fj is closed and cl(Bni) N B,fj = @, by theorem 8.1 (Urysohn’s lemma), for all pair

P, = (Bnl., an), there is a continuous function f,,;: E — [0,1] such that f, (cl(Bni)) =0 and
fa (B,fj) = 1. We will verify that, a function d: E X E — R,, defined by, for all x,y € E,

d(x,y) =27 zin |fr,(x) — f,,(y)| which is well defined, is a metric. It follows to check the

conditions m, ), m,)and mj3) in the definition 4.1.

m,) Let x,y € E be, such that x # y, i.e. x € {y}¢, which is open in T;-space, by the
corollary 5.6, there is k € N such that P, = (B, B"), withx € B c cl(B) c B’ c {y}¢. By
Urysohn’s lemma, there is a function f;: E — [0,1] such that f; (cl(B)) = 0 and fk(B’C) =
l,asx €cl(B)andy € B'®, then fi(x) =0and f,,(y) = 1, then |f,(x) — i, W) =1,
therefore d(x,y) > 0. If, now, x = y, then f,,(x) = f,,(y) foralln € N, so d(x,y) = 0.

m,) As, forall x,y € E and foralln € N, |f,(x) — f,(W)| = |f,(¥) — f,(x)|, then d(x,y) =

d(y,x)

m3) As, forall x,y,z € E and foralln € N, |f,,(x) — f,(W)] < |/,,(x) — fn(2)| +

/(@) = FO)], then d(x, ) = TP 2 1fa () = fuO)I TP 5 (fa () = fu(@)] +
JSnz—fny=1co 12nfnx—fnz+1c0 12nfnz—[ny =dx,z+ dz,y.

It remains to prove that 7 is induced by the metric d. By the corollary 13 1 it suffices to prove
that,if A c E anda € E. Then a € cl(A) inE & Ve > 0,3a, € 4; d(ag,a) < ¢

"= "Leta € cl(A4) be and € > 0, since the sequence zin — 0, there is N€ N* such that, for

alln > N, zin < g, then < . As, forall i € {1, ..., N}, the function f; is continuous from

2N+1
E into [0,1] and ﬁ > 0, by proposmon 7.11, there is Oy, ..., O;, ..., Oy € T containing a, such
that for all x,y € 0;, |f;(x) — fi(y)]| < ﬁ. Because the set O=n_, 0; is an open containing
a,then O N A # @, so there is a; € O N A, then

d(a, ag) =

22 (@) = ful@)=EY 2 1fi@) = fila)] + T 5 1fi(@) — fila) <EY2 (5) +

S (B)5+ 25 () S+ i <iti=e

" & " Suppose that a € E satisfies Ve > 0,3a, € 4; d(a,,a) < &, buta ¢ cl(A), then there
is O € T containing a, such that 0 N A = @, then the closed {a} © 0. Once again, by the
corollary 5.6 and Urysohn’s lemma, there is a pair of basis elements P, = (B, B"), which
satisfies a € B c cl(B) € B' c 0 and there is a function f;,: E — [0,1] as cl(B) and B¢ are
two disjoint closed, then f,(a) = 0 and f,,(b) =1, forall b € B'“, so |fi(a) — fi(b)| = 1.
Asfor0 < e < zikwehave d(a,x) = zi >ceforallx €A, (x € Othenx € B',sox € B’C),

contradiction.

As we noticed in example 4.1 c¢) and example 5.2 c) iii). The uncountable discrete space is
a metric space which is not 2D-space. Then, we don't have the opposite in the theorem 13.4.
But under the compact assumption we have.
Corollary 13.6. Let £ a compact Hausdorff space. Then, E is metrizable iffy it is 2D-space.
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Proof. As, a compact Hausdorff space is normal, if in addition it is 2D-space, by the theorem
13.4 it is metrizable. Conversely, from the theorem 13.1 and the corollary 13.5, the metric
compact space is 2D-space.

Remar 13.1.

N*
a)LetK = [O, %] , be the set of all numerical sequences {x,} C [0, %], enjoyed by the

metric d(x,y) = /27, — y)?, where x,y € K. It is clear that Q is a metric space
containing in l,. The set @ = [0,1]N under the sup metric d(x,y) = supnen|x, — Vnl, where
X,y € Q is said to be a Hilbert cub and it is identified up to homeomorphisms with K. By
Tychonoff’s theorem Q is compact. Therefore Q is compact metrizable space and hence it is
normal 2D-space. So a space is a normal 2D-space<it is homeomorphe to Q.

b) We can also prove the theorem 13.4, by using the lemma 8.2 (embidding lemma) to
check, with almost the same tools used in the proof of theorem 12.2, that the space £ can be
embedded in the compact metric Hilbert cub [0,1]N. Therefore E is metrizable.

Corollary 13.7. Let {(E;, d;),1 < i < n} be a finite collection of metric spaces and E =
[I}E;. Then, the sequence {x,} converges to x in (E, D,,) iffy, the sequence {x,ﬁ} converges
to x;,in (E;, d;), forall1 <i < n.

Proof. As 0 < d;(x}, x}) < Do,(xp, %), forall p,q € N* and forall 1 < i < n.If]

D (xp,xq) — 0, then d; (x,‘;,xci,) — 0, for all 1 < i < n. Reciprocally, let £ > 0, as for all
1<i<n, andforallp,q € N* di(xzi,,x}'l) —s 0, there is ny, € N*, such that for all p >
nh,q > nh, we have d; (x5, x5) < ¢ forall 1 < i < n. So, sup;<icn di (x5, x5) < ¢, for
No= SUP;<j<ynty and all p > ngy, g > ng, we have Doo(xp,xq) <e

14-Complete metric space, fixed point theorem

14.1-Cauchy sequence
Definition14.1. A sequence {x,,} in a metric space (E, d) is said to be a Cauchy sequence or
simply a Cauchy if, for all € > 0 there is n, € N* (n, depends to &) such that, for all
p,q > ny, we have d(xp,xq) < ¢. Equivalently, limp'q_>+oo d(xp,xq)ZO.
Note that, the definition 14.1 remains true when the inequalities p, g > ng, and d(xp, xq) <
g,. are large.
Proposition 14.1. The Cauchy sequence is bounded.
Proof. If, {x,,} is a Cauchy sequence, for € = 1, there is n, € N* such that, for all p > n,,
q > ng we have d(xp,xq) < 1. As, foralln,p € N*, d(xno,xn) < d(xno,xp) + d(xp,xn)
then, for alln > ny, p > n,, d(xno,xn) < d(xno,xp) + 1. So for all n € N*, d(xno,xn) <
Max; cpen, d(%n,, xp) + 1=r ie. {x,} € B(xy,, 1), thus {x,,} is bounded.
Proposition 14.2. In a metric space, every convergence sequence is a Cauchy.
Proof. Let € > 0 be, as {x,,} converges to x in the metric space (E, d), then when p,q € N*
tend towards +oo, d(xp,x) and d(xq, x) tend towards 0. As 0 < d(xp,xq) < d(xp, x) +
d(x, xq) So, when p, g € N* tend towards +oo, d(xp,xq) — 0.
Remark 14.1.

a) The reciprocal of the proposition 14.1, is not true. Indeed, in the usual metric space R,
the sequences {sin(n)}, {(—1)"} are bounded but there are not a Cauchy.

b) The reciprocal of the proposition 14.2, is not allows true. Indeed, in the metric space

10,1], the sequence {%} is a Cauchy but it is not convergent in ]0,1].
Proposition 14.3. A subsequence of a Cauchy is also a Cauchy.
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Proof. As {x,,} is a Cauchy in the metric space (E, d), there is n, € N* such that, for all
p > ny, q > ny we have d(xp, xq)< &. So, if {x(p(n)} is a subsequence of {x,,}, p(p) = p >
ny and ¢(q) = q > ng then d(xyp) Xp(q) )<, therefore {x, ¢} is a Cauchy.
Proposition 14.4. If a subsequence of a Cauchy converges to x, then the Cauchy also
converges to x.
Proof. Let {x(p(n)} be a subsequence of the Cauchy {x,,}, which converges to x in the metric
space (E,d). As 0 < d(x,, %) < d(xp, Xpm)) + d(xXpem), x) foralln € N and
d(xn,xq,(n)) — O,d(x(p(n),x) — 0, when n — 0, then d(x,,, x) — 0, whenn — 0. So
{x,} converges to x.
It is clear that:
Corollary 14.1. If, the sequence A,, = {x;, k = n} in the metric space (E, d) satisfies
6(A4,,) — 0, then the sequence {x,,} is a Cauchy.
Definition 14.2. The map f: (E,d) — (F,d') is said to be continuous in x, € E.
If, for all € > 0, there is & > 0 (§ depends to x, and ¢), such that, for all x € E satisfies
0 < d(x,xy) < 8, we have d’(f(x),f(xo)) < ¢. f is said to be continuous on E, if it is
continuous in any element of E.

We will now introduce, a property closely related to metric spaces.
Definition 14.3. The map f: (E,d) — (F,d') is said to be uniformly continuous on E.
If, for all € > 0, there is & > 0 (§ depends to €), such that, for all x,y € E satisfies 0 <
d(x,y) < 6, we have d’(f(x),f(y)) <e.
Remark 14.2.

a) The definitions 14.2 and 14.3, remains true when, the second and third inequalities are
large.

b) The uniform continuity implies the continuity. It suffices to take y = x; in the
definition 14.2.

¢) The Continuity dos not implies the uniform continuity.
Example 14.1. The function x € R ~ f(x) = x? € R, is continuous on (R, d,,). But, for

€ =1 and for any § > 0, there is x5=%, 5=§ +§ € R, such that d,, (x5, ys) = |xs —
VO=02<dbut dufx0,[yS=fx0—/yds=1+J524>1. Then, /s not uniformly continuous on R.

Corollary 14.2. Let f: (E,d) — (F,d’) be uniformly continuous on E Then, the image

{f (x,,)} in the metric (F,d") of the Cauchy {x,,} in the metric space (E, d) is a Cauchy.
Proof. Let ¢ > 0 be, as f is uniformly continuous on E, there is § > 0 such that, for any

x,y € E satisfying 0 < d(x,y) < §, we have d'(f(x), f()) < &. As {x,,} is a Cauchy, in the
metric space (E, d), for 6 > 0, there is n, € N* such that, for all p > n,, g > n, we have

d(xp,yq) < d,s0d' (f(xp),f(yq)) < g, it follows that {f (x,,)} is a Cauchy in F.

Remark 14.3. The image by the continuous map, of the Cauchy is not allows a Cauchy, as
shown in the following example:

Example 14.2. the function f: (R%, d,,) — (R}, d,) be, defined by: f(x) = % , for all

1
n

x € R}. The sequence { } is a Cauchy in (R, d,,), indeed for any € > 0, there is ny, =
E]HE N*, where E] is the integer part of S, such that, for all p > ny, ¢ > ny we have
|% - $|< €. But the sequence { f (%)}Z{n} is not a Cauchy, since for € = 1, and any n € N*,

therearep =n+1landq = 2n+ 1suchthat [2n+1—n| =n > 1.
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Theorem 14.1. The map f: (E,d) — (F,d") is uniformly continuous on E, iffy for any
sequences {x,} and {y,} in E, satisfying d(x,,, y,) — 0, we have d’(f(xn),f(yn)) — 0.
Proof. Let ¢ > 0 be, as f is uniformly continuous on E, there is § > 0 such that, for any
x,y € E satisfying 0 < d(x,y) < §, we have d'(f (x), f(y)) < &. Because d(x,, y,,) — 0,
for § > 0, there is ny € N* such that, for all n > n, we have d(x,,y,,) < 8, so

d'(f(xn), f(yn)) < €. Conversely,
Suppose that, f is not uniformly continuous on E, i.e. there is € > 0, such that for all n € N,

there are x,, and y,, in E satisfying d (x,, y;,,) < %but d'(f(xn), f(yn)) = €. Because

d (%, ¥) — 0 and lim,, o, d'(f (x,), f (72)) = >0, contradiction.
Corollary 14.3. The composition of two uniformly continuous maps, is uniformly
continuous.
Proof. Let f: (E,d) — (F,d"), g: (F,d") — (G,d"") are two maps ant let {x,,} and {y,,} in E,
satisfying d (x,, y,) — 0, as f is uniformly continuous on E, by the theorem 14.1,
d'(f (xn), f()) — 0, because g is uniformly continuous on F, always by the theorem 14.1
d”((g o f)(x,), (g e f)(yn)) — 0, i.e. the composition map g o f: (E,d) — (G,d") is
uniformly continuous on E.

As given, in the following result. In the compact metric space, the continuity implies the
uniform continuity.
Theorem 14.2. Any continuous map f from the compact metric space (E, d), into the metric
one (F,d"), is uniformly continuous.
Proof. Suppose that, f is not uniform continuous from (E, d) into (F,d"), by the theorem
14.1, there are sequences {x,} and {y,} in E, satisfying d (x,,, y,) — 0, but
d'(f(xn), f(3)) +# 0. As E is compact there are subsequences {x(p(n)} and {y(p(n)}, such that

Xpm) — X € E, Yym) — ¥ € E. Because d is continuous, d(x(p(n),yw(n)) — 0=d(x,y),

then x = y. By the continuity of d’ and f, d’ (f(x(p(n)),f(y(p(n))) — d'(f(x), f(x)) =0,

contradiction. Because d'(f(x,,), f(3,)) + 0, implies that, there is § > 0, such that for any
n € N* thereis N € N*, whenn > N, d'(f (x,)), f (7)) = 6, as forany n € N*, p(n) = n >

N then d' (£ (%) f (Vo)) = 8. it follows that d’ (f (X)), f (Vo)) + 0-

Remark 14.4. Any continuous map f from the compact subspace (K, dy) of the metric space
(E,d), into the metric one (F,d"), is uniformly continuous on K.

On a metric spaces, in addition to the definition of a topological isomorphism or the
homeomorphism, we also define, the uniform isomorphism, i.e. a uniformly continuous,
bijective map f: (E,d) — (F,d") where its reciprocal map f~1: (F,d") — (E,d) is
uniformly continuous. Clearly, the uniform isomorphism is an homeomorphism; but the
reverse is false. The bijective map f: (E,d) — (F,d') is said to be a uniform isometric if,
forall x,y € E, d’( f),f (y)) = d(x,y). It is clear, from the theorem 14.1 that, the uniform
isometric is a uniform isomorphism.

Example 14.3. The identity map i: (R,,d) — (R,,d") where forall x,y € Ry, d(x,y) =

|x —y| and d’'(x,y) = |x? — y?| is neither uniform isometric nor uniform isomorphism.

Because, forx = 0,y :%,d(o,%) =%¢ d’ (O,%) =iandforxn =1V, =n+%,d(n,n+

17=1n—0,but d’nn+1n=2+1n2—2.

Definition 14.4. Two metrics d and d’ over the space E, are said to be u-equivalent if, both
the identity map i: (E,d) — (E,d’), and its inverse i ~1: (E,d’) — (E, d), are uniformly
continuous.
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Proposition 14.5. Two equivalent metrics are u-equivalent.

Proof. Let d and d' two equivalent metrics over the space E i.e. there are a, § € R} such that
forall x,y € E,ad(x,y) < d'(x,y) < Bd(x,y).(x) Then, for any sequences {x,} and {y,}
satisfying d(x,,, y,) — 0, we have d’(xp,, y,)=d’(i(x,)), i(y,)) — 0, by the theorem 14.1 the
identity map i: (E,d) — (E, d’) is uniformly continuous. As (*) implies that d'(x,y) <
Bd(x,y) < gd’(x, y), for all x,y € E. Then, for any sequences {x,} and {y, } satisfying

d’ (xn, yn) — 0, we have d(xp, y,)=d(i 71 (x,), i"1(y,)) — 0, by the theorem 14.1 the
inverse identity map i~1: (E,d") — (E, d), is uniformly continuous. Clearly the identity map
is one to one, then it is u-equivalent.
Remark 14.3.

a) The reverse in the proposition 14.5 is not true, as shown in the following example. Let
(E, d) be a metric space, we have seen, in the example 13.2 that, the two metrics d and

d . .
d = g over E are not equivalent. Let us proof that, d and d' are u-equivalent. As 0 <

d'(x,y) < d(x,y). Then, for any sequences {x,,} and {y,} satisfying d(x,, y,,) — 0, we
have d’ (%, y,)=d'(i(x,), i(3,)) — 0, by the theorem 14.1 the identity map i: (E, d) —

(E,d") is uniformly continuous. In the other hand, for any € > 0, thereis § € ]0, 1%8] such

that for all x,y € E, 0 < d'(x,y) < &, we have d(i"1(x),i"*(y)) = d(x,y) < &, then the
inverse identity map i ~1: (E,d’) — (E,d), is uniformly continuous. Therefore, d and d’ are
u-equivalent.

b) Clearly, the uniform isometric map, exchange the Cauchy sequences i.e. If, f: (E,d) —
(F,d") is a uniform isometric. Then, {x,} is a Cauchy in E iffy {f (x,,)} is a Cauchy in F.
Corollary 14.4. Two u-equivalent metrics are t-equivalent.

Proof. It is deduced from the remark 14.2. a).

From the proposition 14.5, the remark 14.3.and the corollary 14.2 it follows that:
Equivalent metrics=u-equivalent metrics =t-equivalent metrics

and, none of the reverse implications is true.

Another interesting type of application, also related to metric space is.

Definition 14.5. The map f: (E,d) — (F,d') is said to be Lipshitz with the ratio k or k-
Lipshitz. If, there is k > 0, such that, d’(f (x), f(¥)) < kd(x,), forall x,y € E. When
0 < k <1, f is said to be a contraction mapping.

Remark 14.5. It is obvious that, any k-Lipshitz map is uniform continuous, and the
composition of two k-Lipshitz maps is k-Lipshitz.

Example 14 4.

a) Since for all x,y € R, ||x| — |y|| < |x — y|, then the function f: (R,d,) — (R,,d,),
defined by f(x) = |x|, for all x € R is 1-Lipshitze.

b) The function f: (R,d,) — ([—1,1],d,), defined by f(x) = sinx, forall x € Ris 1
Lipshitze, because, |sinx — siny| = 2 |sin (ﬂ) cos (ﬂ)| <2 Tyl |x — yl|, for all

2 2 2
x,y € R.

c) The function f;,: (E,d) — (R, d,,), (y is fixed in E) defined by: f, (x) = d(x,y), for all
x € Ris 1-Lipshitze, because by the proposition 4.1, | fy(x) — fy(x’)| = |d(x,y) —

dx’, y<dx, x’, for every x, x'€Z. By the same the function fx:£,d— R du, xis fixed in £
defined by: f,(y) = d(y,x), for all y € Riis 1-Lipshitze.

d) The function f: (R, d,) — ([—1,1],d,,) defined by f(x) = %cos x is a contraction,
because by the finite increment theorem, for every x,y € R, there is ¢ € |x, y[ such that

fO) =fl) =f @ —x)solfy) = fI = If"(Olly — x| Sgly—XI-
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Definition 14.6. Let (E, d) and (F, d') are metric spaces. We say that the map f from E into
F has a modulus of continuity if, there is an increasing function, ¢: [0, +c0] — [0, +o0]
verfying: lim,,_,o @(w) = ¢(0) = 0, such that d'(f (x), f(¥)) < @(d(x,y)), for every
x,y €E.
Proposition 14.6. Let (E, d) and (F, d') are metric spaces.. Then, the map f from E into F is
uniformly continuous on E, iffy f has a modulus of continuity.
Proof. If, f is uniformly continuous on E, the function ¢: [0, +o0] — [0, +0], defined by, for
every u € [0, 4], ¢(u) = supgyyer; acey)<uy @ (f (x), £ () is clearly a modulus of
continuity of f. Conversely, if there is an increasing function, ¢: [0, +00] — [0, +00]
verfying: lim,,_,o @(u) = ¢(0) = 0, such that d'(f (x), f(y)) < (p(d(x, y)), for every
X,y € E. Then, for every € > 0, there is § > 0 such that, for every u € ]0, +oo], satisfying
0 <u< §,wehave ¢(u) < ¢, then for every x,y € E, such that d(x,y) < n, we have
d'(f(x),f(y) < <p(d(x, y))<£. So, f is uniformly continuous on E.
Note that, the most used modulus of continuity, are the functions, ¢: [0, +00] — [0, +o] of
the form @ (u) = k u%, where k, @ € R;. When a = 1, we obtain the definition of the k-
Lipschitz maps. Also, if ¢ is a modulus of continuity of f: E — F and 1 is a modulus of
continuity of g: F — G, then ¥ o ¢ is a modulus of continuity of g o f: E — G.

It is easy to show that:
Corollary 14.5.

a) The uniform isometric exchange the Cauchy sequences.

b) Two equivalents metrics exchange the Cauchy sequences.
Proposition 14.7. Let {(E;, d;), i € {1, ..., m}} be a finite family of the metric spaces and
E = II*E;. Then, the sequence {x,} is a Cauchy in metric space (E, D) iffy for every
i € {1,...,m}, the sequence {x}} is a Cauchy in (E;, d;).
Proof. Since, for every p,q € N*, i € {1,...,m}, 0< d;(x}, x5) < Do (%, x,) then if {x,,} is
a Cauchy in metric space (E, D), for every i € {1, ..., m}, the sequence {x}} is a Cauchy in
(E;, d;). Conversely, let & > 0, since for every i € {1, ..., m}, the sequence {x}} is a Cauchy in
(E;, d;), there is nly € N* such that for all p, g € N*, p > q>n} we have d;(x},x}) < ¢ s0
for ng = max;<;cmnh and p > g>n,y we have Do, (x,, x,) < &.

14.2-Complete metric space
Definition 14.7. The metric space (E, d), is said to be complete if, any Cauchy sequence in E
is convergent. The subset A of E is complete if, the metric space (4, d4) is complete.
Example 14.5.

a) (R, d,) is a complete space. In fact, if {x,,} is a Cauchy, from the proposition 14.1,
{x,} is bounded, then it is containing in a compact of R. So {x,,} has a convergence
subsequence {x(p(n)}, therefore by the proposition 14.4, the sequence {x,} is convergent.

b) (Q,d,) is not complete, because the sequence Xy = Z" for all n € N is a Cauchy in
1 1 1 1
qw m[ 2 @@ T

[++++2p_q:

Q, Asforallp,qEN(p>q) |, — x| =
1
(q+2)(q+3)..(q+p—q) ﬁ 1+ +_+ +23 D q] q+1

2 (1= ())<= 1t follows that, [x, — x4| — 0, when ,p — +oo. Then {x,} is a

Cauchy and converges to the Euler’s number e € R \ Q. In fact, if we suppose that e € Q,
then there are p € Zand g € N*, p Aq = 1 such thate = s . As the two sequences {x,} and

{y.} where y,, = x,, + %, for all n € N are adjacent and x; < x;,, < y,, < y; {x,} is
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increasing, and {y,,} is decreasing, then, their common limit satisfies x,, < e < y,,, therefore
1 1 p 1 1,1
Zhe4o|gr<y I I ) !

2<e<3.Itfollowsthat[1+2!+ +q!]q.Sqq.S[1+2!+ +q!+q!]q.or[q.+

q-—-D'+-+1]<pl@—-D!'<[q'+(@q@— D!+ -+ 1]+ 1. By setting [q! + (g — 1! +
-+ 1] =N€ N*, we have N< (¢ — 1)!p < N + 1 i.e. between two successive natural
numbers there is a third, contradiction.
Lemma 14.1. A complete subspace (4, dy) of the metric space (E, d) is closed.
Proof. Let x € cl(A), there is a sequence {x,,} in A, which converges to x, then {x, } is a
Cauchy in the metric space (E, d), hence {x,,} is also Cauchy in the complete metric subspace
(A,dy). Then, x,, — y € A. As (A, d,) is Hausdorff then y = x and cl(4) = A.
Lemma 14.2. Any closed subset in the complete metric space is complete.
Proof. Let {x,,} be a Cauchy in (4, dy), as {x,,} is also Cauchy in the complete metric space
(E,d), there is x € E such that x,, — x, so, for every € > 0, B(x, &) N {x,} # 0. Therefore
for every € > 0, B(x, €) NA+ @, which implies that x € cl(A) = A, then (4, d,) is complete.
Lemma 14.3.

a) Completeness of subspaces in any metric space is stable by the finite union.

b) Completeness of subspaces in any metric space is stable by intersection.
Proof. a). Let (4,d,) and (B, dg) are two complete subspaces of the metric space (E, d). If,
{x,} is a Cauchy in A U B, then there is a Cauchy subsequence {x(p(n)} of {x, } in (4,d,) or
(B, dg) which is complete, s0 x, ) — x € A U B, by proposition 14.4, x, — x, thus AU B
is complete.
b) Let {A,, @ € A} be a family of the complete subspaces (4,, d,) of a metric space (E, d)
and A =Ngep A,. Because, by lemma 14.1, for every a € A, A, is closed, then A is closed in
the complete subspace (4., d,), for every @ € A, by lemma 14.2, A is complete in
(Ag, dg), for every a € A and hence it is complete in the metric space (E, d).
By the corollary 13.7 and proposition 14.6 we have.
Corollary 14.6. Let {(Ei, d),i€{1,.., n}} be, a finite family of the metric spaces and
E = II}E;. Then, the metric space (E, D,,) is complete iffy for every i € {1, ...,n}, (E;, d;) is
complete.
Remark 14. 6. The corollary 14.6 remains throw for a countable product metric spaces (E, d)
where E = [ en+Ep, d(x,y) = Zi"zindn(xn,yn) for every x,y € E and d,,(x,, y,)<I, for
every n € N*.

The use of, corollaries 4.1 and 14.1 and the proposition 14.4, allows us to demonstrate the
following characterization of the completeness of metric spaces:
Theorem 14.3. A metric space (E, d) is complete, iffy any decreasing sequence of closed
balls in E, whose radius tend to zero, has for intersection a singleton.
Proof. Let {B,,(x,,,7,,),n € N} be a decreasing sequence of closed balls in E centered in x,,,
whose radius r;, — 0. As forany p,q € N*, 0 < d(xp,xq) < d(xp,xn) + d(xn, xq) < 21,
then the sequence {x,} is a Cauchy in a complete metric E and as for any n € N, B, (x,, 7;,) is
closed x,, — x € B,(x,,1,,), for every n € N, therefore x €N,,cy B, (x,,,7;,). Because

0<6 (nneN En(xn,rn)) <6 (En(xn, rn)), and § (En(xn, rn)) — 0, we have
) (nneN B, (x,, rn)) = 0 it follows that N,ey By (x,, 7,) = {x}. Conversely, let {x,} be a

Cauchy in E. We are going to construct a subsequence {xnk} of {x,} converging to x and
therefore the sequence itself converges to x, so £ is complete. As for every € > 0, there is
n, € N* such that, for every n > n, d(xn, xn8)< g, then for %, there is n; € N* such that, for

1 1 . .
every n > n, d(xn,xn1)< > and for ] there is n, € N* such that, for every n > n, > n,,
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1

d(xn, Xn 2)< ziz’ by iteration until the order k + 1, for Yy

1
2k+1°

L ) Jk € N} of closed balls in E is decreasing and

2k

there is n,.,; € N* such that, for

every n > ny,q > Ny, d(xn,xnk+1)<
Because, the sequence {Bk+1 (xnk 120

1
__)0’

2k
then Ngey Brit (xnk . 1,2—1,6) = {x}. Therefore the constructed subsequence {xnk} converges to

X.

Even better, one part of the theorem 14 3, can be generalized as follows:
Theorem 14.4. In the metric complete space, any nonempty decreasing closed sets, whose the
diameter tends to zero, has for intersection a singleton.
Proof. Let {F,,n € N} be a sequence of nonempty decreasing closed sets whose the diameter
tends to zero and xy € Fy, x; € Fy,...,x, € E,,...,as foreveryp =2 n, xp € F, then 4,, =
{xp,p = n} C E,s06(A4,) < 6(E,), therefore 6(A4,,) — 0, hence {x,} is a Cauchy in a
complete metric E, thus x,, — x € E. As, for every p,n € N the subsequent { x,,,p} of {x,,}
is containing in the closed F, and converges to x, then x € F, for every n € N, it follows that
X ENyen F,. Because 0 < §(Npey F) < 6(F,) foreveryn € N, then §(Nyey Fy) = 0 &
Nnen Fr = {x}
Lemma 14.4. Let (E, d) be a metric space and let (F,d") be a complete metric space. If, the
map f: E — F is a uniform isomorphism, then E is complete.
Proof. Let {x,,} be a Cauchy in E, since the map f is uniformly continuous on E, by corollary
14.2. the sequence {f (x,,)} in the metric (F,d") is a Cauchy, however E is complete,
f(x,) — y € F. As the inverse map f~*: F — E is continuous on F, then f~1(f(x,))) =
x, — f~1(y) = x € E, Therefore E is complete.

We are now, going to give a theorem for the extension, of a uniformly continuous function
on an everywhere dense part, of a metric space.
Theorem 14. 5. Let D be an everywhere dense part, of a metric space (E, d). If, the map f
from D into the complete metric space (F,d") is uniformly continuous. Then, there is an
uniformly continuous extension map of f to E.
Proof. Let a € E = cl(D), there is a sequence x,, € D which converges to a. As {x,} isa
Cauchy in E, then it is a Cauchy in the subspace (D, dp), by corollary 14.2. the sequence
{f (x,,)} in the complete metric (F,d") is a Cauchy. Therefore, f(x,,) — y € F. The map
f:x € E— f(x) =y € F is unique because F is Hausdorff and f is independent of the
sequence {x,}. Indeed, if another sequence x;, of D converges to a, we have 0 < d(x,, x;,) <
d(x,,a) + d(a,x;,) then d(x,, x,,) — 0, by the uniform continuity of f, d’ and the theorem
14.1,d" (f (%), f(x;)) — 0 =d'(y,y") & y =y' = f(x) for every x € E. Then,
lim,_,, f(x) = f(a) for any a € E. Because f is continuous on D, lim,_,, f(x) = f(a) =
Ja, for each @€/. It remains to show that /'is uniformly continuous on £. Let £>0be, we
will show that, there is § > 0 such that, for any a, b € E satisfying d(a, b)< & we have

d (f(a),f(b))< €. Since, for a € E, there are x,, € D and n; € N* such that, for any n > n,,
d(x,,a) < g and for b € E, there are x,, € D and n, € N* such that, for any n > n,,

d(x,,b) < g. So, for any n > ny = max(ny, ny), d(x,, a) + d(x,, b) < 8, since d(x,, x5,) <
d(x,,a) +d(a,b) + d(b,x;) < 26, and f is uniformly continuous on D, then
d'(f (xp), f(xn)) < g, as d’ is continuous, we have d'(f(a), f(b))) < g <e.
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14.3-Fixed point theorem and Baire’s lemma

In several mathematic fields, we are led to find the solution of the equation f (x) = x.
This equation can be a numerical equation, differentiated equation, integral equation, implicit
equation,... The bellow theorem, known under the name of, fixed point theorem, ensures the
existence and uniqueness of this solution.
Definition 14.8. The point a in the E, is said to be a fixed point of the map f form E to E, if
f(a) =a.
Theorem 14. 6 (Picard-Banach).If, f is a contraction map from a complete metric space E to
E. Then, f has a unique fixed point.
Proof. We will construct a Cauchy sequence {x, € E, x,.1 = f(x,,); n € N} in E, whose
limit is the desired fixed point of f: Let x, € E be, setting successively x; = f (x,) € E,
X, = f(x1) = f(f (xo)):fz (x0) € E, e, Xny1 = f(x) = M (x0) €E,... As f isa
contraction map:
d(xy,x1) < kd(xq, %), d(x3,%5) < k?d(xq,%p), ... By induction, d (x,,, Xp4+1) < k™d (x4, xo)
for every n € N. Because, d(x,, X;) < d(Xm, Xme1) + AXmats Xma2) + oo+ d(_q, xp) <
K14+ kY + k2 4+ k3 + o+ kKO0 4 ]d (e, x0) < [k™d(xq, x0)] T§ kP, for every
n,m € N, (n > m). As, the geometric series ),;’ kP with the general term kP (0 < k < 1),
converges to ﬁ Then, 0 < d(xp,, xp,) < k™ [ﬁd(xl,xo)], for every n,m € N, (n > m).

Thus d(x,, X,,) — 0, when m — oo and n — oo. So, {x,,} is a Cauchy in the complete E,
X, — a € E.Because, x,,1 = f(x,,), and f is continuous on £, a = f(a). For the
uniqueness, if, there is b € E (a # b), such that b = f(b) then,

0<d(ab) = d(f(a),f(b)) < kd(a,b), so 1 < k contradiction.

Remark 14. 7.

a) The method used in the proof of the theorem 14.6, is known as the successive iteration
or successive approximation method. This method gives us not only the existence and
uniqueness of the fixed point but the scheme to finding this point via the sequence {x,,}.

b) As, |d(xn+p ,xn) —d(xyp, a)| < d(xn+p, a) for every p € N, and from the proof

limy, o d(Xp4p, %n) < [ﬁ d(xl,xo)] k™, then d(x,, a) < [ﬁ d(xl,xo)] k™, for every
n € N*. This inequality, gives an estimate of the error in our iteration scheme, i.e. we can
estimate, how far we are from the solution at each step, and halt our numerical algorithm
accordingly.

Example 14.6.

a) The function f: [a, b] — [a, b], which is derivable on [a, b] and its derivate f' satisfies
If' ()| <k, for every t € [a, b] with 0 < k < 1, has a unique fixed point in [a, b]. Indeed,
by the Lagrange theorem, for every x,y € [a, b] (x < y), there is ¢ € ]x, y[, such that
fO)=f) =f @ —x),s0lf@)—fC) = If ©lly — x| < kly — x|, for every
X,y € [a, b]. Then, f is a contraction on the complete [a, b], therefore it has a unique fixed
point in [a, b]. This idea has been used to resolve the numerical equations.

b) The function f:[1, + o[ — [1, + o[, defined by f(x) = EJ%, for every x € [1,+o[ is a
contraction. Indeed, for every x,y € [1, +oo[, (x < y), there is ¢ € ]x, y[, such that f(y) —

fO)=f0-0=(G-3)0-0=1f0) - f@)I <ily—x| foreveryx,y €
[1, +oo[. Hence, it has a unique fixed point in the complete [1, +oo[ i.e. there is a € [1, + o],
such that a = %‘f’% then, a = /2.

¢) The function f: R — R, defined by f(x) = vx? + 1 for every x € R, isn’ta
contraction. If, not there is a € R, such a = f(a) then 1 = 0 impossible. But f is 1-Lipschitz,
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indeed for every x,y € R, there is ¢ € |x, y[, such that f(y) — f(x) = f'(c)(y —x) =

(75=) @ =0 = If») = F@)I <y — xl, for every x,y € R.
Corollary 14.7. If, f from a complete metric space E to E is such that, for every p € N,
fP=fof..of (p—times) is a contraction map. Then, f has a unique fixed point.
Proof. As f? is a contraction from a complete metric space E to E, by the theorem 14.6 there
is a unique point a € E such that a = fP(a) = f(a) = fP(f(a)) = f(a) is a fixed point
of fP, therefore a = f(a). If, there is b € E such that b = f(b) then b = fP(b), the
uniqueness gives a = b.

Solving some equations, require the following most adequate, parametric version of the
fixed point theorem.
Theorem 14. 7. Let (S, T) be a topological space, (E, d) a complete metric space and let f be
a continuous map from S X E to E. Suppose that, for s € S, the map f;:x € E +— f(s,x) €EE
is a contraction of ratio k € ]0,1[, which is independent of s. Then, the map s € S — ag =
f(s,as) € E is continuous on S.
Proof. Let s € S be, let B(as,, €) be the open bull of the metric space E, centered in

as, = f(So, as,) with arbitrary radius € > 0. Since f is continuous from § X E to E, there is a
neighborhood N of s; such that, forany s € N, d (f(so, aso),f(s, aso)) < g as d(as, aso) =

d(f(so, aso),f(s, as)) <d (f(so, aso),f(s, aso)) + d(f(s, aso),f(s, as)), then d(as, aso) <

e+ kd(as, aso), for every s € N. Hence, for every s € N, every € > 0,0 < d(as, aso) <
1

T when ¢ — 0, d(as, as,) = 0 for every s € N, which implies that,
limg_,g d(as, aSO) = d(lims_,s0 as,a50)=0, then limg_,; a; = a; . Themap s € S +— ag =
f(s,as) € E is continuous in the arbitrary s, € S, then it is continuous on S.
Lemma 14.5. The compact metric space is complete.
Proof. If, {x,,} is a Cauchy sequence in the compact metric space E, by corollary 10.2, there is
a subsequence {x(p(n)} which converges to x € E By proposition 14.3 and proposition 14.4,
the sequence {x,} converges to x, so E is complete.
Corollary 14. 8. If, in the metric space E, for any € > 0 and for any a € E, , the closed ball
B(a, €) is compact. Then E is complete.
Proof. If, {x,,} is a Cauchy sequence in metric space E, there is a, € E and &, > 0 such that
{x,} € B(ay, &y), as the metric subspace B(a,, &,) is compact, by lemma 14.5 it is complete.
So x, — x € B(ay, &) € E. Then, E is complete.

We will give now an interesting result in the complete metric spaces known by Baire’s
property.
Lemma 14.6. (Baire’s property). If {F, } is a sequence of closed subsets of a complete metric
space (E, d), satisfies E =U,ey+ F,,. Then, it exists n, € N* such that int(FnO) * Q.
Equivalently, if {U, } is a sequence of open subsets of a complete metric space (E, d) such
that cl(U,) = E for all n € N*, then cl(N,en* U,,) = E.
Proof. Let U =N,y U, be, proof that cl(U) D E. Let x € E be and € > 0, because cl(U;) D
E then B(x, &) N U; # @ hence, it exists x; € B(x, €) N U; which is an open thus, it exists
&, > 0 such that B(x;,6;) € B(x,&) N U;. Thus, it exists 0 < r; < % < g such that
B(x;,m) © B(x,€) N U, By the same, for x; € E and r; > 0, it exists x, € B(x;,1;) N U,
and it exists 0 <1, < % < 2% such that B(x,,7,) € B(xy,11) N U, € B(x,&) N (U; N Uy),

and d (x5, x;) < 232 By induction, we construct the sequences {x,,} in E and {r;;} in R} where
0< 1y < %" for all n € N*, such that B(x,,41,7+1) < B(x,,,7,) N U,,4,and
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&
n+1’

d(xn+1,xn)<2r—:l < Because for alln,p € N*, 0 < d(xn,xn+p) < d(xp, Xpeq) +

£ £ £ € (1 1
d(Xni1) Xp42) + 0+ d(le+P—1’xn+p)<2n+1 + 2n+2+"'+2n+p - 2_"(5 + 22 toet

Zip)zzin (1 - zip) < zin’ it follows that d(xn, xn+p) — 0, when n and p tend to co. Thus, the
sequence {x,} is a Cauchy in the complete (E, d), hence it converges to X € E. As for all

n,p € N*, x,,,, € B(x,,1,) which is closed, then X € B(x,,1,) € B(x,€) N U forall n € N*,
therefore B(x,e) N U cl(U) = E.

Remark 14.7. We can also use the Baire’s lemma in its following equivalent form:

If {F,} is a sequence of closed subsets of a complete metric space (E, d), such that int(F,) =

@ for all n € N*. Then int(U,ey+ E,) = 0.

14.4-Completion of a metric space

Starting from the fact that, there are Cauchy sequences, in the metric subspace Q of the
complete (R, d,,) which converge towards elements containing in QC (see, example 14.5, b)),
i.e. Q is neither complete nor closed in (R, d,,) and cl(Q)= R. It is natural to wonder, if we
can embed a given incomplete metric space, into a complete metric one. The answer is yes.
The process of embedding a non-complete metric, in a complete one, is called the completion.
Theorem 14.8. A non complete metric space (E, d), has (up to an equivalence), a unique
completion.
Proof. We will prove by steps that there is a unique complete metric space (E, d), such that £
embeds as a everywhere dense part of E.

Step 1. Construction of the metric space (E, d). Let ~ be the relation defined on the set
C(E) of all Cauchy sequences {x,,} in E, defined by: for any {x,,}, {x,} € C(E): {x,} ~
{x,,} iffy d(x,, x;,) — 0. It is clear that, ~ is an equivalence relation in C(E). Let E be the set
of all equivalence class, of Cauchy sequences in £ and let £ be any element of E. As, 0 <
|d(xn' yn) - d(xml ym)l = |d(xn' yn) - d(xni ym)l + Id(xnv ym) - d(xm' ym)l =<
d (Vo V) + d(xp, xp,) for any n,m € N, then {d(x,, y,)} is a Cauchy in R, therefore
lim,,_,, d(x,, y,) exists and it is independent of the choice of the representative. Indeed, if
Xp ~ Xp and Yy ~ ¥ then 0 < |d(xp, ¥) — d(xn, yp)| < 1d (3, Y1) — d e, Y| +
|d (%, yn) — dCxp, )| < A, Yu)+ d(x, xp), for every n,m € N, so limy, o, d (o, y) =
limy, 0 d(%5, ¥, )- The map d: E X E — R, defined by d(%, 9) = limy,_c, d(xp, ¥), for
any %,y € E is well defined and satisfies the metric properties. It is clear that, for every
%9,2€kE

my) Ifd(%,9) = lim, e d(x,, V) = 0 & x,, ~ y, & & = J, (properties of the
equivalence classes).

my) d(%,9) = limp_,co d(xn, ¥n) = limy 00 d (Y, %) =d (P, %).

mB) d(fr y) = lirnn—mo d(xnr yn) = 5 5
lirnn—wo [d (xn: Zn) + d(zw yn)]:hmn—wo d(xw Zn) + ‘lyirr}‘n—wo d(znr yn):d(f: ZA)+d (ZA» y)

Step 2. The metric (E, d) embeds as a subspace in (E, d) i.e. there is an isometric
j:E — E and cl(E)=E. Let j: E — E be defined by, for every x € E, j(x) = & where, £ is
the class of equivalent Cauchy sequences in E converging to x (it contains the Cauchy {x}) .
Because, for ever x, y € E, there are Cauchy sequences {x,,}, {y,} in E; x,, — x, y, — ¥, as
0 < |d(xn, yn) = d(6, Y| < [d(Xn, y) = d(xn, Y| + |d(xn, y) — d(x,¥)| < d (o, x) +
d(y,,y), then d(j(x),j(y)) =d(x,9) = lim,_,, d(x,, y,)=d(x,y). Thus, j is an
isomorphism from E into j(E), so E is topologically equal to j(E) c E, therefore, (E,d) is a
subspace of (£, d). Let us show that, with cl(E)=E.If£ € E, e >0, and {x,,}inEisa
representative of X. As {x,,} is a Cauchy, there is n, € N* such that, for any n,m = n, we
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have d(x,, X,,) < €. Then, for the class y of equivalent constant Cauchy sequences {xno} in
E, d(%,9) = lim,_, d(xn,xno) < ¢, therefore y € B(X,€) N E hence, X € cl(E).

Step 3. The metric space (E,d) is complete. Let {£,} = {£, £y, .., Xp, .. } be a Cauchy in
E. As, cl(E) = E, for a fixed p € N*, there is a sequence {xn_p} in E, such that
lim,, o d(xn,p,fp) = 0. So, there is N(p) € N* such that, for any n > N(p) we have
d'(xn,p,a?p) < %. Setting ¥, = Xy (p)p> the sequence {yp} satisfies: 0 < d(yp, yq) =
A(vp:q) < AV 2)+d(Zp, %) + d(Rg¥q) <+ d(%p,24) + 7, for any p,q € N*. Since

{,} is a Cauchy in £, lim,, ;o d(%, £,) = 0, thus lim, ;o d(¥,¥,) = 0 ie. {y} isa
Cauchy in E. Let § be the equivalence class of {y,,}, because, 0 < d (5c‘p, 9) < c?(a’c‘p, yp) +
d(yp,ﬁ) < %+ &(yp,y), limy, o &(yp,y) =limp e d(yp,yn) = 0 thus,
limy, o d(fp, )’7) = 0. The uniform continuity of d implies that,
lim,_,, d(%,,9) =d(lim,_, %,,9) = 0 hence, lim, £, =¥ € E and (E,d) is
complete.

Step 4. The uniqueness up to an isomorphism, of the completion (E , d). Suppose that,
there is another completion(E , &) of the metric (E, d). Because, cl(E)=E, for every % € E,

there is a sequence {x,,} in E, which converges to £, as E c E, then {x,,} is a Cauchy in the
complete E, then x,, — % € E. The map h: (E, d) — (E, d) defined by h(x) = X, for every
% € E is an isomorphism. In fact, it is a surjection by construction and for any (x,y) € E x E,
d(h(a’c), h(y)) =d(%,9) = lim,_, d(x,,, v,,), where {x,,} and {y,,} are two Cauchy in E and
(X, V) — (xX,7) inE X E. As, d: E x E — R, satisfies |5i(xn,yn) - d(x,y)| <

|dv(xn'yn) - dv(xn;y)l + |dv(xnrY) - ‘i(x'y)l < C\Z(yn,}./) + (i(xn,a'c) then,

limy, e d (%, V) =lim,,_,e d(x,, ¥,) = d(%,y). The map h, is then an isometric, hence it
is an isomorphism.

Using the notion of totally bounded metric space or precompact metric space and
completeness, we will give another characterization of compacts metric space.

Definition 14.8. A metric space (E, d) is said to be totally bounded if, for all € > 0 there is a
finite parts {A4, ..., Ay} in E such that, for every i € {1, ..., N} the diameter §(4;) < € and

E =UY A;. Equivalently, for all € > 0, there is a finite points {xy, ..., x5} in E, such that

E =UY B(x;,¢).

It is obvious that, a totally bounded metric space is bounded and a subset in a totally
bounded metric space is totally bounded. Let us summarize some elementary properties
related to totally bounded metric space in the following.

Proposition 14.8. A part A in a metric space is totally bounded< cl(A) is totally bounded.
Proof. It is obvious that if c/(A4) is totally bounded, then A4 is totally bounded. Conversely, if
for € > 0 there is a finite parts {4, ..., Ay} in E such that, for every i € {1, ..., N} the
diameter §(4;) < € and A =UY 4;, then cl(4) = cl(UY 4,)=UY cl(4;), as for every i €

{1, ..., N} the diameter 6(cl(Al-)) = 6(4;) < &, then cl(A) is totally bounded.

With the same argument as in the proof of the lemma 13.5 we have.

Proposition 14.9. The totally bounded metric space is separable.

Lemma 14.7. A compact metric space is totally bounded.

Proof. Suppose that the compact metric space(E, d) in not totally bounded. Then, there is

€ > 0 such that, not finite number of bulls with radius ¢ covers E. Hence for x; € E,
B(x,,€) ? E, so it exists x, € E such that d(x;,x,) > &, because B(x;,&€) UB(x,,€) D E it
exists x5 € E such that d(xq,x3) > € and d(x,,x3) > &,..., by induction, for everyn € N*
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there is a sequence {x,,} € E such that d(xi, xj) > gforalli,j € N* (i # j). From the
compactness of E, the sequence {x,,} has a convergence subsequence hence, it has a Cauchy
subsequence {x,,} then, for% > 0 there is ny € N* such that forp > q > ny, € < d(xp,xq) <
g, contradiction.

Lemma 14.8. For any sequence {x,,} in a totally bounded metric space E, it exists at last one
ball of E' containing an infinite subsequence of the sequence.
Proof. Since for all £ > 0, there is a finite points {x,, ..., xy} in E, such that E =UY B(x;, ).
If B(x;, ¢) foralli € {1, ..., N} containing a finite elements of the sequence {x,,}, there is a
subsequence {x(p(n)} of the sequence {x,,} such that {x<p(n)} ¢ B(x;,¢) foralli € {1, ..., N}, it
follows that {x(p(n)} ¢UY B(x;, €) = E contradiction with {x(p(n)} c {x,} cE.

The following theorem gives, an important characterization of the totally bounded metric
space.
Theorem 14.9. A metric space E is compact< E iscomplete and totally bounded.
Proof. By the lemma 14.5 a metric compact space E is complete and by the lemma 14.8 E is
totally bounded. Conversely, it remains to prove that every sequence in E has a convergence
subsequence, from the corollary 13.5. Let{x,} be a sequence in E which is totally bounded,

then for € = 1, there exists xy, ..., Xy, in E such that E =U11V1 B(x;, 1). From the lemma 14.8,
it exists at least m; € {1, ..., N;} such that the ball B(xm , 1) containing an infinite
subsequence {x1} of the sequence {x,}. Take the balls such that B(xm ,1)NB (xl, ) +Q
wherei € {1,...,N,},as E U B (xl, ) by the same argument for the sequence {x1}, it
exists at least m, € {1, ..., N, } such that the ball B (xm , ) containing an infinite subsequence
{x2} of the sequence {x}. Because xZ,x3 € B(x,,,, 1) then d(x},x2) < d(xl,x,,) +
d(xml,xsz) <1l+1=2=§ (B(xml, 1)), where § (B(xml, 1)) is the diameter of the ball
B(xm Y 1). By induction, if we take the balls, such that B (xmk, %) NnB (xl, ) # @ where

i € {1, ., News}as E =0 B (x,

ﬁ) It exists at least my 4 € {1, ..., Ny41} and an
infinite subsequence {x¥*1} of the sequence {x¥} containing in the ball B (xmk g 1) As for
allk € N*, xX, xk*1 € B (xmk, )then d(xf, k1) < d(xf, xm,,) + d (o, xKE) < =
1+41=2=6 (B (xmk,%», where 6( (xmk,%» is the diameter of the ball B (xmk, ) We
will demonstrate that, the sequence {x:} is a Cauchy. Since xp € {xg } for all p,q € N* with
p > q, then xg and xg are in the ball of radius é, SO d(xg , xg ) < 2. By Archimedean axiom,
for any € > 0 there is n, € N* such that nio<§, hence for p, g € N* with p > q > n, we have

d(xp xq) < 3 < 2<¢. Therefore, the subsequence {x5} of the sequence {x,} is a Cauchy in
No

the complete metrlc space E. Hence {x3} converges in E, it follows that E is compact.

15-Convergences in functional spaces,
Ascoli and Stone-Weierstrass theorems

15-1. Simple and uniform convergence
Let E be a nonempty set, F a topological space, F (E, F) the vector space of all maps,
defined from FE into F. To make the functional space F(E, F) important, we are led to
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introduce on this space, the so called point open topology i.e. the topology whose, the family
{S(x,U); x € E,Uisanopenin F}and S(x,U) = {f € F(E,F); f(x) € U} is a subbasis.
We then define in F(E, F) the simple convergence or pointwise convergence.

Definition 15.1. Let {f,,, f; n € N} be a family of maps in F(E, F). We say that, the sequence
{f,.} simply converges to f if, for every x € E the sequence {f;,,(x)} converges to f(x) in F.
In other words, the map f is a simple limit or pointwise limit of the sequence {f,,} if, for every
x € E and for every V € V' ( f (x)), there is ny € N* (ny depends to x and V') such that, for

n > ny, f,(x) € V. We write f, = f to express that, f is a simple limit of the sequence {f;, }.
In the case of the metric (F,d"), [fn = f] < [lim, o d'(f,(x), f(x)) = 0, for every x €

FeVrel and Ve>0, there is 70N+ 20 depends of xand & such that, for any 72>70,
d'fnx, fx< e

Example 15.1.
a) The sequence f,,;: R, — R, defined by f,,(x) = e™* simply converges to f(x) =
{ 0,ifx € R%;
1, ifx=0.
b) The sequence f,:[0,1] — R,, defined by f,,(x) = % simply converges to f(x) =
{1, ifx €10,1];
0, ifx=0.
¢) The sequence f,,: R — R, defined by f,,(x) =
{0, ifx €]0,1];
1, ifx=0.
d) The sequence f,: R — R, defined by a) For any n € N*, the sequence f,,: [0,1] —
R, defined by =
1+(x—-n)?

Remark 15.1. We can also define, the simple convergence of a net (f,,) 4ep, following a basis
B of the filter F on D to a function f in F(E, F) i.e. forevery x € E, f,(x) — f(x)
following B.

In the sequel, we assume that (F,d") is a metric space and for all f € F(E, F) the diameter
of f(E) is finished i.e. 6(f(E)) = supy, yrerg) d' (¥, ¥") < +00. Then, the map
do:F(E,F) X F(E,F) — R,, defined by: do.(f, g) = supyeg d'(f(x), g(x), for every
f,g € F(E,F) is a metric. The topology on F (E, F), induced by d,, is said to be the
uniform topology. We will define in the metric (F(E, F), d,), another important type of
convergence, which is called the uniform convergence and we will give, the relationship
between the pointwise convergence and uniform convergence and the properties of their limit
when it exist.
Definition 15.2. Let {f,,, f; n € N} be a family of maps in F(E, F). We say that, the sequence
{f,.} uniformly converges to f or, the map f is a uniform limit of the sequence {f,,} iffy,
lim,,_,, dow(fn, f) = 0 In other words, iffy, for every € > 0, there is ny € N* (n, depends en
€), such that, for any n > ng, [de, (f, f) < € © supyeg d' (fn(x), f(x) < ¢] &
[d’( fn), f (x)) <gVx €EE ] We write f, = f, to express that, f is a uniform limit, of the
sequence {f;, }.
Example 15.2.

a) For any n € N*, the sequence f;,: [0,1] — R, defined by f,,(x) = x™ simply converges

0,if x € [0,1];
tof(x)={1l xifx[= 1[

1+nx
1+n2x2

simply converges to f(x) =

simply converges to f(x) = 0, for every x € R.
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But, f;, is not uniformly convergent to f. In fact, de, (f5, f) = Supxeqo171fn(x) —
Ja=supx€0,1xn=1. Then, limz—codcofn,f#0.
b) For any n € N*, the sequence f,,: [0,1] — R,, defined by: f,(x) =1 + %, simply

1
converges to £(x) = 1 (Maxeo.] fo () = F(O] = maxyepq,y == — 0).
c) For any n € N*, the sequence f;: [0,1] — R,, defined by:
n?x(1 —nx),ifx € [O, %] ;
fn(x) = 1
0ifx € [>,1].
simply converges to f(x) = 0, for every x € [0,1]. But, f;,,(x) is not uniformly convergent to

0. Because, maXyepo 171/ (X)| = max, [ 1) (n?x(1 —nx)) = 2 — 400,
d) For any n € N*, the sequence f;;: [0,1] — R, defined by:

%,ifx € [0,%];

RO=00 Sifxels,1].
0ifx € [0,3];
converges uniformly to f(x) = ] 1]
(makeio, fuC) = f()] = 55+ max gy (3)= + 5 — 0

As seen in the example 15. 2 a) and b), the uniform convergence implies the simply
convergence, and the converse is not true.
Theorem 15.1. If F is complete, then (F(E, F),d) is complete.
Proof. Let {f,,} be a Cauchy in (F(E, F),d), then for € > 0 be, there is n, € N* such that

forp,q > ny, d’ (fp (x), fq (x)) < ¢ for any x € E. Then, for every x € E the sequence
{f,,(x)} is Cauchy in the complete E, so for every x € E f,(x) — f(x) € E. As, forp > n,
and g — oo d’ (fp(x),f(x)) < ¢, forany x € E, then do,(f;,, f) — 0.So (F(E,F),ds) is
complete.

The fact that, we are going to introduce the continuity of the elements of F(E, F), we must
assume that E is a topological space.
Proposition 15.1. Let {f,,, f; n € N} be a family of maps in F(E, F). If, the sequence {f;,}
uniformly converges to f and for every n € N f,, is continuous on E. Then, f is continuous on
E.
Proof. Since f;, = f, for € > 0 there is n, € N*such that d’ (f(x),fn0 (x)) < § for every

x € E. As f,  is continuous in x,, there is a neighborhood N € V'(x,), such that
d’' (fno (%0), fny (x)) <2 Vx € N. Then, for any € > 0 there is N € V' (x;) such that,

d'(fCo) fO) < d’ (f(xo) fao@0)) + ' (fy (o), g (00)) + @' (foy (00, F()) S S+ 54
5 = ¢, for any x € N.Hence, f is continuous in the arbitrary element x, of E, thus f is

continuous on E.

Corollary 15.1. Let {f,,} be a sequence, of the continuous maps from the metric (E,d) into F.
If, the restriction of {f;,} to any compact K c E uniformly converges to f. Then, f is
continuous on E.
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Proof. Let f be the uniform limit of the restriction of {f,,} into the compact K. From the
proposition 15.1, f is continuous on the arbitrary K, so by the lemma 13.4 f is continuous on
E.

Let us denote by C(E, F), the subspace of F(E, F), formed by the continuous maps from E
into F. We then have.
Corollary 15.2. C(E, F) is closed.
Proof. If, f € cl(C(E, F)), there is a sequence {f; } in C(E, F) uniformly converging to f. As
by proposition 15.1, f is continuous on E, then f € C(E, F). Thus C(E, F) is closed.

In order to give a Dini's theorem, regarding the passage from simple convergence to
uniform convergence, we need the following lemma.
Theorem 15.2. Let E be a compact space. If, the family {f,,, f; n € N} in C(E, F) satisfies:
for every x € E, the sequence d'(f;,(x), f (x)) is decreasing and converges to 0. Then,
doo(fr, f) — 0.
Proof. As f € C(E,F) and d’(fn(x),f(x)) — 0. For € > 0, there is n; € N* such that, for
eachn > nq, f(x) € B(f,,(x),€). Soforalln >n, 4, = {x € E, d(fn(x),f(x)) > s} is
closed. Because d’(fn+1(x), f(x)) < d’(fn (x),f(x)), for every n € N, then the closed
sequence {A,,n > n,} is decreasing. As the space E is compact, by corollary 10.1,
Npsn, An = @ or E =Upsy. (A,)C, it follows that, for x € E there is ny > ny, such that

X € (Ano)c then d’ (fno (x),f(x)) < g, s0 forn > n,

d'(fu(2), F(2)) < A’ (fg (O, F(x)) < & Thus limyy o5 dos (fr, £) = 0.
Corollary 15.3. (Dini’s theorem). If the family {f;, f; n € N} in C(E, R), where E is a

compact space satisfies: the sequence {f,,} is monotone and f;, = f. Then f, = f.
Proof. As d(fn (x),f(x)) = |fn(x) — f(x)| for every x € E, if {f,,} is decreasing f(x) <

frr1(x) < f,,(x) for every x € E and if, {f,,} is increasing f,,(x) < f,,+1(x) < f(x), for every
x € E. Then, for every x € E, d'(f,(x), f(x)) is decreasing and 0 < d'(f,,(x), f(x)) < 0,

therefore d’(f;,(x), f(x)) — 0. By the theorem 15.2 f, = f.

15.2-Ascoli and Stone-Weierstrass theorems

In Section 15.1, we have seen that, the space C(E, F) is closed in (F(E, F),d) and, if F is
complete, (F(E, F),d) is complete, therefore C(E, F) is complete. It is also important, to
find compacts spaces in (F(E, F), d). Such a space is closely linked to the concept of
equicontinuity.
Definition 15.3. let F(E, F) be, where E is a topological space. We say that, the subset ' of
F(E, F) is equicontinuous in x, € E, if for every &€ > 0 there is a neighborhood N € N (x,),
such that the diameter § ( f(N )) < g, forevery f € H.H is said to be equicontinuous on E, if
H is equicontinuous in any point of E.
Definition 15.4. let (E, d) and (F,d") are metric spaces. We say that the subset 7 of F(E, F)
is uniformly equicontinuous on E, if for every € > 0 there is n > 0 such that for every
X,y € E, satisfying d(x,y) <n,d (f(x), f(y)) < € forevery f € H.
It is clear that:

a) The subset H of F(E, F) is uniformly equicontinuous on E, iffy all the elements of H
has the same modulus of continuity.

b) In the definition 15.3, the neighborhood N depends on #, x and & but not on f.

¢) The equicontinuous implies the uniform continuity.

d) If H is finite, then H is equicontinuous.
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e) IfH = {f,} and f, = f, then H is equicontinuous.
Proposition 15.1. Let E be a space. If, the sequence {f,,} in F(E, F), is equicontinuous in
Xo € E,and f, Ef € F(E,F). Then, f is continuous in Xx,.
Proof. Let € > 0 be, since for all x € E f,,(x) — f(x), there is ny € N* such that

d ( oo OO, f (x)) < g {f} being equicontinuous in x, € E, there is a neighborhood N €
N (x,), such that d’ (fno (%), fny (xo)) < g, for all x € N, therefore d’(f(x),f(xo)) <

4 (£, fay () + A" (fap (O, fng (00)) + € (g (60D, f(00)) S5+ 54+ =, forall x €
N.

Proposition 15.2. Let E be a space. If, the subset /' in F(E, F) is equicontinuous, then cl(H)
is equicontinuous.

Proof. Because for f € cl(F), there is a sequence {f,,} in H converging to f in
(F(E,F),d). Then, for € > 0 there is n, € N* such that, d’ (fno (x),f(x)) < gfor every

x € E.Let xy € E, because H is equicontinuous in x, there is a neighborhood N € NV (x,),
such that, d’ (fno (X, fn, (xo)) < §= for every x € N, thus

d'(F 00, f()) < d' (£, fup () + A" (g (0D, fny (20D ) + ' (g C0), £ (20) ) <

g forevery x € N, and all f € cl(H). Thus cl(H) is equicontinuous.

Proposition 15.3. If, (E, d) is a metric compact space. Any equicontinuous subset H in
F(E, F) is uniformly equicontinuous.

Proof. Let ¢ > 0 be, by the equicontinuous of ', for every x € E there is an open O, in E
such that x € 0, and §(f(0,)) < &, for every f € H. Because E =U,c; Oy, and E is a
compact metric space all the requirements of the fundamental lemma 13.2 are checked. Then,
there is r > 0 such that for all y € E, B(y, r) is containing in at last one of the O, therefore
é ( f(B(, r)))< g, it follows that, as soon as d(x,y) < r, where x,y € E, we have

d'(f(x), f(y)) < g, forevery f € H. Thus, H is uniformly equicontinuous.

Theorem 15.3. (First Ascoli’s theorem). Let E be a space, (F,d") a compact metric space,
{f,.} an equicontinuous sequence in F(E, F) and a part D c E whith cl(D) = E. If, f,

S

.C
— f on D, then
S.c
i) it exists a continuous map f from E into F, such that f,, - f on E.

i) fn = f on any compact K of E.
Proof. i) Since {f,} is equicontinuous in F(E, F), for x € E and € > 0, there is a
neighborhood N € V' (x), such that for x’" € N, d’(fn(x),fn(x')) < § for all n € N. Because
cl(D)=E,then NND # @ and f,,(y) — f(y) fory € Nn D, so {f,(y)} is a Cauchy in E,
there is ng € N*, such that for n,m > ng, d'(£,(y), fn(y)) < 2, therefore d’ (£, (x), frn(x)) <

dl(fn(x)'fn(y)) + d,(fn(y)’fm(y)) + dl(fm(y)'fm(x)) < § + g +§ = &. Hence, for all x €

the sequence {f,,(x)} is a Cauchy in the complete F, by the proposition 15.1, it exists a
continuous map f: E — F which is the simply limit of {f,,(x)}. ii) Let a € K, since the maps
fn, [ are continuous in a, for € > 0 there is an open U, in K containing a such that

d'( £ (), fo(@) < g Vx € Uy, Vn € N, and there is an open W, in K containing a such that
d'(f(x), f(a)) < 2, Vx € W,. Then for € > 0, there is an open O, = U, N W, in K
containing a such that Vx € O, d’(fn(x),fn(a)) + d’(f(x),f(a)) < % Because K =

Ugek Oq, there is a finite elements {a,, ..., @, } in K such that K =U; ;< Oy, Since for
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i €{1,..,m}, f,(a;) simply converges to f(a;), there is n; € N* such that for n > n;,

d'(fu(a), f(@)) < §° hence for n > 1y = maxy<jcm My, d' (fu(@), f (@) < 2’ therefore for

all x € K i.e. x is containing in some open Oaj we have

d'(fu(), f) < &' (a0, fu(@)) + @' (ful@). (@) + ' (f(a). FO)E+5+5 = .

Thus f, u—ff on K.

Corollary 15.4. If, (E, d) is a compact space, (F,d") is a metric one, {f,,} an equicontinuous
S.Cc u.c

sequence in F(E,F) and f, > f on E. Then f,, = f on E.

Proof. It suffices to take, K = E and to repeat, the same proof as that of f, = f on K in the
theorem 15.3.

We now give, the largely used and very important form of Ascoli’s theorem.

Theorem 15. 4. (Second Ascoli’s theorem). Let E be a compact space, (F,d") a complete
metric space, H a part of (C(E,F),d.) and, H (x) = {f(x); f € H}, where x € E. Then,
i) H is equicontinuous;

ii) 7 (x) is relatively compact, forallx € E. °

Proof. i) As cl(H) is compact, from the lemma 14.8 it is totally bounded. Then, for € > 0,

there is a finite elements {f}, ..., f,} in H such that, H < cl(H) =U <j<m B (ﬁ-, §), because

for i € {1,...,m}, f; is continuous in any x € E, there is an open 0. in E containing x, such
that d’(fi(x),fi(x’)) < gfor x' € 0. Since for f € H thereis j € {1, ..., m} such that

€ B(f;,<) then, su d' (f(x), fi(x)) < Zhence for x’ € 0 =N;<;<,,, OL which is an
f J’3 PxeE J 3 1<ism Yx

open in E containing x d’(f(x),f(x’)) <d' (f(x),fj(x)) +d (fj(x),fj(x’)) +

d’ (f] (x’),f(x’)) < § + § +§ = ¢. Thus H is equicontinuous. ii) Define, the map

@:C(E,F) — F by, o(f) = f(x) fora fixed x in E. As, d'(¢(f), 9(9))=d' (f (x), g(x)) <
do(f,g) forall f,g € C(E, F), then ¢ is 1-Lipschitz, hence ¢ is continuous on C(E, F). By
proposition 10.4 ¢(cl(3)) is compact and by the theorem 7.2, 4) ¢(H) < ¢(cl(H))
cl(fp(}()). As <p(cl(}[)) is closed by the proposition 10.3. Thus cl(<p(§]—[)) = (p(cl(}()),
hence @(H) is relatively compact in F, as for x € E H (x) € @(H), then cl(J{ (x)) c
cl(o(#)), as a closed in the compact cl(H (x)) is compact. Conversely, by the proposition
14.8 and the theorem 14.9, it suffices to prove that c[(H') is complete and totally bounded. As
F is complete, by the theorem 15.1 F(E, F) is complete and by the corollary 15.2, C(E, F) is
closed in F(E, F), hence C(E, F) is complete. It is clear that c[(H) is complete. To prove that
H 1is totally bounded. Let € > 0 and x € E, by the equicontinouity of H, there is an open O,
in E which contains x such that for all x" € O,, d’(f(x),f(x’)) < i for all f € H . Because
E =U,¢g O, and E is compact, there is a finite elements {x, ..., X, } in E such that E =
Ui<iem Oy, Since forall i € I = {1, ..., m}, H(x;) = {f (x;), f € H} is relatively compact,
then £ =UT" H (x;) is relatively compact, there is a finite elements {yj, ..., ¥4} in F such that
L cU¥B (yj,Z), then there is @ (i) € ] = {1, ..., k} such that f(x;) € B (y‘P(i)’i)' Denote @

the finite collection of all maps ¢:i € I » @(i) € ]. Let £, = {f EH, f(x;) EB (y‘l’(i)‘i)}’
then H=Uyeq &,. So, for any € > 0 for any x € E which belongs to some O,, and for any
f'g € g(p! d’(f(X),g(X)) < d,(f(x)'f(xl)) + d,(f(xi)' y(p(l)) +d’ (y(p(i)r g(xl)) +
d’(g(xl-),g(x)) < Z + Z + Z + Z = ¢ for all x € E. It follows that for every ¢ € ® the

H is relatively compact < {
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diameter & (&p) < ¢, therefore H is totally bounded, by proposition 15.8 cl(H) is totally
bounded. Since cl(F{) is totally bounded and complete it is compact.
Remark 15.2. In the theorem 15.4

a) If (F,d") is compact, then it is complete. The condition 7 (x) is relatively compact for
all x € E is obviously verified. Then, H is equicontinuous iffy H is relatively compact.

b) If E is a metric compact space, we us the separability of E and a modulus of continuity
to proof the implication” = "(see G.Choquet, theorem 23.5, p.97).

It is clear that.

c¢). It (F,d") is a metric, we obtain the same resultat by utilization of the Tychonoff
theorem.
Corollary 15.5. Under the conditions of the theorem 15.4. If, the sequence {f, } in
(C(E,F),d) is equicontinuous, and the sequence {f,,(x)} for all x € E is relatively compact
in F. Then {f,,} has a subsequence which uniformly converges.
Remark 15.3.

a) The theorem 15.4, is not valid if E is locally compact. In fact, the sequence {f,,} in

C(R,[0,1]) defined by f,,(x) = ﬁ is equicontinuous, but it is not relatively compact in
C(R,[0,1]) (E is not compact).

b) Let id: [0,1] — [0,1] be the identity function. For all n € N, the sequence{f,, = id +
7 is equicontinuous in C0,1,R, since for all z€N and for all x,y€0,1, fnx—/ny=x—ybutitis
not relatively compact in C€([0,1], R) (H(0) = N = cl(N) which is not compact).

¢) The sequence {f,} in C([0,1],[0,1]) where f,,(x) = sin(nx), is not relatively compact
in C([0,1],[0,1]) (H = {f,,} is not equicontinuous).

d) Let a € [2,3] and let for all x € [0,1] f,(x) = x + a. Then, the family H =
{f., a € [2,3]} is relatively compact.

In the end of this section, we will present one of the versions of the Stone-Weierstrass
theorem, whose the Weierstrass theorem concerning the uniform approximation, of a
continuous function on a compact space by a polynomial, becomes a special case. Before the
proof of this theorem, let us introduce and prove some concepts and elementary results related
at it demonstration. In the sequel, E is a compact space, A is the nonempty part of
(C(E,K),d), where K = C or R and for f, g € C(E, K),
do(f,9) = maxyeg d'(f (x), g(x)) with, d'(f (x), g(x)) = |f(x) — g(x)|, forall x € E,
(the max and min exists by the Hein’s theorem 10.3).

Definition 15.4. The part A is said to be:

i) A K-subalgebra, if for f,g € A, f + g € A, the product fg € A and for 1 € K,
Af € A.

ii) Separates points if, for all x,y € E with x # y there is f € A such that f(x) # f(y).

iit) A lattice, if for f,g € A we have f V g,f A g € A, where
(f v g)(x) = max(f(x),g(x)) and (f A g)(x) = min(f(x), g(x)), for all x € E.

When, the elements of the subalgebra A are the complex valued functions, the conjugate ]_C of
f € A, is defined by, for all x € E, ]_C(x) = f(x), and

iv) A is said to be selfadjoint if, for all f € A, f € A.

Example 15.3. The space of real coefficients polynomials P[E], where E = [a,b] C R, is a
subalgebra and separates points. It is clear that P[E] is a subalgebra, and for all s,t € [a, b],
s # t, the polynomial P € P[E], defined by P(x) = x for all x € E, satisfies P(t) # P(s).

Lemma 15.1. If, the part A is a separated lattice R-subalgebra, which containing all constant
functions. Then
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a) cl(A) is a R-subalgebra.

b) If f € cl(A), then |f] € cl(A).

¢) cl(A) is a lattice.

d) cl(A) separates points strongly i.e. if xq,yy € E, x5 # Yo and @, B € R, there exists
f € cl(A) such that f(x,) = a and f(y,) = B.

Proof. a) If f, g € A and A € R, there are sequences {f,,}, {g,} in A, such that f, = f and

In = g, then Af, + g, = Aftg, fndn = fg. Since, the sequences {1f,, + g} and {f, g, } are
containing in A, then Af+g, fg € cl(A). It is clear, that all constant functions are in cl(A),
hence cl(A) is a subalgebra. b) Setting for no zero f € cl(A), a = sup,eg|f](x), then

0 < |f| < a. We want to prove, the uniform convergence towards |f| of the following
sequence:

f0=0J

fo = foo1 + %(f2 — f2_,),foralln € N*,
It is obvious that, {f,} € cl(A), 0 < f,, < |f| and f;, < f,41, forall n € N. Also, f,+1 < [f],
forall n € N, in fact, oy — [fI=Cfy — 1D+ (F2 = £2) = —[=2a(lfl - f,) +
f—fuf+/n=12af— frf +/n—2a, because f— f72>0 and f+/n—2a<2f —a<0, therefore
frn+1 < |fl, for all n € N. Furthermore, for all x € E, the real sequence {f;,(x)} is increasing
and bounded above by |f(x)| = |f]|(x), then {f;,,(x)} converges simply towards a function

g:x € E — g(x) € R,. By the definition of the sequence {f;,}, we have 0 = |f|? — g% =
(If] — g)(f]l + g), because |f| + g > 0, then |f]| — g = 0 hence |f| = g. All the condition of

u.c

the corollary 15.3. (Dini’s theorem) are satisfied, hence f,, — |f| € cl(A). c¢) Just notice
that: mi _ If+gl-1f-gl _ If+gl+lf-gl .
at: min(f,g) = — and max(f, g) = — d) If xo, vy € E, xy # Y, there is
h € A such that h(x,) # h(y,). It is obvious that, the function f = a + ﬁ (h—
0)— 0
nx0€eAcclA and satisfies fx0= a and fy0=7.

Remark 15.4.

a) In the unital K-subalgebra i.e. 1 € A, all constant functions are elements of A.

b) The lemma 15.1, d) is true is C-subalgebra with the supplementary condition A is
fanishes at no point. Indeed, there exist g, h, k € A such that g(x,) # g(y,), h(x,) # 0 and

It {ous that. the functi _ (9-9o))h (9-9(x0))k
k(y,) # 0.1t is obvious that, the function f = « (0Go—g0ro))hCre) + B (000 -9G0))kOw)

A C cl(A) and satisfies f(xy) = a and f(y,) = B.

Theorem 15.5 (R-Stone-weierstrass theorem). If A is a separates points R-subalgebra, which
containing all constant elements. Then cl(A) = C(E, R).

Proof. Let s,t € E be with s # t, by the lemma 15.2 d), for all f € C(E, R) there exists

hg: € cl(A) such that hg,(s) = f(s) and hy(t) = f(t) < f(t) + ¢ forall e > 0. As hy,
and f are continuous, then (hy; — f)_l(]—OO,e[) ={u€E hs;(u) < f(w) + &} = O, isan
open in E. Because the collection {O;,t € E} is an open cover of the compact E, it exists a
finite points {¢;, ..., t,} in E such that E =U;;<, O¢,. So for all x € E thereis i € {1, ..., n}
such that x € Oy, thus hg (x) < f(x) + €. The function g; = min;<;<p, hs;,, which by the
lemma 15.2, ¢) is an element of cl(A) satisfies g;(s) = f(s), gs(x) < f(x) + ¢, for all

x € E. By the continuity of g and f, (gs — f) " (]—&,+o) ={v €E, f(v) —e < g,(v)} =
U, is an open in E and the collection {U, ,s € E} is an open cover of the compact E. It exists a
finite points {sy, ..., Sy, } in E such that £ =U; Us;. Thus, for all x € E thereis j €

{1, ...,m} such that x € Us, and f(x) —e < 9s; (x). By the lemma 15.2 ¢), the function
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g = MaXy<i<m G, 1s an element of cl(A) and satisfies f(x) — € < g(x) < f(x) + ¢, for all

x € E. Therefore, for all f € C(E,R) there is g € cl(A), such that d,(f, g) < € for all
€ > 0. It follows that, when e — 0, f = g € cl(A), hence cl(A) = C(E,R).
Example 15.4. The set A of the functions defined from R into R by f(x) = X% ¢, e** where
Ci, -, Cn € R, is everywhere dense in C([a, b], R). Clearly, if A € R,Af + g € A and
fg € A by the identity eStt=eSe?, for s,t € R. As the function e’ is one to one and strictly
positive then, A separates points. By Stone-Weierstrass theorem cl(A) = C([a, b], R).
Let E be a compact of R™ and P[E] the unital R-subalgebra, of all polynomials from E into
R, in the coordinate x4, ..., X,,. As a direct consequence of the theorem 15.5, we have.
Corollary 15.6. cl(P[E]) = C(E,R).
The Weierstrass approximation theorem, is obtained from the corollary 15.6 by taking n = 1.
So,
Corollary 15.7 (R-Weierstrass theorem). cl(?[[a, b]])=C ([a, b], R).

Let us give some simple versions of Weierstrass approximation theorem.
Corollary 15.8. The metric space (C([a, b], R), d,) is separable.
Proof. It remains, to use corollary 15.7 and cl(Q) = R.
Corollary 15.9. For every x € [—a, a] = E, there is a real sequence {Q,,} in P[E], uniformly
converging towards |x| and Q,,(0) = 0.
Proof. As the function f(x) = |x| is an element of (C([—a, a], R), d), by the corollary 15.8
there is a real sequence {P,} in P[E] which satisfies, for any &€ > 0 there is n, € N* such that,
for n > n,, |Pn(x) - |x|| < gfor all x € [—a, a]. Let Q,,(x) = P,(x) — B,(0), obviously
Q,(0) =0 and for all x € [—a, a], |Qn(x) — |x|| = |Pn(x) — PB,(0) — |x|| < |Pn(x) — |x|| +
|B,(0)| < §+§ = g, as soon as n > ny. Thus {Q,,} is the desired sequence.

Denote by A the complex subalgebra i.e. A¢ € C(E, C).

Theorem 15.6 (C-Stone-weierstrass theorem). If A is a selfadjoint separates points C-
subalgebra of C(E, C), which containing all constant elements. Then, cl(A¢) = C(E, C).
Proof. Let A be the unital subalgebra of A¢, containing all real valued functions. If f € A,
then Re(f) = %(f + j_f), Im(f) = %(f - ]_‘) € A. As, for x,y € E such that x # y, there is
f € A¢ such that f(x) # f(y) or Re(f)(x) + ilm(f)(x) # Re(f)(y) + iIm(f)(y), then
either Re(f)(x) # Re(f)(y) or Im(f)(x) # Im(f)(y), so A is separates points. By the R-
Stone-Weierstrass theorem, cl(A)=C(E,R). As C(E,C) = C(E,R)+i C(E,R) and as
cl(Ag) = cl(A) + icl(A)=C(E,C).

Another version of Weierstrass theorem, regarding the approximation of the periodic
continuous function, by the trigonometric polynomials is still established. Recall that for any
n € N, the complex trigonometric polynomial of the order < n is a continuous function f
from R into C defined by: for all x € R, f(x) = 3%, a,e’** where i? = —1, a, € C and
e®* = cos(kx) + isin(kx). Denote TP[R] the set of all trigonometric polynomial and
Conper (R, €), the unital C-subalgebra of 2m-periodic continuous functions from R to C, i. e.
f € Comper (R, C) iff f € C(R, C) and f(x + 2km)=f(x), for all x € R and k € Z.

Corollary 15.10. cl(TP[R]=Cynper (R, C).

Proof. TP[R] is a unit subalgebra. Indeed, if f,g € TP[R] and A € Cthen Af + g €

TP[R], and for ay = 1, a;, = by = 0, for every k € {1, ..., n} the unit polynomial 1 € TP[R],
fg € TP[R]. by trigonometric identity e!(k*D* = ¢ikXgilX separates points because the
function t € R +— el € C satisfies et # el forall t # k. Let $1(0,1) = S = {(x1,x,) € R?,
x? + x2 = 1} the unit compact sphere in R?; define the surjection map p from R into S by,
p(x) = (sinx, cosx) for every x € R. Asthemap ®: f € C(S,R) » O(f) =fop€
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Caner(]R; R), satisfies for all f,9€ C(S,R) doo(q)(f); C[)(g)) = SupxelRl(f ° p) (x) —
(g ° P)(X)| = supyer|f(P(x)) — g(p(O))|=supes|f (1) — g () 1=d (£ 8), then @ is an
isometric. As, for any h € Cypper (R, R), there is f:S — R such that h = f o p = ®(f), then
@ is onto. Therefore C(S, R) and Cppper (R, R) are homeomorphic then C(S, C) =
C(S,R)+i C(S,R) and Cypper (R, C) = Copper (R, R) + iCopper (R, R) are homeomorphic. As
by C-stone-Weierstrass theorem C(S, C) = cI(TP[R]) then cl(TP[R]) = Cppper (R, C).
Example 15 5. By, the previous trigonometric identity. The set of real trigonometric
polynomials f, defined by: f(x) = agtXi=; ax cos(kx), for all x € E, is an subalgebra,
which does not separates point in [- a, a|, because for all x € E, f(x) = f(—x), for all f. But,
it separates point in [0, 7], as cos(t) is one to one in this interval.
Corollary 15.11. Let E and F two compact Hausdorff spaces, and let A be the collection of
all continuous functions ®@: E X F — K, defined by for any (x,y) € E X F, ®(x,y) =

Tfi (x)gi(y) where n € N, f; € C(E, K) and g; € C(F, K) are continuous. Then
cl(A)=C(E X F,K).
Proof. It is clear that A is a unital selfadjoint K-subalgebra of C(E X F, K). Let (x,y), (x',y")
are two elements of E X F such that (x,y) # (x',y") suppose that x # x’ by the lemma 10.4 E
is normal, as the singletons {x} and {x'} are disjoint closed sets in the normal space, by the
theorem 8.1 (Urysohn Lemma) there is a continuous function f defined from E into [0,1]
such that f(x) = 0 and f(x') = 1. For any (s,t) € E, the continuous function (s, t) = f(s)
is such that 0 = Y(x,y) # Y (X', y')=1, then A separates points, all the requirements of the
Stone-Weierstrass theorem are satisfied then cl(A)=C(E X F, K).

16-Normed Vector Spaces

16.1-Definitions and properties

Normed vector spaces are a very important class of metric spaces. They are introduced
after Hilbert spaces and much studied by Banach. They constitute a powerful tool in
mathematical analysis whose study is relatively simple. In the sequel E is a [K-vector space.
Definition 16.1. The function || ||: E — R, is said to be anorm on E. If, for all x,y € E
andall 1 € K

ny-||x|| = 0 & x = 0 (separation property).

n,-||Ax|| = |A||lx]| (homogeneity property).

na-|lx + yll < llxIl + llyll (triangle inequality).

The couple (E, || ||) is called the K-normed vector space, we write IK-nvs E for a such space.
Example 16.1.
a) The function | [|:z € C +— |z| € R, is a norm on R-vs C.

b).In the Euclidian space R", for every x = (x4, ..., X;, ..., X,,) € R™ the functions ||x]||; =
1
Zilxl, llxllz = (X31x;1*)2 (Euclidean norm) and ||x|le, = max, <<y |x;| (infinite norm)
define a norms on R".
c) In the space R, [x] of the polynomials of degree n € N, p(x) = Y% a;x!, for every

1
p € Ry[x], the functions [Iplly = XTlail, lIpll; = XTla;1*)2 and [Iplle = max,<i<nlpil
define a norms on R-vs R, [x].
d) In the space M, (R) of the square matrices A = (ai j)1<i i<n with coefficients in R. For

1
. 2\2
every A € M, (R), the functions [|All; = X3 X2ay|, 14ll, = (27 £%]a;|*)* and l4lle =

maxlsi,j5n|ai]-| define a norms on R-vs M, (R).
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e) In the space [1(N,R) = {x = {x,}, Xns0lx,| < }. Forevery x € I*(N, R), the
function ||x|| = X,,50l%,,| define a norm on R-vs [*(N, R).

f) In the space C([a, b], R), for all f € C([a, b], R) the functions ||f]; = f;lf(x)l dx,

1
Ifllz = (J;1£ GoI? dx )* (quadratic norm) and £ le=maxejq,u)lf (¥)] (infinite norm),
define the norms on R-vs C([a, b], R).
Proposition 16.1. The K-nvs (E, || ||) is a metrizable space, where the metric d associated
to the norm || || is defined by: d(x,y) = ||x — y|| for allx,y € E.
Proof. It is clear that forall x,y,z € E, d(x,y) € R;; d(x,y) =0 x =yandd(x,y) =
d(y,x), while d(x,y) = [(x —2) + z = y)ll < lIx — z|| + Iz = yll= d(x, 2) + d(z,y).
Then d is a metric on E.
Remark 16.1.

a). From the proposition 16.1, it follows that a IK-nvs (E, || ||) is a topological space
where the topology is induced by the metric d associated to the norm || ||.

b) All the properties obtained in the metric space remain true in the IK-nvs E whith
modification in the form. For example: B(a,7) = {x € E,||la — x|| < r}; B(a,7r) =
{x€E|a—x| <r}and S(a,r) ={x €E,||la—x| =71}

c) As |d(x,0) —d(y,0)| <d(x,y) for all x,y € E, then |||x|| — ||¥|l| < ||x — y]|| for all
x,y € E, it follows that the norm is 1-Lipschitz, therefore it is uniformly continuous and
hence it is continuous on E.

d) The metric enjoyed by the norm satisfies: d(Ax, Ay)= |A|d(x,y) and d(x+z,y+z)= d(x,y)
forall x,y,z € E and all 1 € K.

Proposition 16.2. In the K-nvs (E, || ||) we have.

a).cl(B(a,1)) = B(a,7).

b).int(B(a, 7)) = B(a,r).

¢) S(a,r) = bd(B(a,r)) = bd (E(a, r)).

Proof. a). As B(a,7) € B(a,r) and B(a,1) is closed, then c/(B(a,1)) < B(a,7). To
demonstrate the reverse inclusion, let x € B(a,r) and let € > 0 be, show that B(x, €) N
B(a,r) #@.If,r < ethen|la—x|| < r < €soa € B(x,&) and B(x,¢) N B(a,r) = @.If
0 < € < rthe element y =x—%(x—a) is such thata — y = a—x+%(x—a)then

la=yl=[t1-Z|lla-xll<(1-2)r=r-S<rsoye Blar)andy —x=—=(x -
athen y—x=£2ra—x<&2 < & so yEFx,& hence Br,en Bar+Q. b) As Fa,r<Fa,r and
B(a,r) = in(B(a,7)) then B(a,7) C in (E’(a, r)). If now x € in (E (a, r)) which is an open
neighborhood of x, it exists p > 0 such that B(x, p) C in (f? (a, r)) c B(a,r),if x = a then

p .
x — a) is such that
[la—xl ( )

la —x|| =0 < rsox € B(a,r).If x # a, the element y = x +
1

lly — x|l = p, theny € B(x,p) € B(a,7). Asx —a=——F—(y —a) then |la — x|| <

1+
[la—x||

lla — y|| <r hence x € B(a,T).

¢) bd(B(a,m))=cl(B(a,1)) ncl(B(a,1))=B(a, ) N (int(B(a, r)))CZE’(a, )N
B(a,r)¢ = S(a,r) and

c
bd (E(a, r))= cl (f?(a, r)) ncl(B(a,r)¢)=B(a,7) N <int (E(a, r))) =B(a,r) N
B(a,7)¢=S(a,r).
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Remark 16.2. The proposition 16.2 is not valid in any metric space. For example in the
discrete metric space E: B(a,1) = E and cl(B (a, 1)) = B(a,r) = {a}.

Proposition 16.3. In the K-nvs E, two norms || ||, and || ||, are said to be equivalent and
we write || ||y~ ||, if there are a, B € R such that a||x||; < ||x]|, < Bllx]|,, for all
x€eE.

Example 16.2. The norms in the example 16.1 b) are equivalent. For example, we have
1 1
lxllo < llxllz < nllxlleo; Z=lIxllz < llxlly < nllxllz and = llxllz < llxlles < [lx]l2 for every

x €EE.

We have seen in the corollary 13.3 that, the equivalent distances are t-equivalent. But the
converse is not true by the example 13.2. We will check that in a K-nvs E the t-equivalent
property implies the equivalent norms.

Proposition 16.4. Let 7, and 7, are tow topologies, enjoyed by tow norms || ||; and || ||,
on K-nvs E. If 7,=1, then || ||;~I |l,-

Proof. As 7,=T,, then the identity map i: (E, ;) — (E, T,) is a homeomorphism, the
continuity of i and i~ in 0 leads to the result. Indeed, for € = 1, it exists @ > 0 such for

0 < llxll; < @ we have [lxll; < 1, as || - x

a” =« then ” a” < 1 equivalently
1 2

[1x1l4 [l 114

allx|l, < |lx|l;. In the other hand it exists § > 0, such that 0 < ||x||, < & implies ||x||; < 1,

as” al 6| =6then|| 5
2

llxll2 llxll2
U~ 1l
Proposition 16.5. Let {x,,} and {y,} are two sequences in the IK-nvs E and let {1,,} be a
sequence in K. If
a) x, — x and y, — y, then ||x,|| — ||x|| and x,, + y,, = x + y.
b).x, — x and 1, — 4, then 4,,x, — Ax.
Proof. a). From, 0 < [[lx, |l — llxll < llxn, — x|l and |G, — %) + O — W < [l — x| +
[y, — yll, we have the results. b). From 0 < ||A,x, — Ax|| < |4, ]llx, — x| + ||x]|[|1A, — Al|
we have the result.
Corollary 16.1. If, H is a IK-subvector space of K-nvs E. The cl(H) is a IK-subvector space of
E.
Proof. Let x,y € cl(H) and A € K, there are sequences {x,,} and {y,, } in H such that x,, — x
and y,, — Yy, as the sequence {Ax,, + y,,} is containing in H and Ax,, + y;,, — Ax-+y thus
Ax+y€ cl(H).
Let {(E;, |l 1l;),1 <i < n} be a finite collection of K-nvs E; and E = [[} E; then for all
1

| < 1 equivalently ||x||; < %le”z:ﬁllxllz. Therefore
1

X = (X1, 0, Xy, e, %) € E, the functions [lx[l; = Z2lIx;ll;, llxll, = (Z2lxll;*)? and [lxle =
maX,<i<p||X;||; define a norms on the E and E is called a finite product K-nvs.
Corollary 16.2. Let a K-nvs E. Forevery x,y € E and every A € K, themap f:E X E — E
defined by f(x,y) = x + y and the map g: K X E — E defined by g(4, x) = Ax are
continuous.
Proof. Let {(x,,, v,)} be a sequence in E X E which converges to (x,y) € E X E, then
O vn) = x4+ ¥y — x+y = f(x,¥) so f is continuous in arbitrary (x,y) € E X E, thus
it continuous on € E X E. By the same, for (1,, x,,) converging to (4,x) in K X E,
94, x) = Apx, — Ax = g(A,x) so g is continuous in arbitrary (4, x) € K X E, thus it is
continuous on K X E.
Definition 16.2. The K-nvs (E, || ||) is said to be a Banach space, if it is complete for the
metric associated to the norm || ||.
Example 16.3.

a) (R,| |),(C,| |)and (R" [|x]|l;) are Banach spaces.
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b) The space (C([a, b],R), ||f|l) is a Banach space.

Remark 16.3. The continuity of the maps defined in the corollary 16.2.immediately gives:

a) If O is an open in the K-nvs E, then VA € K*, 10 is an open in E.

b) If O and U are two open in the K-nvs E, then O + U is an open in E.

¢) If K is the nonvoide compact in the K-nvs E, then VA € K, AK is a compact in E.

d) The sum of two compacts is a compact.

e) If F is a closed in the K-nvs E, then VA € KK, AF is a closed in E.

f) The sum of two closed in the IK-nvs E is not always closed. Indeed, The sets F =
{(x,y) € R%such that xy = 1} and G = {(x, 0) such that x € R} are two closed in R?. But
F + G = G is an open in R2.

Lemma 16.1. Let A and B are two subsets of E. If, A is closed and B is compact then for all
A€ R, A+ AB is closed.

Proof. Let x € cl(A + AB) be, it exists a sequence {a, } in A which converges to a € A by the
closure of 4, and it exists a sequence {b,} in B, which converges to b€ B by the compactness
of B. Hence then sequence {a,, + 1b,} of A + AB converges to a + Ab = x € A + 1B, so

A + AB is closed.

16.2-Finite dimensional normed vector space

Proposition 16.6. Any norm N on K" is k-Lipschitz.

Proof. As in the canonical basis (ey, ..., €;, ..., €,) of K" any x € K™ has a components

(X1, oo Xjy ooy X)) EK"and x = Y7 x; €, then N(x) = NQ T x; €,) < YXIN(x;¢;) =

Y xi|N(e;). Let k = max,<j<n, N(e;) then N(x) < k X.7|x;| = k||x]||,. Hence for all x,y €
K7, NVa—y<#x—yl so NVis #Lipschitz.

Proposition 16.7. All the norms in K" are equivalent.

Proof. Let N be any norm in K™. It suffices to proof'that N and || ||; are equivalent. Because
it exists k > 0 such that N(x) < k||x||; for all x € K" by the proof of proposition 16.6 and
5(0,1) = {x € K", ||x||; = 1} is bounded and closed in K", then $(0,1) is compact in K.
Because N is continuous on S(0,1) thus N is bounded on S(0,1). Let @ = min,¢g(,1) N(x)

be, so @ < N(x) for all x € $(0,1), because — € S(0,1) thus a < N(ﬁ) for all x € K"
1

llxll1

(x # 0) hence al|x||; < N(x) < kl|x||, for all x € K™. Therefore N and || ||, are
equivalent.

Let us now give the fundamental result, which makes it possible to preserve the
topological properties of K" on any finite dimension K-nvs, i.e. we will establish a (algebraic
and topological) homeomorphism between K™ and a n-dimension K-nvs (E, N), where N is a
norm on E.

Theorem 16.1. Any n-dimension K-nvs (E, N) is uniformly homeomorphic to K".

Proof. Let {ay, ..., @;, ..., @, } be a canonical basis of E and let (14, ..., 4;, ..., 4,,) € K" be the
components of x € E, then x = )] 1; a;. We will demonstrate that the map y: E — K"
defined

by Y(x) = (A4, ..., 4, .., A,) is an uniform homeomorphism. By induction:

Step 1. Suppose that dim E = 1, then y: E — K, is such that for x € E, Y(x) = Yy(1la) = 1
where {a} is a basis of E and 1 € K the component of x. It is clear that i is linear, bijective
and forall x,y € E, N(x —y) = N((A — 1)a)=|2 — 2'|N(«) as N(a) # 0, then |tp(x) —
Yy=A—A=1N(a)Nx—y, thus ¢ is #Lipschitz with £#&=1/(a), so it is continuous on 4. The
inverse ¥ "1: K — E defined by ¥ "1(1) = x = A satisfies for every 4,4’ € K, N(¥"*(2) —
Y—11'=NA—A'a=A—1"V(a) then y—1 is 4#-Lipschitz with £=N(«), hence it is continuous.
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Step 2. Suppose that K™~ is homeomorphic to the n — 1-dimension K-nvs (E, N). We will
proof that IK" is homeomorphic to the n-dimension K-nvs (E, N). We need the following
a), b), c) assertions:

a) Forall 1 < i < n, H;=g;7 *({0}) is a closed in E, where g;: E — K is defined by
g A a)=A. AsHy = {(x = X1 4 o, 4; = 0}={y € E,y = ¥iqisjendi ;) then H; is a
n — 1-dimension K-nvs by the assumption it is homeomorphic to K"*~! which is a Banach
space by the corollary 14.6, hence H; is also a Banach space in the K-nvs (E, N), then H; is
closed by lemma 14.1.

b) Show that, it exists b € H; such that g;(b)=1. As dimH; = n — 1, then H; is strictly
containing in E, so it exists a € E and a € H; thus g;(a) # 0. It is obvious that b = —

gi(a)
satisfies g;(b) = ( @ )) 1,then b & H;.

¢) Show that b + H; is closed and it exists r > 0 such that B(0,7) N b + H; = Q.
Obviously the map h: H; — b + H;, defined by h(x) = b + x is a homeomorphism, because
H; is a closed then h(H;)=b + H; is a closed. In the other hand —b € H; implies that 0 € b +
H; = cl(b + H;) which implies that it exists v > 0 such that B(0,7) N b + H; = @ (by
definition of the closure).

d) We will proof that Vx € B(0,7), |g;(x)|<l.Letx € B(0,r) as B(0O,r) N b+ H;, =0
thenx € b+ H;orx —b ¢ H then g;(x — b) # 0 or g;(x) qt gi(b)=1, if we assume that

gl(x)>1thenN(l( )) g() ( (x))—l
contradiction. Thus Vx € B(0,7), |g;(x)|<I.

e) We will prove that g; is uniformly continuous. Let € > 0 be, we search § > 0 such that
if0<N(x—y) <éforallx,y € E, then |g;(x) — g;(¥)| = |g:(x — y)| < € (g; is linear). It
suffices totake 0 < § < er, indeed N(x — y) < § < er implies that ? € B(0,r) then

|gl( )| <lorlgi(x -y <e

Step 3. In this last step, we return to the proof of the uniform continuity of ¥ and 1~ with
forall€ E, x = Y14 a;, w(x) = (A4, ..., Ajy ooy Ay) = (g1 (%), ..., i (%), ..., gn(x)). It is clear
that 1 is a linear isomorphism. Let us proof that 1 is uniformly continuous. Let € > 0 be,
because for all 1 < i < n, g; is uniformly continuous, it exists §;>0 such that, if 0 <

N(x —y) < §; forall x,y € E, then |g;(x) — g: (V)| = 1g;(x —y)| < % Thus for § =
max;<j<, 0; we have 0 < N(x — y) < & for all x,y € E which implies that ||y (x) —
YyI=1ngir—giy<e, therfore @ is uniformly continuous. let us show at the end that

P LK S E A=Ay, ., 44 0, Ay) — YD) = x = X1 A; a; is k-Lipschitz. Let 4,4 €
K", we have for every 4,4' € KK,

N~ () -y~ (A)) = NQET 4 a; — 28 A @)=N (] a; (A — A7) < X3 N(a; (2; -
A’'=InNaidi—Ar’'<max 1 <i<nNailnAi—Ai’=kA—A 1then y—1 is #-Lipschitz with

k = max;<;<, N(@;), hence it is uniformly continuous.

(

Lemma 16.2. Any n-dimension subspace in the K-nvs E is closed.
Proof. Let H be a n-dimension subspace in the K-nvs E. By the theorem 16.1, H is uniformly
homeomorphic to K", then H is complete in the metric E, hence it is closed.
Remark 16.4. From the theorem 16.1, all the properties obtained in K" remain valid in the n-
dimension pace K-nvs E. In particular:
a) The closed unit bull B(0,1) is compact.
b) The open unit bull B(0,1) is locally compact.
As the two applications in the corollary 16.2 are homeomorphism, it follows that:
Lemma 16.3.
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i) A K-nvs E is locally compacte B(0,1) is compact.

ii) A K-nvs E is locally compact< B(0,1) is relatively compact.
Proof. i) Since E is locally compact, then 0 has a compact neighborhood K, therefore there is
r > 0 such that B(0,r) c K, so B(0,1) c %cl(K )= %K, which is compact, it follows that the

closure unit ball B(0,1) is compact. Reciprocally, since for any x € E, there is r>0 such that
B(x,r) € B(x,r) = x + rB(0,1) which is a compact neighborhood of x by the fact that, the
singleton {x} and B(0,1) are compact and the remark 16.3 ¢) and d), then E is locally
compact. ii) is a direct consequence of i).and the proposition 16.2 a).

Remark 16.5. As B(a,r) = a + rB(0,1) and B(a,r) = a + rB(0,1), the lemma 16.3
remains valid for B(a,r) and B(a,r).

Theorem 16.2 (Riez-Frédiric). A locally compact IK-nvs E is finite dimensional.

Proof. Because E is locally compact, then B(0,1) is compact. It exists a finite number

ai, ..., a;, ..., a, € B(0,1) such that B(0,1) =U} B (al, ) As the n-dimension subspace

H=[ay,..,q;, ..,a,] (His enjoyed by a4, ..., ;, ..., a,) is closed in E, by the lemma 16.2.
Then, E c H therefore dimE = n. If not, if it exists beEandb ¢ H,thend(b,H) =a >0,
taking € = % and using the infimum property, there is x, € H such that a < d(b, xg) =

€ B(0,1), it exists j € {1, ...,n} such that —

€

a
I|b — x|l <a+5=—a Because ” ”
—Xg
b—x ajllb-xell-b+x
<L Bu, gy — e = [ttt

1) . b—xg¢ 1
B aj,z)ie. ||aj — ||
2 Ib—xell 2 Ib—xell Ib—xgll [Ib—xell

xe+ajb—xeBecause xe€and @y are two elements of the subspace Hof £Fand H—xe€ER+*, it

2 1 1
follows that x, + a;llb — x|l € H, hence S < o < ”b_ ||b (xe +ajllb — x£||)||<5.

llb—x gll

Contradiction.

16.3-Linear maps on K-nvs

Linear maps have some particular and interesting properties. In the sequel, f is a linear
map from the K-nvs (E,|| ||g) into the K-nvs (F, || ||z). Starting with
Corollary 16.3. If the K-nvs E is n-dimension. Then f is k-Lipschitz.
Proof. Let (e;);=1,. , be a basis E and let (x;);=; ., be the components of x € E, then
If GOl = IIf X1 x; el = 127 x; fle) |, < X11x:] (el < (maxy<icn e | ||l g
We conclude as in the proof of the proposition 16.6 that f is k-Lipschitz, where k =
maxy<i<p||f(e) || F.
Definition 16.3. The map f is said to be bounded, if there is k > 0 such that
lf COllr <kllx||g, forall x € E.
Theorem 16.2. The following properties are equivalent:

a) f is continuous on E.

b) f is continuous en 0.

¢) f is k-Lipschitz.

d) f is bounded on E.

e) f is bounded on B(0,1).

f) f is bounded on S(0,1).
Proof. a) = b). As f is continuous on E, then it is continuous in 0. b) = ¢) Because f is
continuous in 0, for all € > it exists § > 0 such that for all x € E, satisfying 0 < ||x||[z < §

we have [|f(x)||r < €. Thus forall x,y € E, ”f (”x o )” < &, witch implies that
E
If(x) — fFWIlg < kllx — yllg forall x,y € E, where k = E>O' Hence f is k-Lipschitz.
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c) = d) As it exists k>0 such that || f(x — ¥)||r < kl||x — y||z forall x,y € E and f(0) = 0,
then it exists k>0 such that || f (x) || < kl|x||z for all x € E, so f is bounded. d) = e)
Because it exists k>0 such that ||f(x)||z < kl||x||g for all x € E, then it exists k>0 such that
If GOllF < kllx|lg for all x € B(0,1). ) = f) Because it exists k>0 such that ||f(x)||r <
k||x||g for all x € B(0,1), and S(0,1) < B(0,1). Then, it exists k>0 such that ||f (x)||r <
k|lx||g for all x € S(0,1). f) = a) Since it exists k>0, such that || f (x)||z < k||x]|g for all

x € S(0, 1) then || f(x)||r < k for all x € S(0,1). So forall x,y € E (x # y)

|r (G|l < e witch implies that Il G) = F )l < kllx = g for all x, y € E. Hence
E

fis k- Llpschltz therefore it is continuous on E.

Denote by: L(E, F) the K-vector space of all continuous linear maps from E into F;
L(E) = L(E,E) and E* = L(E,K), which is called the dual of E, the elements of E* are said
to be the bounded linear functionals or the continuous linear functionals.
Definition 16.4. We call the norm of f € L(E, F), any number a,b,c or d in the following
lemma.
Lemma 16.4. The following numbers are equal.

@ = SUP(rer ra0) s, b = supsesio I f (DI, ¢ = SuPreson I (Il and d =

inf{k > 0, suchthat ||f(x)|lr <k ||x||g forall x € E }.

Proof. a < b. As [If(x)llz < b forall x € S(0,1), then || f (”x|| )|| =W Wle o for all
E

llxllg
x € E, (x # 0) it follows that a = supyeg x=0} ||];|EC)C||)||F < b. Since S(0,1) c B(0,1) then

supxes(o,n) lf Cllr < supyeso,n)llf (Il so b < c. Since
d = inf{k > 0, such that ||f (x)||r < k|lx||g for all x € E }, then for any € > 0 it exists
k. > 0, such that ||f(x)||r < k¢l|x||gforall x € E and k, < d + € so

¢ = supxesonllf IlF <k, < d + & when e — 0, we have ¢ < d. Finally as

r@le _ |,
llxllg —
forall x € E (x # 0) then ||[f (x)||r < allx||g forall x € E then d < a. Therefore a < b <

c<d<a.
Before proving that, one of the previous four numbers is a norm. Note that it is easy to check
that forall f € L(E,F), f =0onE & f = 0 on B(0,1). Let us show that ¢) is a norm i.e.
the map || [ g r): L(E,F) — R, defined by for all f € L(E,F),
I f | L, Fy=suPxes(o,n) Il f (X) || satisfies the conditions n;, n, and ns in the definition 16.1.
Forall f,g € L(E,F), forall 1 € K and for all x € B(0,1), we have:

-0 < If Ol < fluemn=0= IfIF =0 f(x) =0 f =000 B(0,1) &
f=0onkE.

No-lIAf Il Le,-y=suPxes (o) | (Af) Ol r=supxez 0,1 IAf (Ollr = supxezo,n [ fCOllF =
|AIsupez o, llf COllE=IAS Nl e m)-

ns-|lf + g”L(E F)=SUPxeB(o, 1)||(f + g)(x)”F_SuprB(O 1)||f(x) +g)llr
< sup (IFllr +llgllp) < sup Ifllr+ sup llg@)llr

x€B(0,1) x€B(0,1) x€B(0,1)
= lfll.er + lgllLEr-
Hence, the map || ||,z F) is a norm on L(E, F).

Because for any f, g € L(E, F) and for any A € K, there are k and k' in R7 such that

NAf + Dlr < IAHNfFCNlF + gl < (Al k + k) l|x||g forall x € E, then Af + g €
L(E,F). L(E,F) is a K-nvs. If, F is complete then L(E, F) is complete by the theorem 15.1.
Therefore E* is complete.

Example 16.5.
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a) Let E = C([0,1],R) be, the map T: (E,|| o) — (E,|l lle) defined by (Tf)(x) =
f(x) — f(0), for all x € [0,1] is continuous. Indeed, the linearity is obvious and because for
any f € E, [ITfllo=supefo, £ () = O < IF (O] + suprerolF I = [FOHfll <
2|f llo, then T is bounded, hence it is continuous. But T: (E, || |l;) — (E,|| ||1) is not
bounded. If not, it exists M > 0 such that ||Tf]||; < M||f||; for all f € E. Thus, for the

sequence f,(x)=(n + D)(1 = x)" in E, we have [ITfylly = [T (0l dx = [71£00) =
J10dx=n+1011—1—andr=n for all zENx* and /721=01/72(x) dxr=7n+1011—xndr=1.
Hence, n < M for all n € N*, contradiction with the fact that, N is not bounded above. It
follows that T is not continuous, by the theorem 16.2 d).

b) Let E = C([0,1], R) be, themap T: (E,|| |ls) — (R,| |) defined by T(f) =
folf(x)sinx dx for any f € E is continuous, and ||T|| g+ = fol sinx dx. It is clear that T is

linear and for any f € E, |[T(f)| < follf(x)l [sinx|dx < (f01 sinx dx) Ifllo = kllf|lc Where
0<k= fol sinx dx, then T is bounded, hence it is continuous. Furthermore, ||T|| 5+ <
(fol sinx dx) by the definition 16.4 d). But ||T||g+ = |T(f)| for all f € E, then for f = 1 in

E,Tg = fol sinx dx. Hence ||T||5+ = fol sinx dx.

Corollary 16.4. If f € L(E,F) and g € L(F,G) where (G,|| |lg) isaK-nvs. Thengo f €
L(E,G)and llg ° fllLgcy < NgNlere) 1 f e ry-

Proof. Letx,y € E and A € K because (g o f)(Ax + y)=g(f(Ax +y)) = g(f(Ax)) +
g(f) =g(Af ) +(f ) = 28(f(0)) + g(f (1)) = A(g ° ) + (g ° /(). then

g © f is linear. And as

(g °f)(x)lla=||g(f(X))||G < gl lf e < lgllure)llf e mllxllg, forall x € E
then g o f is bounded, g o f € L(E,G) and [|[g © fll (z6) = Sgiopl)ll(g o )lg <
X€E B

”g”L(F,G)”f”L(E,F)'
By the corollary 16.4, it follows that, if f € L(E) then, f™ € L(E) and ||f"||,z) <

(IIfIIL(E))n for every n € N*.

In mathematics, a hyperplane H is a linear subspace of the K — vs E, such that the basis of
its complementary has cardinality one. In the case when E is an n-dimensional vector space
(n € N*), then H is an (n — 1)-dimensional subspace. Examples of hyperplanes: the space
{0} in 1-dimension space, any straight line through the origin in 2-dimensions, any plane
containing the origin in 3-dimensions. In higher dimensions, it is useful to think of a
hyperplane as member of an affine family of (n — 1)-dimensional subspaces (affine spaces
look and behavior very similar to linear spaces but they are not required to contain the origin),
such that the entire space is partitioned into these affine subspaces. This family will be
stacked along the unique vector (up to sign) that is perpendicular to the original hyperplane.
This "visualization" allows one to easily understand that a hyperplane always divides the
parent vector space into two regions. In general K-nvs E the definition is given by.
Definition 16.5. A subset H of a K-nvs E is said to be an affine hyperplane, if it exists a
linear form f # 0 (f non identiquely equal to 0 on E) and a constant b € R such that
H = {x € E, f(x) = b}. We say that H is the hyperplane of the equation [f = b].

Remark 16.6.

a) H=Kerf,when f = 0.

b) H¢ # @. Indeed, if H® = @ then, for all x € E, f(x) = b so f(0) = 0 = b hence for all
X €E, f(x) =0i.e. f =0 onE, contradiction.

¢) The map f is not necessary continuous.
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d) H is not necessary containing 0.

e) For the given a = (a4, ..., a;, ...,a,) € R™ (a # 0) and b € R and for any x =
(x1, e, Xj, -, X)) € R™, the hyperplane H in R™ takes the form H = {x € R", YT a; x; = b}.
Specifically, whenn = 2 and a, # 0, H = {x € R?,}%qa;x; = b} = {x € R?, a;x; + ayx, =
O=1x€R2, 2=axl+2s.
Lemma 16.3. The hyperplane H of the equation [f = b] is closed< f is continuous.
Proof. By the continuity of f and the closure of the segleton {b} in R and as H = f~1({b}),
then H is closed. Conversely, let x, € H which is open, then it exists 7 > 0 such B(x,,7) €
HC. We can assert that : i) if f(x,) < b, then f(y) < b for all y € B(x,,7) and ii) if
f(xy) > b, then f(y) > b forall y € B(x,, 7). Let us check i) (the verification of ii) is done
in the same way). Suppose, it exists x; € B(x,, ) such that f(x;) > b > f(x,). B(xq,7)

b—f(x0) _ _ =
Fle)—f(x) € ]011[ then: f(Z) 0 where z txl + (1 t)XO €

B(xy,7),50 f(z) = 0 then z € H = Kerf contradiction. Because B (xo,g) C B(x,, 1) then
f) <b forally € B (x0,%). as B (xo,2)=xo + ZB(0,1) then f (xo + x) < b forall

x € B(0,1), hence f(x,) +% f(x) < b for all x € B(0,1). By the linearity of f and —x €
B(0,1) we have —%(b —f(x0)) < f(x) < %(b — f(x)) forall x € B(0,1), so |f (”z—”)| <
[% (b — f(xo))] for all x € B(0,1) (x # 0), therefore |f(x)| < E (b — f(xo))] ||| for all

x € B(0,1), hence f is continuous by the theorem 16.2 e).
Corollary 16.5. Kerf is a R-vector subspace of E whith codimension one.
Proof. It is clear that Kerf is a R-vector subspace of E. As f # 0 it exists x, € E such that

f(xo) # 0. It is clear that, f (x — ]{((;])) x0)=O for every x € E,so x € Kerf+& X, and

f(xo)
E =Kerf +% xo= Kerf+Rx, where Rx, is R-vector subspace of E enjoyed by x,,
0

(dimRx, = 1). If now x € Kerf N Rx,, it exists A in R such that x= A1x, and f (1x,) =

Af (xg) = 0 then A = 0 therefore x = 0 and E = Kerf@®Rx, i.e. Rx, is a supplementary
algebraic of Kerf. Thus codimension of Kerf is one.

Corollary 16.6. Kerf is closed or everywhere dense in the R-nvs E.

Proof. If f is continuous then Kerf is closed. If f is not continuous, Kerf is a R-subvector
space of a R-nvs E and Kerf & cl(Kerf) which is also a R-subvector space of a R-nvs E.
Then codimension of cl(Kerf) = 0 so cl(Kerf) = E.

being convex and t =

17-Fundamental theorems of functional analysis

17.1-Hahn Banach theorems

Let E be a R-nvs. The answer to the next question is yes: is there "enough" continuous linear
functionals on E which separate the points of E?. (This result is a kind of analogue of the
Urysohn's theorem 8.1, for continuous function over a normal topological space). We are
going to prove an extension theorem for continuous linear functional defined on a proper
linear subspace G of E i.e. G € E (this result is a kind of analogue of Tietze's-Urysohon
extension theorem 8.2, for the continuous functions defined on a proper closed subset, of a
normal topological space E'). The important fact here is that the continuous linear extension
preserves the norm see corollary 17.1. Note also that here (unlike Tietze's-Urysohon extension
theorem) the subspace G does not need to be closed. Indeed, from the corollary 17.4, a
continuous linear functional can always be extended continuously from G to cl(G). So, it
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makes no difference whether G is closed or not. To simplify, we will only prove the Hahn-
Banach theorems in the real case.

Substantially, there are three fundamental forms of Hahn Banach's theorems: algebraic
form, topological form and geometric form or separation form. To establish the algebraic
form we need in addition to the Zorn's lemma a map p defined on the R-vs E into R
satisfying for all x,y € E and for all 1 € R},
p(Ax) = Ap(x) (p is positively homogeneous); (D
p(x +y) < p(x) + p(y) (p is subadditive). (2)

Theorem 17.1 (Algebrical form of Hahn Banach theorem). If g is a linear function from a
proper linear subset G of E into R satisfying: g(x) < p(x) forall x € G. (3)

Then, there is a linear function f from E into R satistying:

f(x) =g(x) forallx € G and f(x) < p(x) forall x € E. 4)

Proof. By stapes:

Stape 1. Let G + Rx, be the linear subset of E, where x, € G¢. We will proof that, it exists a
linear function h, from G + Rx, into R which satisfies (4) on H. By the linearity of g and
(2),(3), 9(x) =g(y) = g(x = y) S p(x —y) < p(x + xo) + p(=xo — y) for every

X,y € G.Hence - g(y) —p(—xg —y) < p(x + x,) — g(x), forevery x,y € G (5).
For a fixed x in (5), the set Y = {— g) —p(—xy—vy), yE G} is bounded above, and for a
fixed y in (5), the set X = {p(x + x,) — g(x), x € G} is bounded bellow. Therefore, it exists
a € R such that: forall z € G

—9(2) =p(=z = Xo) S supyeg ¥ S a <infyee X <p(z+x) —g(2)  (6).

The function h from G + Rx, into R, defined by: for all x € G and for all t € R, h(x +
t0=g(x)+ta, satisfies for =0, Zr=g(x).on &, and for any JER, x, Y€ and £, 5€ER,

hIA(x + txy) + v + sxpgl=h[Ax + y + (At + s)xol= g(Ax + ¥) + (At + s)a=1 (g(x) +

tat+ gyt+s a= A+ tx0+ /zy+ 520, then /4 is linear. It remains to verify that for all €4 and

t € R*, h(x + txy) < p(x + txy). Letx € G and t € R* are, if t > 0, by the right side of (6)

and (1) wehave a < p G + xo) -g G) < %p(x + txy) — %g(x), equivalently g(x) +
ta <p(x + txy) thus h(x + txy) < p(x + tx,) forall x € G and all t > 0. If t < 0 then
—g (%) -p (— % — xo) < a by the left side of (6) and (1), we have ta < —tg (%) —

tp (—% — xo) = —g(x) + p(x + txy), hence g(x) + ta < p(x + txy). Thus, h(x + txy) <
p(x + tx,) forall x € G and all t € R”.

Stape 2. In this step, we use Zorn's lemma (just before the lemma 10.6) and the step 1: Let H
be the set of all functions h defined from G, into R, where Gy, is a subspace of E containing
G,withh =gon G and g < p on Gy. As H # @ since g € H, we define the relation < on H
by: for any hy, h, € H, (hy < hy) & (Gp, © Gy, and hy = h, on Gy, ). Let T = {h,, a € A}
be any totally ordered collection in H. Check that (7, <) is bounded above. Let G}, =

Ugea Gp, be, it is clear that Gy, is a subspace of E, consider the function h from Gy, into R
defined by h = hy on Gy, for all @ € A. It is clear that h € H and h, < h for all « € A, thus
h is an upper bound of 7. By the Zorn's lemma, H has a maximal element f. Let us show that
E < Gy. Assume that, there is x, € E and x, & Gy, by the stape 1, it exists a function h from
Gr + Rx, into R such that h = f on Gf, h < p on Gf + Rx,. Therefore h € H and f < h,
because f is maximal, then f = h on G; + Rx,, contradiction with h = f + ta on Gr + Rx,
forany t € R*.
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As a first consequence of the theorem 17.1, we will state the topological form of Hahn
Banach theorems. For all x € E and for all f € E*, < f,x >+, denotes f(x) and it is said to
be the inner product in the duality E*, E.

Corollary 17.1 (Topological form of Hahn Banach theorem). Let G be a proper linear
subspace of E. For any g € G*, it exists f € E*such that f = gon G and |||z = ||g]l¢*
Proof. As g € G*, by the lemma 16.4 d) |< g,x >G*,G| < llgllgllxll¢ = p(x) forall x € G.
Clearly the function p satisfies (1) and (2). By the theorem 17.1, there is a linear function f
from E into R such that f(x) < p(x) = ||gllg||x||g for all x € E, then f(—x) <
gllg-ll—xlly s0 —ligllg-lxll < F) < llglig-llxll for all x € E, hence |f ()] <
llgllg+llx|lg for all x € E i.e. f is bounded on E and ||f ||z < llgllg+ (7), by lemma 16.4 d),
here ||gllg* = supgreq,|ixlig<1y < 9, X >+ Therefore, f is continuous on E by the theorem
16.2 d), so f € E*. In the other hand, |f(x)| < ||fllg+|lx|lg for all x € E, then |f(x)| <

| fllg<llx|l¢ forall x € G, so ||gllgx < |[f]lg+ (8) by the lemma 16.4 d). From (7) and (8) we
have [|gllg: = IIf Il

Corollary 17.2. For any nonzero x € E, it exists f € E* such that < f,x >g- ;= ||x||% and
f lle+=lxllg-

Proof. Let g be the function from G = Rx into R, defined by: for all t € R; g(tx) = t||x]|%,.
Because, for any 4,t,s € R,

glA(tx) + sx] = g[(At + s)x] = (At + )IxIF = A(tlxlP)+sllxlf = 2g(tx) + g(sx)
then, g is linear. As for any t € R, |g(tx)| = |t]||lx]|z2 = ||x||glltx|l¢ = kl|tx||g for all t € R,
where k = ||x||[g > 0. Then g is bounded on G, therefore g € G*. By the corollary 17.1, it
exists f € E” satisfying: f(tx) = g(tx) forany t € R. Hence, forallt € R, tf(x) =

g(tx) = tllx||. Then, for the nonzero t, < f,x >g+ z=||x||Z, thus

Il = SuP(ercuy =l
B:+(0,1) denotes the closed unit ball in E*.

Corollary 17.3. Forall x € E, ||x||z = maxfe,;E*(o‘l)|< frx>p g
Proof. As, forall x € E and forall f € E*, |< f,x >pg| < |Ifllg-llx|lg, then

sUpres,.(on)|< f, X >g | < llxllg for all x € E. By the corollary 17.2, for nonzero x € E, it

exists f € E* such that < f,x > z= ||x||Z and ||f||z-=|x]|. Setting h = ﬁ, then h € E7,
E

lAllz- = 1 and ||x]|z =< h, x >E*E- Soh € BE*(O;D and [|x]|g < SqueEE*(0,1)|<
J[ox>Ex, £F<xF for all nonzero ¥€£, thus x£=max/€FL*x0,1< /x> £*,£ for all x€Z.

In order to give the geometric forms of Hahn Banach's theorems, or convex separation
theorems. We need some simple properties of convex sets. Recall that the set C in the R-vs E
is said to be convex if tx + (1 — t)y € C, for all t € [0,1] and for all x,y € C. By convention
@ is convex.

Example 17.1: It is easy to verify that:

a) The singletons, the balls and the R-vector spaces of E are convex.

b) The any intersection of the convex sets is convex.

¢) If {C,;} is an increasing sequence of convex sets then U, ¢y C,, is convex.

d) If C and C' are convex, then C + €’ and for all 1 € R, AC are convex.

e) If C is convex then cl(C) is convex and C + C = 2C.

f) If f is a linear map from the R-vs E into the R-vs F and C is a convex in E then f(C) is
aconvex in F.

Definition 17.1. The hyperplane H of the equation [f = b] is said to be:
a) Separates the sets A and B, if f(x) < b forallx € Aand b < f(x) forall x € B.
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b) Strictly Separates the sets A and B, if it exists § > 0 such that f(x) < b — § for all
x€Aand b+ 6 < f(x) forall x € B.
Definition 17.2. The Minkowski function of the subset A of E, is the function p4 from E into
R% U {400} defined by forall x € E, ps(x) = inf{a > 0, a~1x € A}. By convention
inf@ = +oo.
Lemma 17.1. The Minkowski function p., of the open convex subset Cof E containing 0,
satisfies:

a) It exists M > 0 such that, 0 < p.(x) < M||x|| forall x € E.

b)C ={x €E,pc(x) <1}.

c)Forall A € R} and forall x,y € E, pc(Ax)=Apc(x) and pc(x + y) < pc(x) + pc ().
Proof. a) As 0 is the lower bound of the set {& > 0,a™1x € C} forall x € E, then 0 < p.(x)

for all x € E. Because 0 € C and C is open, it exists 7 > 0 such that B (0, g) c B(0,r) c C.

llxllg) 1
|||| |||| (p) X € C, then

0<pclx) <—= ”x”E = M||x||g forall x € E, where M = - b) Let x € C be, itexistsr > 0
such that x + pB(O,l) = B(x p) € B(x,r) cC, where p=r- Then for all z € B(0, 1),

P <
i € B(0,1), (1 + il )x €Cit follows that p.(x) 1+”an

for all nonzero x € C. If now x € E satisfies p.(x) < 1, there is @ € R} betwin p.(x) and 1,
thus a~1x € C,ifnot @ < p(x) < @ < 1 contradiction, hence a(a™1x) + (1 —a)0 =x €
C, by the convexity of C and 0 € C. Therefore, C = {x € E,ps(x) < 1}. ¢) Let A > 0 be and
x € E, then Ap-(x) = dinf{a > 0, a x € C} = inf{Aa > 0, (Aa)"1(Ax) € C}=p.(Ax).In

Letp = Zbe as, for all nonzero x € E, ——p € B(0, p) and —

x+szC,henceforz— <1

the other hand, for any € > 0 and any x,y € E, p¢ (Zp 2(;C)+g)_z;2;p(Cgig < 1and
Cc Cc
2y 2pc(y) 2x 2y 2pc(x)+e
= 1 EC.But0<t= 1, th
Pc (2pc(y)+s) 2pc(y)+e 50 2pf(x)+s'2pc(y)+s “ 2pc()+2pc(y)+2¢ < 1, then
x+y
= — €C,h
peore T )pc(Y)+- pcGtpcGre T
x+y 1

Pc (pc(x)+pc(y)+g) = pe(x +9) < L thus pe(x + ) < pe0) + pe(¥) + ¢, and

whene — 0, pc(x +y) < pc(x) + pc(y), forall x,y € E.

Lemma 17.2. If, C is a nonempty open convex subset, of the R-nvs E and x, € C¢. Then, it
exists f € E* such that f(x) < f(x,) for all x € C, i.e. the hyperplane H of the equation

[f = f(x)] strictly separates the two convex C and {x,}.

Proof. We assume that 0 € C, if not there is x € C such that 0 € —x 4+ C which is convex.
The linear function g from G = Rx, into R, defined by g(tx,) = t for all t € R satisfies: for

t > 0xy & C,then pc(x) = 1 it follows that% < pe(xg) or g(txy) < tpc(xy) = pe(txy).

For g(txy) =t < 0 < pc(txy). From the theorem 17.1, it exists a linear function f from E
into R such that f = g on G in particular g(xy) = f(x,) = 1and f(x) < p:(x) < M||x||g
forall x € E.Hence f € E* and f(x) < 1 = f(xg).

Before giving the first geometric form of Hahn Banach's theorems, which is the
generalization of the lemma 17.2. Note that if O is an open in E and a € E, then for all

A € RY, a+ A0 is open. In fact, if x € a + A0 then % € O so, it exists r > 0 such that

B(?»T) = ?+B( 0,7) € O equivalently x —a+ AB(0,7r) c A0 orx + A B(0,7r) C

a + A0, hence B( x,p) € a + A0 where p = Ar > 0, hence a + 10 is open.
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Theorem 17.2 (First geometric form of Hahn Banach's theorem). Let A and B are two
nonempty convex subsets of E. If A is open and A N B = @. Then, it exists a closed
hyperplane H of equation [f = b] which separates A and B.
Proof. The set C = A — B=U,,cg (A — y) is an open convex subset of E, with nonzero
element. If not, it exist a € A and b € B such that, 0 = a — b then a = b contradiction with
AN B = @.By the lemma 17.2, it exists f € E* such that f(z) < f(0) =0 forallz € C i.e.
the hyperplane H of the equation [f = 0] strictly separates C and {0}. Hence f(x —y) < 0
for all x € A and for all y € B equivalently f(x) < f(y) forall x € A and for all y € B. For a
fixed y in B the set { f(x), x € A} is bounded above and for a fixed x in A the set { f(y),y €
£ is bounded below, hence, it exists SER such that supreA fx</<infy€F/fy. By the lemma
16 3, the closed hyperplane H of equation [f = b] separates A and B.

We will now, state and demonstrate, the second geometric form of Hahn Banach's
theorems.
Theorem 17.3 (Second geometric form of Hahn Banach's theorem). Let A and B two
nonempty convex subset of E, where A is closed, B is compact and A N B = @. Then, it exists
a closed hyperplane H of equation [f = b], which strictly separates A and B.

Proof. Setting for a fixedn, € N*, 4, = A + LB(0,1)= Uxea (x + iB(O,l)) and
2ng 2ny
B,, =B+ iB(O,l). Then, A, is an open convex and B, is convex. Moreover A, N
By, = @. Indeed if, for all n€ N*, A,, N B, # @, there are a, € 4, b, € B and there are
s,t € B(0,1) such that a,, + %tz b, + %s, soa, —b, = %(s —t) hence 0 <
1 1 1
llan = byll = ——lls = tll < —lIsll + [|¢]l) <—. Whenn — oo, a, — b, — 0, as a, — by, €

A — B and A — B is closed by the lemma 16.1, then 0 € A — B which implies that AN B # @,
contradiction. By the theorem 17.2, it exists a closed hyperplane H of equation [f = b] which

separates A, and By i.e. f(x +t) < bforall x € A, and forall t € B(0, %), and b <
0
f(y+t),forally € Bandforallt € B (O, %) Thus, f(x +t) < b forall x € A, and for
0
all t € B(0, %), and b < f(y+t),forally € Bandforallt € B (O, %) Therefore,
0 0
f (x + Lz) = f(x) +Lf(z) < b forallx € A, and forall z € B(0,1), and b <
37’10 3710

f (y +%Z) =fly)+ %f(z), for all y € B and for all z € B(0,1). By the lemma 16 4 ¢)

0 0
f(x) +%||f||E* < b forall x € A, hence f(x) < b — 6 forall x € A where § =

0

L||]‘||E* >0(f£0),and b < f(y) +if(—z) = f(y) —if(z) for all y € B and for

377.0 3n0 377.0

allz € B(0,1) or b + %f(z) < f(y), forall y € B and for all z € B(0,1). Thus, b + 6§ <
0

f(y) forall y € B. Therefore, a closed hyperplane H of equation [f = b] strictly separates A
and B.
Remark 17.1.

a) We obtain the theorem 17.2, if we assume B is open instead of A is open.

b) In the finite dimension space, we obtain the theorem 17.2, even if A is not open.
Corollary 17.4. Let F be a linear subspace of a R-nvs E. If, f(x) = 0 on F for any f € E*,
implies f(x) = 0 on E. Then cl(F) = E. Equivalently, if c[(F) # E, itexists f € E* (f # 0)
such that f(x) = 0onF.

Proof. Let cl(F) = G be, by corollary 16.1 G is a linear subspace of a R-nvs E. Assume that
G # E and let x4 € G€ be. Itis clear that, A = {x,} and G = B satisfy the assumptions of the
theorem 17 3. Then, there are b € Rand f € E* (f # 0) such that, f(x) < b < f(x,) for all
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x € cl(F). Hence f(x) < b<f(x,) forallx € F,as 0 € F then f(0) =0 < bandas —x € F
then —f(x) < b hence—b < f(x) <bor0 < |f(x)| <b forall x € F. As for alln € N*
and for all x € F, nx € F then, 0 < |f(nx)| < b forall x € F and for alln € N*. So 0 <

|f (2] <%b for all x € F and for all n € N*. Whenn — oo, we have |[f(x)| =0 & f(x) =
O forall x € F.

17.2-Banach-Stienhaus theorem, open map theorem, the closed graph theorem

Let (E,|l |lg) and (F,|| ||F) are two K-nvs and ”T”L(E,F) = SqueE(o,1)||T(x)||F the
norm of any T € L(E, F). Another fundamental theorem, of functional analysis is the Banach—
Steinhaus theorem, which is known as the uniform boundedness principle. It is based on the
Baire lemma 14.6. Let {T,, @ € A} be a collection of the elements of L(E, F). We write:
supgeall Ty (%) || < oo for all x € E (pointwice boundedness or strong boundedness), if it
exists K > 0 such that ||T,(x)||r < K, for all @ € A and for all x € E, and we write
supgeallTellLzr) < +o (uniform boundedness), if it exists M > 0 such that || Ty ||,z r) <
M, for all a € A.
Theorem 17.4. (Banach-Steinhaus theorem). If E is a Banach space, F is a normed space and
{T,, @ € A} is a collection of the elements of L(E, F) such that: sup eal| T, (x) ||z < 400 for
all x € E. Then, supgeallTellLzr) < +o.
Proof. Let foralla € A, E, = {x € E,||IT,(X)|lr <n} = (| |lfe°T,) t(]—o0,n]) be, where
n € N*, the sequence of closed subsets of E. By assumption, it exists M > 0 such that
|T,(x)||z < M for all « € A and for all x € E, thus there is m € N* such that || T, (x)||r < m
for all « € A and for all x € E by Archimedean axiom, then x € F,, and E =U, ¢y F,. Using
Baire’s lemma 14.6, it exists ny € N* such that int(F, ) # @. Therefore, for x, € int(Fno), it
exists 7 > 0 such that B(x,,7) int(FnO) C F,,, hence ||T,(xo + 72)||r < ny and

IT, (x )|z < ny for all @ € A and for all z € B(0,1). Because ||T,(r2)||r = rl|T,(2)|lr =
Ty (x0 + 72 — x)lp = | Ta(xo + 72) — To(xp)llr < [ITa(xo + T2)||F + ITe (x0)|lF < 279
for all @ € A and for all z € B(0,1), then ||T,(2)||r < 2% for all @ € A and for all z € B(0,1),

hence || T, |l r) < 2? for all @ € A. So, it exists K = 2%>0 such that, supyeall Ty |l gy <

K.

As a direct consequence of the theorem 17.4, we have:
Corollary 17.5. Let E and F are Banach spaces, and let {T,,} be a sequence in L(E, F). If for
any x € E, the sequence {T;,(x)} converges to the limit y = T(x) € F. Then:

D) suppen 1 TullLerm < +oo.

ii) T € L(E,F).

ii) ”T”L(E,F) < liminfn—>+oo”Tn”L(E,F)'
Proof. i) As the sequence {T;,(x)} converges to the limit y = T'(x) € F, it is bounded. So, it
exists M > 0 such that ||T,,(x)||r < M for all n € N* and for all x € E, then
suppent 1T (X)||r < M for all x € E. From the theorem 17.4, it exists K>0 such that,
supnen I ThllLg,r) < K. ii) Because, forall x,y € E and forall 1 € R, T,(Ax + y) =
AT, (x) + T,,(y) = T(Ax + y) = AT (x) + T(y) and it exists M > 0 such that ||T,,(x)||r <
M||x||g, for all x € E and for all n € N*, hence lim,,_,,  ||T, () |lr = IT(X) || < M||x]||g for
allx € E,soT € L(E,F).iii) As ||T, |l (s < K for alln € N*, from the Weierstrass-
Bolzano theorem, liminf,,_,, || T, || (g F) exists. Because || T, (x) ||z < ||IT, |l g, ) for all
x € B(0,1) and for all n € N*, so lim,,_, ;o |T, )z = IT)|lp < liminf, 4 o I Tl (2 F)
for all x € B(0,1), thus || Tl (g r < liminf, o 1Tyl L e F)-
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Corollary 17.6. If G is a Banach space and B is a subset of G such that for all f € G*, f(B) is
bounded. Then B is bounded.

Proof. Let E = G* and F = R are and let {T},, b € B} be a collection of the elements of

L(E, F) defined by: for all b € B and for all f € E, T,(f) = f(b). Asforall f € E, f(B) is
bounded, then supyeg|f (b)|<t+oo for all f € E, equivalently supyeg| T, (f)|<+oo for all

f € E, hence supyegl| Ty |l (g, 7)<too by the theorem 17.4. It exists K > 0 such that

ITyll gy < K forall b € B . Therefore, |T,(f)| < K forall b € B and forall f € B(0,1).
Then suprep,0,1)| T (F)1=SUPres 0.1yl f (B)| < K, for all b € B. Because,
supreggo,n)lf (b)| = |bll¢ for all b € B by the corollary 17.3, hence B is bounded.

Another fundamental theorem, of functional analysis, is the open mapping theorem, also
known as Banach-Schauder theorem, whose the proof'is a direct consequence of the
following two lemmas:

Lemma 17.3. If F is a Banach space and if, the map T from E into F is surjective and linear.

Then, there is r > 0 such that Bz(0,2r) c cl (T(BE(O,l))).

Proof. Setting F,,=ncl (T(BE (0,1))), for all n € N*. It is clear that, the elements of the

sequence {F,} are closed in F. Because Vx € E, it exists n, € N* such that ||x||z < n, by
Archimedean axiom, i.e. x € nyBg(0,1), then E = U,,en+nBg(0,1) and as T is surjective and

linear T(E) = F = UpennT(B5(0,1)) © Upenencl (T(BE(O,l)))=UnEN*Fn, hence F =
UnenFu- As F is a Banach space, by the Baire’s lemma 14.6, it exists n, € N* such that

int(Fyy) # O, thus > int <cl (T(BE(0,1)))> + 0. Lety, € Lint <cl (T(BE(0,1)))> be, there

is r > 0 such that B (y,, 4r) C int (cl (T(BE(O,l)))) ccl (T(BE(O,l))), S0 Y, €

cl (T(BE (0,1))), it exists a sequence {x,} in B;(0,1) such that T(x,,) — y,. Because the
sequence {—x,} is in Bg(0,1) then T(—x,,) = —T(x,) — —y, € cl (T(BE(O,l))). By the
examplel7.1), d), e) and f), cl (T(BE(O,l))) is convex, —yo + Br(yo,41) = 2Br(0,2r) C
el (T(B5(0.1))) + ¢l (T(Bg(0,1)) )=2 cl (T(B5(0,1))), hence B¢ (0,2r) < cl (T(B(0,1)))-

Lemma 17.4. If E and F are Banach spaces, and if the map T € L(E, F) is surjective. Then,
there is v > 0 such that Bz (0,1) C T(BE(O,l)).

Proof. As by the lemma 17.3, it exists r > 0 such that Bz (0,2r) c cl (T(BE (0,1))), then
Br(0,7) c cl <T (BE (O, ;))) By the proposition 13.4 a) for any y € Br(0,r) and for

%r > 0, it exists z; € E with ||z,]|z < % such that ||y — T (z))||r < %r, theny —T(z,) €

%BF(O, r) C cl <T (BE (0, 2%))) Hence, for ler > 0, it exists z, € E with ||z,]|g < 212 such

1 . . 1 L .
that ||y — T(z; + z2)|lr < =T By iteration up to order n, for T > 0, it exists z,, € E, with
1 1 . :
|z, |z < e suchthat ||y = T(z; + 2, + -+ z )l < Pl for all n € N*, Setting x,, = z; +
* 1 *
Zy + -+ z,, for all n € N* because ||x,41 — Xpllg=l1Zns1llg < prvey for all n € N*then
1
0< ”xn - xm”E < ”xn - xn+1”E + ”xn+1 - xn+2”E + ot ”xm—l - xm”E < W +
1 1 11,1 1]_ 1[4 1 L porall .
pr S ey [E+2_2+ i z_m[ - Z(m_n)]<2—n oralln,m € N*(m > n), so
the sequence {x,,} is a Cauchy in the Banach E, hence it converges to the series x =
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Yin>1Zn € E. By the continuity of T and the uniqueness of the limit T (x,,) — T(x) = y.
Because (1411 =lEna1 Znlle < ZnaallZalle < Zner 7 = 1 it follows that x € B (0,1),
therefore T(x) =y € T(BE(O,l)).

Theorem 17.5 (open map theorem). If E and F are Banach spaces and, if the map T €

L(E, F) is surjective. Then T is open.

Proof. Let O be an open in E and y € T(0), it exists x € O such that y = T(x). Thus, it
exists p > 0 where Bg(x, p) = x + pBg(0,1) € 0, then T(Bg(x,p)) = y + pT(Bg(0,1)) ©
T(0). From the lemma 17.4, it exists r > 0 such that Bx(0,7) c T(BE (0,1)), then
Br(0,pr) C pT(BE(O,l)), hence Br(y, pr) € T(0) and T(0) is open. Thus T is open.
Corollary 17.6 (the inverse bounded theorem). If E and F are Banach spaces and if, the map
T € L(E, F) is bijective. Then, the inverse map T~ € L(F,E).

Proof. By the lemma 17.4, it exists r > 0 such that Bz (0,7) c T(BE (0,1)), then

T"l(BF(O, r)) c Bg(0,1), hence for all x € E satisfying ||T(x)||z < r, we have ||x||z<1. As,

for any nonzero x € E ”T( ud :) | = Z<r, then ” ad Z” <1, for any nonzero x € E.
ITCOlF2/ 1l 2 TNl 211 ¢

Therefore, ||x||g < é IT(x)||f for all x € E. As T~ is obviously linear and by assumption T

is bijective, for any y € F, there is a unique x € E such that, y = T(x) © T~ 1(y) = x, then
T Tl < %llyllF for all y € F, ultimately T~ € L(E, F).

Corollary 17.7. If (E,|| [l;) and (E,|| ||;).are two Banach space and if, it exists & > 0
such that ||x||, < al|x||; forall x € E. Then || ||; and || ||, are equivalent.

Proof. Consider the identity map id from E = (E,|| ||;) into F = (E,|| ||,). Itis clear that
id satisfies the conditions of the corollary 17.6. Then, id~! € L(F,E), it exists f > 0 such

that ||x||; < Bl|x||, forall x € E, SO§||X||2 < |lx|l; < Bllx]||, forall x € E, hence || ||, and

|| ||, are equivalent. G;={(x,y) € E X F; y = T(x)}, denotes the graph of the map T: E —
F.

Theorem 17.6 (the closed graph theorem). Let E, F are Banach spaces, andthe T:E — F a
linear map. Then, T is continuous iffy the graph of T is closed in the Banach E X F.

Proof. Let (x,y) € cl(Gy) be, it exists (x,,, ¥,) in Gy which converges to (x,y) € E X F, as
x, — x and T is continuous T (x,) = y, — T(x), but y,, — y and the limit is unique in F,
then T'(x) = y, hence (x,y) € G and G is closed. Conversely, define the two norms || ||,
and || ||, onE by forall x € E, ||x||, = l|x|lg and ||x]|; = llx|l, + T (x)||z. Show that

(E, |lx]l;) is a Banach. Let {x,,} be a Cauchy in (E, ||x||;) then {x,} is a Cauchy in (E,|| ||g)
and {T (x,,)} is a Cauchy in (F,|| ||z), thereis (x,y) € E X F such that (x,, T (x;)) —
(x,v). Because Gy is closed in the E X F, then (x,y) € Gr, hence T(x) = y. Since ||x,, —
Xl=xn—x2+ 7xn—xtF=xn—x2+ 7xn—7xF when n—+oo, xn—xin £,x1, hence £,xl is a
Banach. In view of, (E, ||x||;) and (E, ||x||,) are banach and ||x||, < ||x||; for all x € E. By
the corollary 17.7, it exists @ > 0 such that ||x||; < a||x]||, for all x € E, therefore ||T (x)||p <
al|x||g for all x € E, and T is continuous.

17.3-Weak topologie in the general case

In this section, we are given a set E, a collection of topological spaces (F,),ea and a
collection of maps (¢,)ea Such that each ¢, maps E into F, . We wish to define a topology
on E that makes all the ¢, ’s continuous. And that this topology is the least fine, that is: with a
minimum of open sets. Obviously, all the ¢;1(U,), where U, is an open set in F,, should be
open in E. Then, finite intersections of those should also be open. And then any union of
finite intersections should be open. By this process, we have created as few open sets as
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required. Denote by o (E, (¢,)4en) the collection of the sets of E of the form

Uany(ﬂ Finite Pa 1(Ua)). Then, o(E, (¢4) qen) 1s the desired topology. Indeed, it is clear that
@, E and any union belong to o (E, (¢,) gep)- It remains to check that the finite intersection is
in 0(E, (@y)aen)- Let 01 and 0, are in 6(E, (¢,) qen), there exist two finite families, I in A
and j in V such that: 0; = Ugea(Nger 92 (Uy)) and 0, = Upey(Nge; goﬁ_l(UB)), where A
and V are a families of index, then O; N 02=U(a,ﬁ)eAxv[ﬂaE, 0 (U )N Ngey (pEI(UB)] =

Ua,p)eaxv [ﬂ(aﬁ)em] ((pgl(Ua)ﬂ(pgl(Uﬁ))]. Assuming that, the family {¢,1(U,), a € A} is
closed under finite intersections, then it containing ¢, Y, ﬂ(pg 1(U3) le.itexistsy € A
such that ga;l(Ua)ﬂ(pEl(Uﬁ) = ga;l(Uy) where, U,, is an open in F,, s0 0; N 0, €

0(E, (®4)aen)- By induction, o (E, (¢4) qen) is closed under finite intersections. The topology
0(E, (@a)aen) is called the weak topology on E generated by the (¢4)qen’s. By definition,
the functions (¢,)4ea are continuous for this topology, then the collection {¢;(U,), a € A}
is contained in 6 (E, (,)qen)- It is easy to check that, a basis of neighborhoods of x € E, for
the weak topology is given by the collection of sets of the form Nye; 071 (N,), where I is a
finite subset of A and N, € V(g (x)).

Proposition 17.1. Let {x,, } be a sequence in E. Then, {x,} converges in the topology

0(E, (@a)aen) to some x € E iffy Va € A, lim,,_, o, ¢, (%) = @, (x).

Proof. As, x, — x in (E, 0(E, (¢o)aca)), and Va € A, ¢4: (E, 0(E, (9a)aes)) — Fy is
continuous, then Va € A, lim,,_,o, ¢, (x,) = @, (x). Conversely, let N = N,e; 071 (N,) €
Nxbe, where /is a finite subset of 4 and VaeN pax. As, for all a€/, pax€Na and
lim,, e @q(x,) = @, (x), it exists n, € N, such that for alln € N, n > n, implies x,, €
pa—1Na, so for m=maxae€/na, and for all 72>, xn€eWN, it follows that limz—coxn=x for
o (E, (9a) aen)-

Proposition 17.2. Let (G, T) be a topological space, then the map

Y: (G, 1) — (E, o(E, ((pa)aeA)) is continuous iffy for all @ € A, ¢, ° VP is continuous.
Proof. As Va € A, ¢, (E, 0(E, (9a)aca)) — F, is continuous and : (G, 7) —

(E ,o0(E, (goa)aeA)), is continuous then, for all @ € A, ¢, © ¥ is continuous (the composition
of two continuous functions is a continuous function). Reciprocally, demonstrate that

V: (G, 1) = (E, 0(E, (9a)aca)) is continuous. Let N = Nge; 9z 1(Ng) € N (x) be, where
is a finite subset of A and N, € V(g (x)), as Y H(N) = N ¥ (0t (V) =
a€lpaoyy—1Na and as for all @€4, paoy is continuous, then gaoyp—INaeNx, for all a&/,
therefore 1 (N) = Nye(@y © P) ™1 (N,) € N (x), so Y is continuous.

17.4 The weak topology o(E, E*) in the R-nvs E

In the sequel, E is a R-nvs, E™ it’s dual, ((pf)feE* is a collection of functions from E into

R, defined by: @s(x) = (f,x)g+ g forall x € E and all f € E*.
Definition 17.3. The weak topology in the R-nvs E|, is the the topologie o (E , (¢f)feE*) ie.

the least fine topology, which makes all the functions ((pf)fEE* continuous. We will note it
o(E,E").
Proposition 17.2. The topological space (E ,0(E,E *)) is Hausdorft.

Proof. Let xy, y, € E be with x4 # y,. Apply Hahn Banach's theorem 17.3, for A = {x,} and
B = {y}, itexists f € E* and b € R such that (f, x,)g p < b < (f,Yo)g* . Because x,

belongs to the weak open 0x0={x € E,{f,xo)pg g < b} = @7 (]=o0, b[), y, belongs to the
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weak open 0y0={x €EEAf,Yo)g* £ > b} = (pfl(]b, +oo[) and O,, N 0y, = @, then
(E, o(E, E*)) is Hausdorff.
Proposition 17.3. Let (E ,o(E,E *)) and x, € E are. The collection of the subsets B of E
defined by: x € B iffy, it exist € > 0 and n elements {f}, ..., f;, ..., fn} of E*, such that
[(fi, x — x0)g= | < &, forall i € {1, ...,n}, is a basis of neighborhoods of x,.
Proof. Let N € V' (x,) be a weak neighborhoods of x, it exists a weak open set 0 =
Nieg1,...n} <p]?i1 (U;), such that x, € O © N, where forall i € {1, ...,n}, f; € E* and U, is an
open in R containing a; = (f;, xo). Then, for all i € {1, ..., n}, it exists & > 0, such that
la; — &, a; + & © U;. Thus, o7 (Ja; — &, a; + & < ¢} (U;) forall i € {1,...,n}.
Therefore for € = min;egy, ny €,
X0 € B = Nieqr,..my @7, (a; — &,a; + €)) € Nieqr,..my @5, (U) = 0 c N.

In the following proposition, we will summarized some easy results comparing the weak
topology and the norm (also called strong) topology on E.
Proposition 17 4.
a) Every weakly open (respectively closed) set is strongly open (respectively closed).
b). A sequence {x,,} converges weakly to x € E, iffy forall f € E*,{f,x)g* g — {f, X)p -
¢). A strongly converging sequence converges weakly.
d). If {x,,} is a sequence in E converging weakly to x € E, then the sequence {x,,} is bounded
and ||x||g < liminf,_, . ||x,|| 5.
e). If {x,} is a sequence in E converging weakly to x € E and {f,,} is a sequence in E*
converging strongly to f € E*, then (fy,, x,) g+ g — (f, X)p .
Proof. a) Because the elements of E* are continuous for the strong topology and the weak
topology is the weakest with this property, it is weaker than the strong topology. So every
weakly open set is strongly open, and by taking complements, every weakly closed set is
strongly closed. b) It is just a restatement of the proposition 17.1, in the particular case of the
weak topology on E. ¢) Suppose that the sequence {x,,} converges strongly to x € E. Because
forany f € E*, |{f, xn)g* 5 — (f:x>E*,E| = |<f: Xn — x)E*,El < lIfllg=llxn — xIlg, when
n — oo (f,x,)g g — (f, X)pg . d) Because when n — oo, x,, — x weakly, for every
f € E*{f,xp)g*g — {f,x)g* g by b). Then, for every f € E* the sequence (f, X, )g* f is
bounded in R, hence for every f € E*, f(B) is bounded in R, here B={x,,}. By the corollary
17.6, the sequence B = {x,,} is bounded, therefore liminf,,_,||x, ||z exists. As,
[Kf, %05 5| < Ifllgellxn Iy for all £ € E*, when n — oo,
|(f,x)E*,E| < ||fllg+ liminf,,_ . || x, || g for all f € E*, using corollary 17.3, we have

llxllz=supfes,.o,n|{f, X)e 5| < If g+ liminfy_ oI, llg. €) Since, 0 < [(f, Xn)pe 5 —
JSHXERE=fn—fanExE+fan—xExE<fn—fExxnb+[fan—xE+F, fn—[E*—0,
|(f, Xn — X)g*g| — 0 when n — oo and, the sequence {x,} is bounded, when n — oo,

|<fn: xn)e* g — f, x)E*,El — 0and (fy, xp)p+ g — (f, X)p -

Proposition 17.5. In the case when, the R-nvs E is finite dimensional, both weak and strong
topologies on E coincide.

Proof. We have seen in proposition 17.4 a) that in the infinite dimension, the weak topology
is contained in the strong topology. Conversely assume that dimE = n. Let O be any strong
open set in E, since all the norms defined on E are equivalent by proposition 16.7, for any

XE 0, it exists € > 0 such that B,,(x,&) = {y € E, ||x — |l < €} € 0. If we show that

B, (x, €) is weakly open, then O is weakly open. Let {e, ..., €;, ..., e, } be a basis of E, for any
x € E there are n-components {xy, ..., X;, ..., X, } in R such that, x = YT x; e;. Obviously, the
functions {fj, ..., f;, ..., fn} defined by: for any i € {1, ...,n} and for any x € E, (f;, x)g* p = x;
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are in E*. As, forally € B,,(x,¢), ¥y € E and |[|[x — ylleo = max;eqy, n3l%; — yil < € where
{y1, ) Vir -, Y} are the components of y. Hence, |x; — y;| = |(fl-,x)E*£ — (fl-,y)E*,E| =
|(fi,x —yeg| < & foralli € {1,...,n}. Conclusion, B,,(x, &) = {y €EE, |(ﬁ-,x — y)E*,E| <

g foralli € {1, .., n}}, then it is weakly open, therefore O is weakly open.

Corollary 17.8. The nonempty strongly closed convex subset C of the R-nvs E is weakly
closed.

Proof. As C is strongly closed, his complementary C€ is stongly open. Let A = C and

B = {x,} are, where x, € C¢, by Hahn Banach’s theorem 17.3, there are a nonzero f € E*
and b € R such that, (f,xq)g g < b < (f,y)g+ g forall y € C. It is clear that, the weak
neighborhood V = {x € E, [{f, x0)g | < b} = f~1(1—b, b[) contains xo and V N C = 9,
therefore V < C¢, thus C¢ is weakly open equivalently C is weakly closed.

Remark 17.2. The reverse of a) in the proposition 17.4 is not true. For example:

a) The strong closed unit ball B(0,1)={x € E, ||x||z < 1} is exactly the weak closure of the
strongly closed unit sphere S={x € E, ||x||z = 1}. Indeed, by corollary 17.8, B(0,1) is weakly
closed, as S © B(0,1), then the weak closure of S is contained in B(0,1).

It remains to show that, B(0,1) is contained in the weak closure of S. Let x, be any element
of B(0,1) and let V be any weak neighborhood of x,, there are £ > 0 and n-functions

fir oo fir s fo in E* such that V = {x € E, [{f;, x — xo)p= 5| < €} forall i € {1,...,n}. The
function ®: E — R defined by: forall y € E,

d(y) = { oV E s S VIE s oo (fn,y)E*’E} is clearly linear and Kerf; = {y €

£, [LyE*F=0s0 Kerd=1nKer f7. As, it exists yO€£ such that y0#0 and f7,y0F* £=0 for
alli € {1, ...,n}. If not the function ®: E — &®(E) is bijective and bicontinuous. So, ® is a
homeomorphism, thus dimE = dimIm® < n, contradiction. Because, for all A € R and for all
i €{1,...n} |(fi, xo + Ay — x0)e= 5| = 1A[{fi ¥ode=£| = 0 < &, then xo + Ay, € V for all
A € R (in infinite dimension, any weak neighborhood of x, contains the line passing through
Xo). It is obvious the the function g: R, — R, define by: g(1) = [|xo + Ayl forall A € R
satisfies g(0) < 1 and g(1) — 400 when g(1) — +oo, therefore it exists 1, > 0 such that
g(1y) = 1, hence xy + 15y, € V N S. Finally x, is contained in the weak closure of S.

b) We can also check that, the weak int(B(O,l))=(Z). Indeed, if it exists x, in the weak
int(B (0,1)), it exists a weak neighborhood V of x, such that V. < B(0,1). As in a) there is a
nonzero y, EKer® and 4, > 0 such that, ||x, + 1y,llz = 1 and xy + 1y, € V < B(0,1),
contradiction.
Theorem 17.7. If E and F are two Banach spaces, and T: E — F is a linear map. Then T is
strongly continuous iffy T is weakly continuous.
Proof. Assume that, T is strongly- strongly continuous linear map. Let g € F* be, as the
function f = go T € E™ it is weak-weak continous, then T is weakly continuous by the
proposition 17.2. If now the map T is weakly-weakly continuous and linear, by the closed
graph theorem 17.6, the graph G(T) of T is weakly closed in E X F and a fortiori G(T) is
strongly closed, so T is strong-strong continuous.
Remark 17.3.

a) By the same argument used in the proof of theorem 17.7, we prove that if T is linear
and strong-weak continues it is strong-strong continuous.

b) The linearity of T in theorem 17.7 plays an essential role in both sens. Without
linearity, the theorem fails.
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17.5 The weakx topology o(E*, E) in the R-nvs E*
In the R-nvs E™* two topologies are defined: the strong topology 7|l and the weak

topology o (E*, E). In this section we will define a third topology on E* as follows. Let E** be
the dual of E*, also called the bidual of R-nvs E. The norm of any element & € E** is defined

by: [[€]lg~ = Sup{feE*,”f”E*sl}l(f' f)E**,E* , Where (f,f)E**,E* = &(f), for T||.||E*311 f EE".
Note that the canonical injection m: E — E** defined by: (m(x), f)g+ g+ = (f, x) g~ for all
x € E and all f € E* is continuous linear isometric and injective from E into E**. Indeed, it is
clearly continuous linear and for all x € E, ||m(x)|| g~ = sup{feE*,”f”E*sl}l(n(x),f)E**_E*

SUP{fep*, £l g<1 }|(f, x)E*’E| = ||x||g by the corollary 17.3, then 7 is isometric, thus it is
injective. Therefore 7 is bijective between E and w(E'), which allows us to identify E and
w(E) c E**, and consider E as a subset of E**, In the case when m(E) = E** ,then E = E**
and E is said to be reflexive. Consider the collection of the functions (¢, ) g defined from
E* into Rby: @, (f) = (f,x)p~ forall x € E and all f € E*. Note that for a fixed x € E, the
@, satisfies the same properties of .

Definition 17.4. The weak* topology in the R-nvs E* is the topology o (E*, (¢,)xeg), Which
will be noted by o (E*, E).

Remark 17.4.

a) As,E c E**, theno(E*,E) c 6(E*,E*) C 7| g i-€- in E™, the weakx topology o(E*,E)
is weaker than the weak topology o(E*, E**), which is weaker than the strong topology Y| g

Therefore, the weak* topology o (E*, E) offers more compacts than o (E*, E**). If a topology
has fewer open sets, it has more compact sets. However, compact sets play a fundamental role
when we seek to establish existence theorems. Hence the importance of introducing the
weak* topology o(E™, E).
b) In the finite dimensional all the topologies are identical. Since in this case
dim E =dimE™* =dimE™*, therefore the canonical injection r: E — E™**is surjective, so
E=E"ando(E*,E™) = o(E",E).
c¢) Given the two families {x,, x} in E and {f,, f} in E*. We often use:
X, — X to express that the sequence {x,} converges strongly to x i.e. ||x,, — x||z — O.
X, — X to express that the sequence {x,,} converges weakly to x.
fn — f to express that the sequence {f,,} converges strongly to f i.e. ||, — fllz+ — O.
fn — f to express that the sequence {f,,} converges weakly to f.
fn =" f to express that the sequence {f;,} converges weakly* to f.
The propositions 17.6-17.8 below, whose verification is simple, summarize the usual
properties of the weak* topology.
Proposition 17.6. Let (E *,o(E*,E )) and f, € E* are. The collection of the subsets B of E*
defined by: f € B iffy, it exist € > 0 and n elements {xy, ..., X, ..., X, } of E, such that
|(f — fo x)p | < &, foralli € {1,...,n}, is a basis of neighborhoods of f;.
Proposition 17.7. The topological space (E *,o(E* E )) is Hausdorft.
Proof: Let f and g are distinct elements of E*. Thus, there exists x, € E such that
(f, x0)e*g # (9, X0)E* g- Assuming for example that, (f, x()g+ r < (g, Xo)g* g., We can find a
real number b such that @, (f) = (f,x0)g* g < b <(g,X0)g* g = Px,(f). Therefore f €
Ve = (p,;o1 (J—oo,b) and g €V, = (p,;o1 (]b, +oo[). Those are two disjoint weak* open sets that
separate f and g.
Proposition 17.8. In E*, we have:
a). A sequence {f, } converges weaklyx to f € E”, iffy forall x € E, {f,, X)g g — {f, X)g* .
b) A stronly converging sequence converges weakly.
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¢). A weakly converging sequence converges weakly*.

d). If {f,,} is a sequence in E* converging weakly= to f € E*, then the sequence {f,,} is
bounded and || f|| g+ < liminf,,_, o || f, |l g+

e). If {f,,} is a sequence in E* converging weakly* to f € E and {x,} is a sequence in E
converging strongly to x € E, then (f,,, x,)gx g — {f, X)p -

This first version is to be completed soon
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