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1-Real Numbers 
 

1.1-Introduction.  
Numbers are a central element in mathematics. Among the different types of numbers, the 

set ℕ = {0,1,2, … } of natural numbers, the set ℤ = ℕ ∪ (−ℕ) [ ∈ (−ℕ) ⟺∋ ∈ ℕ; =
−  of relative numbers and the set ℚ of rational numbers, that is: ∈ℚ, if there are 
( , ) ∈ ℤ × ℕ∗,  and  are prime to each other ( ∧ = 1), such that = . Starting from 
ℚ, whose well-known properties are assumed, namely, (ℚ, +, . , ≤) is a totally ordered set, the 
total order relation ≤, defined on ℚ is compatible with the addition + and the multiplication ×, 
and that ℚ is Archimidean i.e., ∀ ∈  ℚ∗ there exists ∈  ℕ∗, such that <  . The need to 
introduce a larger set than ℚ, is motivated by the fact that √2 ∉  ℚ. Indeed, if there exists ℤ 
and ℕ∗ with ∧ = 1, such that   = 2 , then 2 divides , as the square of an odd 
number is odd, also 2 divides p, so there exists ′ ℤ, such that = 2 ′, hence 2 ′ = and 
therefore 2 divides , contradiction. Also, the two numbers  and  are not rational. In 
general, if  is a prime number, then  is not an rational number,...etc. Such numbers are 
called irrational numbers. The union of rational numbers and irrational numbers constitutes 
the set ℝ of real numbers. The object of the following section, is to define the set of real 
numbers by a series of axioms, and to give a second motivation for the introduction of this set. 

 
1.2-Axiomatic definition of real numbers.  

Since, the set of real numbers, was introduced to complete the set ℚ of rational numbers, 
then we say that x is a real number if either ( ∈ ℚ), or ( ∉ ℚ, x is said to be an irrational 
number). The intuition of their existence is ancient (since Pythagoras and his proof of the 
irrationality of √2). Their rigorous construction, dating from the 19  century by Cantor 
and Dedekine. Note that we can define a real number from its decimal development, i.e. a real 
x can be seen as a relative integer constituting its integer part, separated by a comma, 
followed by an infinity of digits constituting its decimal part for example: 

= 3.1415926536. . .. This definition called arithmetic representation of a real number poses 
a certain number of problems. Also, a real number can be defined as a limit of the so-called 
Cauchy sequences in ℚ (the density of ℚ in ℝ). One of the simplest definitions of ℝ is the 
following axiomatic definition. 
Definition 1.1. The set ℝ of real numbers, provided with two internal laws: the addition noted 
+, the multiplication noted ×. and the ordering or a comparison relation noted ≤ (lower or 
equal), satisfies the following axioms. 
1-(ℝ∗, +,×)  is a commutative field. 
The addition is such that (ℝ, +)  is an Abelian group. 

₁) ∀ , , ∈ ℝ, ( + ) + = + ( + ). The addition is associative. 
₂) ∀ , ∈ ℝ, + = + . The addition is commutative. 

₃) ∀ ∈ ℝ, + 0 = 0. 0 is a neutral element for addition. 
₄) ∀ ∈ ℝ, + (− ) = 0. Each element  admits a symmetric for the addition noted 

− ∈ ℝ . 
The multiplication is such that (ℝ∗,×), is an Abelian group, (ℝ∗ = ℝ ∖ {0}). 

₅) ∀ , , ∈ ℝ, ( × ) × = × ( × ). Multiplication is associative. 
₆) ∀ , ∈ ℝ, × = × . Multiplication is commutative. 
₇) ∀ ∈ ℝ, × 1 = . 1 is a neutral element for multiplication. 
₈) ∀ ∈ ℝ∗, × = 1. Each element x in ℝ∗ admits the reverse for the multiplication, 

noted  or  ∈ ℝ∗. 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 5 
 

Multiplication is distributive with respect to addition. 
₉) ∀ , , ∈ ℝ, × ( + ) = ( × ) + ( × ). 

2-(ℝ, ≤)is completely ordered. 
a₁₀) ∀ ∈ ℝ, ≤ . The ordering is reflexive. 
a₁₁) ∀ , , ∈ ℝ, if ( ≤  and ≤ ) then ≤ . The ordering is transitive. 
a₁₂) ∀ , ∈ ℝ, if ( ≤  and ≤ ) then ( = ). The ordering is antisymmetric. 
a₁₃) ∀ , ∈ ℝ, ≤  or ≤ . The comparison relation is a total ordering. 
For every , ∈ ℝ, we write ≤  (  is less than or equal to ) or equivalently ≥  (  is 
upper than or equal to ), and the ordering ( ≤ ;  ≠ ) is written ( < ) (  is less than 

), or (  is upper than ). 
A real number  is said to be positive if 0 < , the set of positive real numbers is denoted by 
ℝ∗ ,  is said to be negative if < 0, the set of negative real numbers is denoted by ℝ∗ . In the 
sequel, for every , ∈ ℝ, we write −  instead of + (− ) and  instead of × . 
3-Compatibility of the ordering ≤ with addition and multiplication. 
a₁₄) ∀ , , ′, ′ ∈ ℝ, satisfying ( ≤  and ′ ≤ ′), we have ( + ′ ≤ + ′). The 
ordering ≤ is compatible with addition. 
a₁₅) ∀ , , ′, ′ ∈ ℝ∗, satisfying ( ≤  and ′ ≤ ′), we have ( ′ ≤ ′). The ordering ≤ 
is compatible with multiplication. 
As a consequence: for every ,  in ℝ, (if ≤  then − ≤ − ) and for every ,  in ℝ∗, (if 

≤  then ⁻¹ ≤ ⁻¹). 
 
1.3-Intervals, absolute value, bounded parts 
Definition 1.2. A non-empty part  in ℝ is an interval if, ∀ , ∈  satisfying < , there 
exists ∈  such that < < . 
If ,  and ₀ are three real numbers such that: < ₀ < . The unbounded open intervals of 
ℝ are: ] − ∞, [, ] , +∞[, ℝ =] − ∞, +∞[, and the open bounded interval of ℝ is ] , [. The 
unbounded closed intervals of ℝ are: ] − ∞, ], [ , +∞[, ℝ =] − ∞, +∞[ and the closed 
bounded interval of ℝ is [ , ]. Neither open nor closed bounded intervals of ℝ are ] , ],
[ , [. In the case where = , [ , ] = { } and ] , [= ∅. The numbers  and  are called 
the limits of the interval and −  is its length. The total order relation makes it possible to 
define the absolute value function in ℝ. 
Definition 1.3. The absolute value in ℝ, is a function noted |. |, defined from ℝ to ℝ₊ by: 

∀ ∈ ℝ, | | = , if 0 ≤ ;
− , if < 0, 

As a direct consequence we have: 
∀ ∈ ℝ, ( ≤ | |) and if ∈ ℝ₊ (fixed), (| | ≤ ⟺ − ≤ ≤ ) . 
Proposition 1.1. The following are true, for every , ∈ ℝ: 
1) ( | | = 0 ⟺ = 0). 
2) | | = | || |. So, | | = | | = . 
3) | + | ≤ | | + | |, (triangular inequality). 
4) || | − | || ≤ | − |. 
Proof. 1) evident. 2) if  and  have the same sign, then | | = . In the case where 

, ∈ ℝ₊, | | =  and | | = , and in the case where , ∈ ℝ₋, | | = −  and | | = − , so 
in both cases | || | = . If  and  are of different signs, then | | = −( ). In the case 
where for example ∈ ℝ₊ and ∈ ℝ₋, | | =  and | | = − , then | || | = (− ) =
−( ). 3) Since, from, 2) ∀ ∈ ℝ, | |² = ², then for any , ∈ ℝ, we have | + |² = ( +

)² = | |² + 2 + | |² ≤ | |² + 2| || | + | |² = (| | + | |)², so | + | ≤ | | + | |. 4) We 
demonstrate in the same way that: ∀ , ∈ ℝ, || | − | || ≤ | + |, and by replacing  by 
(− ) in the last inequality, we get the result. 
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Definition 1.4 Let  be a non-empty part of ℝ. We say that: 
)  is bounded above, if there is a real number  such that, ∀ ∈ , ≤ , in this case  is 

called an upper bound of . 
)  is bounded below, if there is a real number m such that, ∀ ∈ , ≤ , in this case m is 

called a lower bound of . 
)  is bounded, if E is both bounded above and below. Equivalently: E is bounded⟺there 

exists ∈ ℝ₊, such that ∀ ∈ , | | ≤ . 
Remark 1.1 
 ) If  is an upper bound of , any element greater than  is also an upper bound of . 
When  is bounded above, the least upper bound of  is called the supremum of , and 
denoted by , or  if it belongs to . The  when it exists, it is unique. 

) If  is a lower bound of , any element less than m is also a lower bound of . When  is 
bounded below, the first lower bound of  is called the infimum of  and denoted by , 
or  if it belongs to . The infE when it exists, it is unique. 

) In the case where a non-empty part  of ℝ is bounded, [ , ] is the smallest closed 
interval containing . 
Let us end the axiomatic definition of ℝ, by the following. 
4-Axiom of the upper bound. 

₁₆) Any non empty, bounded above (respectively bounded below) part of ℝ, has an 
supremum (respectively an infimum). 
Remark 1.2. If , ∈ ℝ such that < + , ∀ > 0, then ≤ . Indeed, suppose that x>y 
then for = − , we have < + − = , contradiction. 
Proposition 1.2. Let  be a bounded part of ℝ, ₀ and ₀ two real numbers, then: 

1) ₀ =  ⟺ ) ∀ ∈ ℝ, ≤ ₀;                                                                   
) ∀ > 0, there exists ∈ , such that ₀ − < . 

 2) ₀ =  ⟺ )∀ ∈ ℝ, ₀ ≤ ;                                                                   
) ∀ > 0, there exists ∈ , such that < ₀ + . 

Proof. 1) Since ₀ is the an upper bound of , then ) ∀ ∈ , ≤ ₀. To demonstrate ), 
suppose that there exists > 0, such that ∀ ∈ , ≤ ₀ − , that is ₀ −  is an upper 
bound of  less than ₀, contradiction with the definition of . Reciprocally ) implies 
that ₀ is an upper bound of .To demonstrate that ₀ is the least upper bound of , suppose 
that there exists ′ < ₀, such that ′ = . According to ) and ) ∀ > 0, there exists 

∈ , such that ₀ − < ≤ ′ < ₀, so ₀ < ′ + , using the remark 1.2, we get 
′ = ₀. Property 2) is demonstrated in the same way. 

Example 1.1. 
) If, = {−1,0,1} then, = = −1 and = = 1. 
) If = [0,1] then, = = 0 and = = 1. 
) If = [0,1[ then, = = 0 and = 1. 
) If =]0,1] then, = 0 and = = 1. 
) If =]0,1[ then, = 0 and = 1. 

Let us demonstrate, for example that in ) = 1. Using property ) in Proposition 1.2, it 
is clear that ) ∀ ∈ , < 1. To demonstrate ), let > 0, if ≤ 1 then 0 ≤ 1 − < 1, as 
ℝ is an interval, there exists ∈ℝ such that 1 − < < 1, so ∈ . If, 1 < , then 
1 − < 0 < , ∀ ∈ . 
Example 1.2. This is still a motivation to introduce the set ℝ. Let = { ∈ ℚ₊, ² < 2} be a 
part of ℚ. As 0 ∈  , ≠ ∅ and as ∀ ∈ , 0 ≤ < √2 < 2, then  is bounded in ℚ, and 

= 0 ∈ ℚ₊. But  is not in ℚ, which shows that the axiom ₁₆ of the upper bound is 
not true in ℚ. Let us prof that ∉ ℚ. Suppose that, there exists ∈ ℤ, ∈ ℕ∗, such that 
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= = . In the case where 0 < 2 − ², we have = ² ∈ ℚ∗ , so < 1 and ( +
)² = ² + 2 + ² < ² + 5 = 2, witch implies that + ∈  therefore ≤ 0, 

contradiction. In the case where 0 < ² − 2, we have  = ² ∈ ℚ∗ , so < 1 and ( − )² >

² − 2 > ² − 4 = ² > 2, it follows that − ∈ ℚ∗  and −  is an upper bound of , 
witch is less than , contradiction. 
 

. -Archimed's axiom, everywhere density of ℚ in ℝ 
In all of the following:  denotes the complement of any set   iffy means, if and only if, 

i.e. means, that is △  and ∇ be any family of elements  (sets of indices). 
Proposition 1.3 (Archimed’s axiom). ℝ is Archimedean, i.e: For every , ∈ ℝ∗  satisfying 

<  there exists ∈ ℕ∗, such that ≤ . 
Proof. Suppose that, there exist ₀ and ₀ in ℝ, ₀ < ₀ and for all ∈ ℕ∗, ₀ < ₀. Since a 
non empty part = { ₀;  ∈ ℕ∗} is bounded above by ₀. For ₀ =  and = ₀ > 0, 

there exists ₀ ∈ ℕ∗ such that, ₀ − ₀ < ₀ ₀, hence ₀ < (2 ₀) ₀, as 2 ₀ ∈ , 
contradiction. 
Remark 1.3. 

) The set ℕ of natural numbers is unbounded above. That is for every ∈ ℝ∗ , there exists 
∈ ℕ∗, such that ≤ . It suffices to take = 1 in the proposition 1.2. 

) The set ℤ of relative numbers is both unbounded above and below, since (−ℕ) is 
unbounded below. 

 .  (everywhere dense part in ℝ). A non-empty part in ℝ, is said to be 
everywhere dense in ℝ if, for all ,  in ℝ, <  there exists ∈ , such that < < . 
Proposition 1.4. ℚ is everywhere dense in ℝ. 
Proof. Let ,  are in ℝ with < . Let us prove that there exists  in ℚ such that: < <

. Since = > 0, there exists ∈ ℕ∗ such that = < , or + 1 <  (∗), 
likewise for ∈ ℝ, there exists ∈ ℕ∗ such that < . Let = { ∈ ℕ∗;  < } and 

= { ∈ ℝ;  < },  and  are non-empty, and  is bounded above by the elements of . 
Let = , then ∈  and for = 1, there exists ∈ ℕ∗ such that − 1 < < , 
witch implies that < < + 1, using (∗) we obtain < <   < < , ( =

∈ ℚ). 
Example 1.3. 

) √2 is the supremum of = { ∈ ℚ₊, ² < 2}. Indeed ) ∀ ∈ , < √2,  ) For 0 < ≤
 √2, we have 0 ≤ √2 − < √2, since ℚ is everywhere dense in ℝ, there exists ∈ ℚ such 
that, 0 ≤ √2 − < < √2 ( ∈ ). If, √2 < , then √2 − < 0 ≤ , ∀ ∈ . 

) The set ℚ , of the irrational numbers is everywhere dense in ℝ. Note that, for every ∈ ℚ 
( ≠ 0), + √2 ∈ ℚ . Then if , ∈ ℝ, <  there exists ∈ ℚ such that < < . 
Since √ ∈ ℝ∗ , there exists ∈ ℕ∗, such that √ < , then < +  √2 <  +  √2 ∈
ℚ . 

2-The Euclidean Topology, Topological space 
 

2.1-Introduction 
Starting from the open intervals in ℝ. We will define, the notion of open set, i.e. the parts 

of ℝ which are the union of open intervals. We will demonstrate that, the open sets are stable 
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by any union, and stable by the finite intersection. Let { ;  ∈ ∆} be a family of sets in ℝ, 
where ∀ ∈ ∆,  is the union of the open intervals in ℝ, then, the family  = {∅, ; ∈
∆} define in addition to the algebraic stricture, a topological structure on ℝ. Open sets and 
therefore open intervals play a fundamental role in real analysis, namely: the study of the limit 
of a sequence, the continuity of a function, the derivability,...etc. In its primitive form 
topology was called situation geometry, or analysis situs. It is therefore a specific 
mathematical domain of geometry, which interested in the qualitative properties of 
mathematical objects, independently of any measurement. The study of topology requires at 
first a certain act of faith, which will make the internal beauty of this theory easier. 

 
2.2-Open sets, closed sets, neighborhoods  
Definition 2.1. 

) Let ₀ ∈ ℝ and > 0, the interval ( ₀, ) =] ₀ − , ₀ + [ is called the open interval 
centered in ₀ with radius . 

) The non-empty set  in ℝ, is called the open set, if ∀ ∈ , there exists > 0, such that, 
] − , + [⊂ . 

) The complement of any open set in ℝ is called a closed set. 
) Let ₀ ∈ ℝ, we say that, the set  is a neighborhood of ₀, if there exists an open set O 

containing ₀, and ⊂ . 
Example 2.1. 

) All open intervals in ℝ is an open set. For example ∀ , ∈ ℝ, the open intervals ] , [ and 
] − ∞, [ are open sets. Indeed for each ∈] , [, there exists = ( − , − ) > 0, 
such that ] − , + [⊂] , [ and, for ∈] − ∞, [, there exists = > 0 such that 
] − , + [⊂] − ∞, [. 

) ℝ is open, since ∀ ∈ ℝ and ∀ > 0, the open interval ] − , + [⊂ ℝ. 
c) ∀ , ∈ ℝ, the closed intervals ] − ∞, ] and [ , +∞[ are closed sets, indeed, 
 ] − ∞, ] =] , +∞[, and[ , +∞[  =] − ∞, [. 

) The interval [ , [is not open, indeed ∀ > 0, ] − , + [⊈ [ , [, since between −  
and  there exits at last an number less than . Also he interval ] , ]is not open. 

) ∅ is closed. Since ∅ =ℝ. 
The open sets in ℝ satisfied the following properties: 
Proposition 2.1. 

₁-The union of any family of open sets is open. 
₂-The intersection of any finite family of open sets is open. 

Proof. ₁-Let { ;  ∈ ∆} be a family of the open sets in ℝ. Then for ∈∪ ∈∆ , there 
exists ∈ ∆ such that ∈ , therefore, there exists > 0 such that ] − , + [⊂ ⊂
∪ ∈∆ , hence ∪ ∈△  is an open. ₂-Let { ;  = 1, . . . , } be a finite family of the open 
sets in ℝ. Then for ∈∩  , we have ∈ , ∀ ∈ {1, . . . , } therefore there exists 

> 0, such that, ] − , + [⊂ , ∀ ∈ {1, . . . , } then for = { , =
1,..., , ] − , + [⊂∩ =1 , witch implies that ∩ =1  is an open set. The collection 

= {∅, ℝ} ∪ { ;  ∈ ∆}, where ∀ ∈ ∆,  is an open set of ℝ, is called the Euclidean (or 
usual, or natural) topology of ℝ, the couple (ℝ, ) is called Euclidean (or usual, or 
natural) space. 
A topology can be defined on any nonempty set as follows: 
Definition 2.2. Let  be a nonempty set. A family τ of subsets of  is called a topology, if: 
) ∅ and E are in τ. 
) The union of any collection of elements of τ is an element of τ, (τ is stable by the union). 
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) The intersection of any finite collection of elements of τ is an element of τ, (τ is stable by 
the finite intersection ). 
The elements of τ are called the open sets, and ( , ) is called a topological space. If ∈ , 

 is called a closed set in  and a set ⊂  is called a neighborhood of a non-empty part 
 of , if there exists ∈  such that ⊂ ⊂ . When = { }, we say that  is a 

neighborhood of the point x. 
In the sequel, we use indifferently, space and subspace (respectively space ℝ) instead of, 

topological space and topological subspace (respectively instead of (ℝ, )). 
Example 2.2. In the space ℝ 

) ∀ ∈ ℝ, the singleton { } is closed, indeed for any ∈ ℝ, { } =] − ∞, [∪] , +∞[ which 
is according to ₂ is an open. 

) ℕ and ℤ are closed sets, since ℕ  =∪ ∈ℕ ]n, n + 1[ and ℤ  =∪ ∈ℤ ]n, n + 1[. 
) ℚ and ℚ  are neither open nor closed. In deed, suppose that ℚ is open then ∀ ∈ ℚ, there 

exists > 0 such that ] − , + [⊂ ℚ, as ℚ  is everywhere dense in ℝ, there exists 
∈ ℚ , ∈] − , + [⊂ ℚ contradiction. By the density of ℚ in ℝ, we deduce that ℚ  is 

not open and hence ℚ and ℚ  are not closed. 
) Only ∅ and ℝ are both open and closed (clopen). Indeed, if a subset  of ℝ is clopen, then 
= ∅. Since if we suppose that ≠ ∅, then for ∈ A , one of the tow subsets ∩] − ∞, ] 

and ∩ [ , +∞[ is nonempty. Suppose that = ∩ [ , +∞[≠ ∅, witch is clopen, then B is 
closed and bounded bellow, therefore it has an minimum. Let = , as also = ∩
] , +∞[ and B is open for ∈ , there is > 0, such that ] − , [ ⊂] − , + [⊂

,witch implies that b is not the minimum of B, contradiction. 
Remark 2.1 The intersection of any family of open set is not always open. In the space ℝ for 
example, the family of open intervals  0, , ∈ ℕ∗ , is such that ∩ ∈ℕ∗  0, = 0 

which is a closed set. It is clear that 0 ∈  0, , ∀ ∈ ℕ∗ then 0 ∈∩ ∈ℕ∗  0,  and if 

 x ∈∩ ∈ℕ∗  0, , i.e. − < < , ∀ ∈ ℕ∗, hence when → +∞, = 0. 
On a non-empty set E, we can define several topologies and a subset of the space E can be 
open, closed, open and closed (clopen), neither open nor closed. If τ and  are topologies on 
E, τ is called coarser (or weaker or smaller) than σ, equivalently σ is called finer (or 
stronger or larger) than τ, if every element of τ is an element of σ, and the relationship is 
expressed as ⊂ . Of course, as sets of sets, ⊂ . The ordering ⊂ is only a partial 
ordering. We say that τ is equal to σ if, τ⊂σ and σ⊂τ. 
Example 2.3. Let E be a non-empty set. 

) Let ( ) be the collection of all parts of E, then ( ) is a topology on E, denoted τ   
called a discrete topology and E is called a discrete space. This topology is the finest 
topology for E, since any open set of other topology is an open set in this topology. 

) The family τ  = {∅, ℝ} is a topology on E, called indiscrete topology and E is called 
indiscrete space. This topology is the coarset topology in E, since any open set of this 
topology is an open set in other topology. 

) The family = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, }, where = {0,1,2} is a topology on 
ℝ. 

) The family = {[ , [, , ∈ ℝ}⋃{∅, ℝ} is a topology on ℝ. 
) The collection τ  = {∅, }, where A is finite i.e., the collection consisting of the empty 

set and, those subsets of E whose complements are finite. τ   is a topology on E, called 
cofinite topology and E is called cofinite space. For the proof, it suffices to apply the De 
Morgan's Laws and to remark that, ∅ is finite, the arbitrary intersection of finite sets is finite 
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and the finite union of finite sets is finite. In ℝ, τ  ⊂ , since if ∈ τ  , there is a finite 
⊂ ℝ, such that = , since A is closed in the space ℝ, then ∈ . 

) Let E an uncountable set τ  = {∅, }, where A is countable i.e., the collection 
consisting of the empty set and, those subsets of E whose complements are countable. Then 
τ  is a topology in E, called cocountable topology and E is the cocountable space  

) Let = {∅, = {1,2, . . . , n};  n ∈ ℕ∗} be the family consisting of subsets of ℕ∗, then 
(ℕ∗, ) is a topology in ℕ∗. Indeed, ) ∅, ℕ∗ ∈ . ) If, ₁ = {1,2, . . . , n₁},  ₂ =
{1,2, . . . , n₂}, . . . N = {1,2, . . . , n }, any arbitrary collection of the elements of , then 
∪ ∈ℕ∗ N = {1,2, . . . , j}, where = {n , ∈ ℕ∗} if it exists, if not ∪ ∈ℕ∗ N = ℕ∗, then 
∪ ∈ℕ∗ N ∈ . ) If, ₁ = {1,2, . . . , n₁},  ₂ = {1,2, . . . , n₂}, . . . , N = {1,2, . . . , n } is a 
finite collection of the elements of , then ∩ , N = {1,2, . . . , l}, where = {n , 1 ≤

≤ }, then ∩ , N ∈ . 
As a direct consequence of the proposition 2.1 and De Morgan's Laws, if { ;  ∈△} is 

any family of sets in ℝ, then ∪α∈△ α = (∩α∈△ α) , we have: 
Corollary 2.1 

₁-The intersection of any collection of closed sets is closed. 
₂-The union of any finite family of closed sets is closed. 

Remark 2.2. The union of any family of closed sets is not hallways closed. In the space ℝ, 
the countable family of closed intervals = 0,1 − , n ∈ ℕ∗ is such that ∪ ∈ℕ∗ = [0,1[ 

which is not closed. In fact, if ∈∪ ∈ℕ∗ , there exists n₀∈ℕ∗ such that 0 ≤ ≤ 1 −
₀

< 1, 

then ∈ [0,1[. Conversely, if 0 ≤ < 1, then > 0, from Archimed's axiom, there exists 

n₀∈ℕ∗ such that < ₀ or < 1 −
₀
, then ∈∪ ∈ℕ∗ . 

In the sequel, ( ) denote the collection of any neighborhoods of . Before giving 
neighborhood properties, note that in any topological space, we have the following useful 
property. 
Proposition 2.2. The non-empty set, is open iffy it is a neighborhood of each of its points. 
Proof. Let  a non-empty part of E, then U is open if there exists ∈ , such that = . If 

∈ , since ∈ ⊂ , then ∈ ( ). Reciprocally, if ∈ ( ) ( ) there exists 
∈ τ such that ∈ ⊂ , then ∪ ∈ ⊂  and since =∪ ∈ { } ⊂∪ ∈ , therefore 

=∪ ∈ , by ₁ in proposition 2.1, ∈ . 
Theorem 2.1. In any space ( , ), ( ) have the following properties. 

₁-Any point x of E has at least one neighborhood, and ∀ ∈ ( ), ∈ . 
N₂-If, { ;  ∈△} is a family of elements in ( ), then ∪α∈△ ∈ ( ),  ( ( ) is stable 
by the union) 
N₃-If, { ;  = 1, . . . , } is a finite elements of ( ), then ∩α ∈ ( ), ( ( ) is 
stable by a finite intersection). 
N₄-If, there exists a set M of E containing ∈ ( ), then ∈ ( ), ( ( ) is hereditary 
on the right) or (absorption property). 
N₅-If, ∈ ( ), there exists ∈ ( ), such that ∈ ( ), ∀ ∈  ( ⊂ ). 
Proof. N₁-Since ∈  witch is an open, by proposition 2.2 ∈ ( ), if ∈ ( ), there 
exists ∈  such that ∈ ⊂ . N₂-Let ∈∪α∈∆ , there exists ₀ ∈ ∆, such that ∈ α₀, 
hence there exists ∈  such that ∈ ⊂ α₀ ⊂∪α∈△ , then ∪α∈△ ∈ ( ). N₃- If, for 

= 1, . . . , , ∈ ( ); there exists ∈ τ, x ∈  ⊂  then ∈ =∩α ⊂
∩α , hence ∩α ∈ ( ). N₄- Since ∈ ( ), there exists ∈  such that ∈ ⊂

⊂ , then ∈ ( ). N₅-If, ∈ ( ), there exists ∈  such that ∈ ⊂ , by 
proposition 2.2 ∈ ( ), using ₃, ∈ ( ) ∀ ∈  , it suffices to take = . 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 11 
 

Example 2.4. 
) In the space ℝ, for every ,  in ℝ, the intervals ] , ] and [ , [ are neither open nor 

closed. 
) Let = {0,1,2} and = {∅, {0}, {1}, {0,1}, }, then τ is a topology in E, ({0,1}) =

{{0,1}, }, ({0,2}) = { } = ({1,2}), (0) = {{0}, {0,1}, {0,2}, }, (1) =
{{1}, {0,1}, {1,2}, } and (2) = { }. 

) In the indiscrete space E, all parts are neither open nor closed and ∀ ∈ , ( ) = . 
) In the discrete space E, all parts are both open and closed, and ∀ ∈ , ( ) is the 

collection of all parts of E containing .  
Starting to the open sets, we have defined the closed sets and the neighborhoods. Another 

way is to define the neighborhoods and from the neighborhoods, we define the open sets and 
closed sets. The two paths are equivalent as it will be demonstrated in the following theorem.  
Theorem 2.2. Let ∈  and ( ) the family of the parts of E verifying ₁, . . . , ₅ in the 
theorem 2.1. Then, there exists in E an unique topology, whose ( ) constitutes, for each  in 
E, the family of neighborhoods of , for this topology. 
Proof. The idea of the construction of this topology comes from the fact that an open set is a 
neighborhood of each of its points (see, proposition 2.2). According to the definition 2.2, we 
will show that, the family ={∅}⋃{all parts ⊂ , such that: if ∈  then ∈ ( )} 
define a topology on E. ) Since for ∈ , { } ⊂  and ∈ { }, then { } ∈ ( ), by ₄, 

∈ ( ) therefore ∈ . ) Let { ;  ∈ ∆} be a family of elements in τ. Since ∪α∈∆ ⊂
 and for ∈∪α∈∆ , there exists ∈ ∆, such that ∈ ∈ ( ), as ⊂∪α∈∆  by 
, ∪α∈△ ∈ ( ), therefore ∪α∈∆ ∈ . ) Let { ;  = 1, . . . , } be a finite elements 

of τ, then ∩α ⊂  and for ∈∩α , ∀ ∈ {1, . . . , }, ∈ ∈ ( ), by , 
∩α ∈ ( ), so ∩α ∈ .We then demonstrated that τ is a topology in E, it remains to 
demonstrate that if ( ) is the family of neighborhoods of ∈  according to τ, then 

( ) = ( ). Let ∈ ( ), there exists ∈ , ∈ ⊂  as ∈ ( ) then by ₄, 
∈ ( ), so ( ) ⊂ ( ). Conversely, if ∈ ( ), by ₅ there exists ∈ ( ), ⊂  

such that, ∈ ( ) for every ∈ , then ∈ , so ∈ ( ) and ( ) ⊂ ( ). The 
uniqueness of τ comes from proposition 2.2. 
 
2.3-Basis and subbasis of topology, basis of neighborhoods 

The use of bases and subbases of topology (a parts of the topology), which we will 
introduce below, instead of the initial topology, is often more convenient and gives the same 
results as the initial topology. 
Definition 2.3. Let ( , ) be a topological space. 

) A family ℬ ⊂ , is called a basis (or a base) of , if ∀ ∈ ∈ , there exists ∈ ℬ 
containing  and contained in O. Equivalently =∪ ∈ℬ . 

) A family ℬ( )  ⊂ ( ), is called a basis of neighborhoods of , or a fundamental system 
of neighborhoods of , if ∀ ∈ ( ), there exists ∈ ℬ( ), such that ⊂  i.e. =
∪ ∈ℬ( ) . 
Remark 2.3. 

) The definition 2.3 means that, a topology τ is completely determined, by a given part of its 
elements. 

) It is clear that if, ℬ ⊂  is a basis and ℬ′ is a family of open sets containing ℬ, then ℬ′ is 
also a basis of τ. In particular τ is a basis of itself. Therefore a space E can have many basis. 
Example 2.5. 

) Let = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, } be a topology in = {0,1,2}, then ℬ =
{{0}, {1}, {2}} is a basis of a topology τ. 
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) In the discrete space E, ∀ ∈ , ℬ( ) = { } is a basis of neighborhoods of , since 
ℬ( )  ⊂ ( ) and ∀ ∈ ( ), ∈  then { } ⊂ . 

) Let  be an element of the space ℝ, the collection ℐ ( ) = , = − , + , ∈
ℕ∗ is a basis of neighborhoods of . In fact, if ∈  and ∈  there exists >0, ( , )⊂ , 
by Archimed’s axiom, there is ∈ ℕ∗ such that <  , so ( , ) ⊂ . 

Important. Let  be an element of the space ℝ, the open intervals containing , constitute a 
basis of neighborhoods of . In particular, the collection { ( , ), > 0} constitute a basis of 
neighborhoods of . Then, ∈ ( ) ⇔ ∃ > 0, ( , ) ⊂ . Indeed, ∈ ( ) ⇔ ∃ ∈

, ∈ ⊂ ⇔ ∃ > 0, ( , ) ⊂ ⊂ . Therefore in the space ℝ, it suffices for 
neighborhoods of  to consider the collection of open intervals { ( , ), > 0}. 
Theorem 2.3. Let ( , ) be a topological space and ℬ a family of parts of E, then: ℬ is a basis 
of τ 

⟺ ₁) Any element  of  belongs at least to ∈ ℬ.                                                              
₂) If ₁, ₂ ∈  ℬ and  ∈ ₁ ∩ ₂, there exists ∈  ℬ, such that ∈ ⊂ ₁ ∩ ₂. 

Proof. Suppose that ℬ is a basis of τ. ₁) Since ∈  by definition 2.3, =∪ ∈ℬ , then if 
∈ , there exists ∈ ℬ such that ∈ . ₂) Let ₁, ₂ ∈ ℬ. Since ₁ ∩ ₂ ∈  there exists 

a collection {  ;  ∈ ∆} of the elements of ℬ such that ₁ ∩ ₂ =∪α∈∆ α. So if ∈ ₁ ∩
₂, there exists ∈ ∆ such that ∈  ⊂ ₁ ∩ ₂. Reciprocally, suppose that ℬ is a family 

of parts of E satisfying ₁) and ₂) and demonstrate that ℬ define a topology on E, therefore 
ℬ is a basis. Let σ be a family of all parts ⊂  defined by: ∈ σ if, there exists a collection 
{  ;  ∈ ∆} of the elements of ℬ such that =∪α∈∆ α. ) by ₁) =∪ ∈ℬ  then ∈  
and ∪α∈∆ ∅α = ∅, then ∅ ∈ . ii) Let {  ;  ∈ ∆} be a collection of the elements of σ, then 
by ₁) for every ∈ ∆, there exists a collection  ;  ∈ , of the elements of ℬ such that 

 =∪ ∈  , so ∪α∈∆ =∪α∈∆ ∪ ∈  =∪(α, )∈∆×  ∈ . 
) Let {  ;  = 1, . . . , } be a finite family of σ, then by ₁) for every ∈ ∆, there exists a 

collection  ;  ∈ , of the elements of ℬ such that  =∪ ∈  , so ∩α =
∩α ∪ ∈  =∪ ∈ ∩α  , as from ₂) ∩α  ∈ ℬ, then ∩α ∈ . 

Now let τ be a topology on  and ℬ a family of open sets in E satisfying ₁) and ₂) in 
theorem 2.3. ℬ is a basis of a topology ⊂ . So that ℬ generates exactly τ, it must satisfy the 
conditions of the following. 
Corollary 2.2. A family of open sets ⊂  is a basis of τ iffy for all open set O∈  and for all 

 in O, there exists a set  ∈  such that ∈  ⊂ . 
Proof. If σ is a basis of τ and ∈ ∈ , there exists a collection {  ;  ∈ } of the elements 
of σ, such that =∪ ∈  , hence if ∈ , there exists  ∈  such that ∈  ⊂ . 
Reciprocally, if for all ∈ ∈ , there exists the collection {  ;  ∈ } of the elements of σ 
such that =∪ ∈  , by definition 2.3 ) σ is a basis of τ. 
Remark 2.4. Corollary 2.1, allows us to demonstrate that a family of open set of a given 
topology is a basis of this topology. For example in the space ℝ the open intervals with 
rational extremities is the basis of . In fact, if ( , ) is an open interval centered in ∈ ℝ, 
with radius > 0, as ℚ is dance in ℝ, there exists ∈ ℚ between 0 and , therefore ( , ) ⊂
( , ). 

Corollary 2.3. If ℬ is a basis of the topology τ on E, and if σ is a collection of the elements of 
τ, such that any element of ℬ is written as a union of elements of σ, then σ is also a basis of τ 
Proof. Let ∈ , since ℬ is a basis of the topology τ, by definition 2.3 ) there exists a 
collection {  ;  ∈ ∆}, of elements of ℬ such that =∪α∈∆ α. By hypothesis ∀ ∈ ∆, there 
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exists a collection βα
, βα ∈ ∇  of elements of σ such that α =∪βα∈∇ βα

, so =

∪α∈△ ∪βα∈∇ βα
=∪ α,βα ∈∆×∇ βα

, i.e. σ is also a basis of τ. 
Corollary 2.4. Let ℬ be a family of elements of the topology τ on E. Then ℬ is a basis of τ 
iffy, ∀ ∈ , the family ℬ( ) = {B ∈ ℬ, x ∈ B} is a fundamental system of neighborhoods of 

. 
Proof. Let ∈  and ∈ ( ), there exists ∈ , such that ∈ ⊂ , since ℬ is a basis 
of τ, there exists ∈  ℬ, such that ∈ ⊂  i.e. ∈ ℬ( ) and ⊂ , by definition 2.3 ) 
ℬ( ) is a fundamental system of neighborhoods of . Conversely, let ∈  and ∈  by 
proposition 2.1, ∈ ( ) as ℬ( ) is a fundamental system of neighborhoods of any ∈ , 
there exists ∈ ℬ( ) hence ∈ ℬ, ∈  and ⊂  i.e. ℬ is a basis of τ. 
Definition 2.4. Let E be a topological space. The subset ⊂  is said to be a subbase for the 
topology τ, if the collection of all finite intersects of sets in S forms a base of τ, i.e. the set 

ℬ = {∩α  ,  ∈ S},  is a basis of τ. 
Example 2.6. 

) Let = { , , , , , } be, with the topology = {∅, { }, { , }, { , , }, { , , , , }, }. 
Then the subset = {{ }, { , , }, { , , , , }} ⊂  is a subbase of τ. Since, the collection of 
all finite intersections of elements from S is: ℬ = {∅, { }, { , }, { , , }, { , , , , }}. 
Every set in τ is a trivial union of elements in ℬ and = { } ∪ { , , , , }, so ℬ is a base 
of τ and S is a subbase of τ. 

) Let = { , , , , } be, with the topology 
= {∅, { }, { }, { , }, { , }, { , , }, { , , , }, }. Then, the set 
= {{ }, { }, { , }, { , , }, { , , , }, } ⊂  is not a subbase of τ. The set of all finite 

intersects of sets from S is: ℬ = {∅, { }, { }, { , }, { , , }, { , , , }, }. All sets except 
{ , } can be expressed as trivial intersections. However, { , } cannot be expressed as a 
union of elements from ℬ, so ℬ is not a base of τ and hence S is not a subbase of τ. 
 

3-Topological parts, Weierstrass-Bolzano Theorem 
 

Let ( , ) be a topology space, A and B a non-empty subsets of E. 
3.1-Closure, accumulation point, Weierstrass-Bolzano theorem 

In addition to the open sets and the neighborhoods, which are introduced in section 2, in 
this section ,we will introduce other topological sets as well as their properties, among these 
sets, the closure, the interior, the set of accumulation points,...etc. 
The adherence. We say that ∈  is an adherent point of , if every neighborhood of  
contains at least one point of , i.e. ∀ ∈ ( ), ∩ ≠ ∅. The set of the adherent points of 
A, is called the adherence of A and it is noted ( ) or ̅. 
The closure. The intersection of all closed sets of E containing A, is called the closure of A 
and it is noted ( ). By ₁ in the corollary 2.1 ( ) is closed and it is the smallest one 
containing A. 
Proposition 3.1. The closure of A is equal to its adherence i.e. ( ) = . 
Proof. ( ) =  iffy ( ) = . If, ∈ ( ) , then ∉ ( ), there exists a closed set S 
containing A such that ∉ , then ∈  witch is an open set. By proposition 2.2,  is a 
neighborhood of , since ∩ = ∅ then ∉  i.e. ∈ . Inversely, if ∈ , then ∉

, there exists ∈ ( ), ∩ = ∅. Therefore ,there exists ∈ , ∈ ⊂  and ∩
= ∅, so ⊂ , with is a closed set and ∉ , then ∉ cl(A) i.e. ∈ ( ) . 

Proposition 3.2. 
1) A is closed⟺ ( ) =  then, ( ( )) = ( ). 
2) If, ⊂ , then ( ) ⊂ ( ). 
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3) ( ∪ ) = ( ) ∪ ( ). 
4) ( ∩ ) ⊂ ( ) ∩ ( ), the converse is not throw. 
Proof. 1) Evident. 2) Since ⊂ ( ) and ⊂ , then ⊂ ( ), as cl(A) is the smallest 
closed containing A, then ( ) ⊂ ( ). 3) Since, ⊂ ∪  and ⊂ ∪ , by 2) 

( ) ⊂ ( ∪ ) and ( ) ⊂ ( ∪ ), then ( ) ∪ ( ) ⊂ ( ∪ ). Conversely, 
⊂ ( ) and ⊂ ( ), then ∪ ⊂ ( ) ∪ ( ), as ( ) ∪ ( ) is closed, 1) and 

2) imply that ( ∪ ) ⊂ ( ) ∪ ( ). 4) Since ∩ ⊂  and ∩ ⊂ , then ( ∩
) ⊂ ( ) and ( ∩ ) ⊂ ( ), so ( ∩ ) ⊂ ( ) ∩ ( ). For the converse, it 

suffices to take in the space ℝ, = [0,1[∪ {3}, = [1,2[ then ( ) = [0,1] ∪ {3}, ( ) =
[1,2], ( ∩ ) = ∅, and ( ) ∩ ( ) = {1}, therefore ( ) ∩ ( ) ⊄ ( ∩ ). 
Example 3.1. In the space ℝ. 

) As ∀ , ∈ ℝ, [ , ] is closed then ([ , ]) = [ , ], ∀ , ∈ ℝ. Also, as ] −
∞, ] and [ , +∞[ are closed ∀ , ∈ ℝ, then (] − ∞, ]) =] − ∞, ]  ([ , +∞[) =
[ , +∞[. 

) (] , [) = (] , ]) = ([ , [) = [ , ], ∀ , ∈ ℝ. It suffices to prof that (] , [) =
[ , ], ∀ , ∈ ℝ, let ∈ (] , [), then ∀ > 0, ( , ) ∩] , [≠ ∅ as ∀ > 0, ( , ) ∩
] , [⊂ ( , ) ∩ [ , ], then ∀ > 0, ( , ) ∩ [ , ] ≠ ∅, so ∈ ([ , ]) = [ , ]. 

) (ℚ) = ℝ and (ℚ ) = ℝ. Since ℚ ⊂ ℝ and ℝ is closed then (ℚ) ⊂ (ℝ) = ℝ. 
Conversely if ∈ ℝ, then ∀ > 0, there exists ∈ ℚ, such that ∈ ( , ) (we have used the 
density of ℚ in ℝ), so ( , ) ∩ ℚ ≠ ∅ and ∈ (ℚ). 

) As in ) we use the density of ℚ  in ℝ, to prof that (ℚ }) = ℝ. 
Example 3.2. 

) If, A is the part of the indiscrete space E, then ( ) =  if ≠ ∅, or ( ) = ∅, if = ∅. 
) If, A is the part of the discrete space E, then ( ) = . 
) Let = { , , , } provided with the topology, = {∅, { , }, { , , }, }. Then ({ }) =

{ }, ({ }) = , ({ }) =  and ({ }) = { , }. 
Accumulation point. We say that, ∈  is an accumulation point of A, if every 
neighborhood of  contains at least one point of  other than .The set of accumulation points 
of A is denoted by A′. Then: ∈ ′ ⟺  ∀ ∈ ( ), ( \{ }) ∩ ≠ ∅. 
Isolated point. We say that, ∈  is an isolated point of A, if  is not an accumulation point 
of A.. The set of isolated points of A is denoted by A′’. So, ∈ ′′ ⟺there is ∈ ( ), such 
that ∩ = { }. 
Example 3.3. In the space ℝ, ∀ , ∈ ℝ. 

) All point of =] , [ is an accumulation point and ′ = ( ) = [ , ]. Indeed, if 
∈] , [, for every > 0, if − ≤ < , ] − , [∩ =] , [ then ( ( , )\{ }) ∩ ≠

∅, so  is an accumulation point of ] , [;  if < − < , ] − , [∩ =] −
, [ then ( ( , )\{ }) ∩ ≠ ∅, likewise in the cases, < + ≤ ;  < < +
 and − ≤ < ≤ + . In all cases  is an accumulation point of ] , [. Also,  is an 

accumulation point of A, since for every > 0 if, + ≤ , ] , + [∩ =] , + [ then 
( ( , )\{ })∩A≠ ∅ and if < + , then ( ( , ) ∖ { }) = ] , [ ≠ ∅. Likewise,  is an 
accumulation point of ] , [, so = ( ) = [ , ]. 

) All point of =] − ∞, [ is an accumulation point and ′ =] − ∞, ] = ( ). Indeed, if 
∈] − ∞, [, for every > 0, if, + ≤ , ( ( , ) ∖ { }) ∩ = [ − , [∪] , + ], if 
< + , ( ( , )\{ }) ∩ = [ − , [∪] , [, then  is an accumulation point of ] −

∞, [. we prove as in ) that  is also an accumulation point of . So ′ =] − ∞, ] = ( ). 
) Since, 0, ∖ {0} ∩ = ∅ and 1, ∖ {1} ∩ = ∅. Then, 0 and 1 are isolated 

points of = {0,1}. 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 15 
 

) All point of = , ∈ ℕ∗  is an isolated point. Let us demonstrate for example that 1 is 

an isolated point of A. It suffices to take = , then 1, ∖ {1} ∩ = ∅. As, if ∈

1, ∖ {1} ∩ = ∅, there exists ∈ ℕ∗ ∖ {1}, such that =  and 1 − < <1+ , i.e. 

5 <6<7  impossible, since ≥ 2. Also,  is an isolated point of , since , ∖
12∩ =∅, if not there exists 0∈ℕ∗∖{2} such that 3 0<8<5 0, impossible since 0=1 or 

≥ 3. Note that 0 is an accumulation point of A, indeed ∀ > 0, by Archimedes axiom , 
there exists ∈ ℕ∗, < , so ( (0, ε) ∖ {0}) ∩ ≠ ∅. 

) All points of the discrete space ℝ, are isolated points, since ∀ ∈ ℝ, the set = { } ∈
( ) satisfies ( ∖ { }) ∩ = ∅. 

Corollary 3.1. 
) ( ) = ∪ ′. 
) A is closed⟺A contains all its accumulation points. 

Proof. ) Let ∈ ( ), since ⊂ ( ), either  is in A or it isn't in A. If ∈ , then 
∈ ∪ ′. If, ∉  then ∈ ′ since ∀ ∈ ( ), ( ∖ { }) ∩ ≠ ∅, so ( ) ⊂ ∪ ′. 

Inversely, if ∈ ∪ ′ then ∈ ⊂ ( ) or ∈ ′ then ∀ ∈ ( ), ( ∖ { }) ∩ ≠ ∅, 
so ∩ ≠ ∅ and ∈ ( ). ) If A is closed, = ( ) = ∪ ′, then ′ ⊂  i.e. A 
contains all its accumulation points. Now, if ′ ⊂  as ( ) = ∪ ′, then ( ) ⊂ , hence 

( ) =  with implies that  is closed. 
Starting from that, ⋂ = ∅∈ℕ∗ , where = 0, , ∈ ℕ∗, if not there exists ∈ 0, , 

∀ ∈ ℕ∗, then < , ∀ ∈ ℕ∗, i.e. ℕ is bounded above, contradiction.  
Question. Does there exists sequences of intervals of ℝ whose intersection is not empty? The 
answer is given by the following Cantor principal. 
Lemma 3.1. (Nested interval theorem or Cantor principal). The intersection of decreasing 
sequence of nonempty intervals = [  ,  ], ∀ ∈ ℕ∗, is not empty. And if, ∈ℕ∗{ −

=0, then, the intersection is reduced to a single point. 
Proof.  = { ₁, ₂, . . . } and = { ₁, ₂, . . . }, since ⊂ , ∀ ∈ ℕ∗, then A is 
bounded above, by the elements of B, and B is bounded below by the elements of A, so 
∀ ∈ ℕ∗  ≤ supA ≤  , ≤  . Since , is the first lower bound of B then, 
∀ ∈ ℕ∗  ≤ supA ≤ ≤   i.e. ∩ ∈ℕ∗ = [ , ] ≠ ∅. Let for any  ∈ ℕ∗, 

=  −   and = { , ∈ ℕ∗}, it is obvious that ∀ ∈ ℕ∗, 0 ≤ , by ₁₆ chapter I 
 exists, if = 0 then = , if not for = > 0, there exists 

₀ ∈ ℕ∗ such that ₀ < ≤ ₀ ₀= ₀, contradiction. Therefore, the intersection is 
reduced to a single point. 
Theorem 3.1. (Weierstrass-Bolzano theorem). Any infinite bounded part E of the space ℝ has 
at last one accumulation point. 
Proof. Let ₁ = [ , ], it is clear that ⊂ ₁, then one of the tow intervals 

, , ,  contains an infinity points of E, if not E is finite. Let ₂ 
the infinite one, then ₂ ⊂ ₁, ∩ ₂ is an infinite part of ℝ, by the same, we devise ₂ on two 
intervals where one of them say ₃ ⊂ ₂ and ∩ ₃ is an infinite part of ℝ, by the same idea, 
we construct a sequence of intervals such that ⊂ = [  ,  ] = , and ∩ , 
∀ ∈ ℕ∗ is infinite. By Cantor principle, ⋂ ≠ ∅∈ℕ∗ , since 0 = { =  −  , ∈
ℕ∗}, then = = , and ⋂ = {a}∈ℕ∗ . then,  is an accumulation point of E, since 
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for > 0, there exists ₀ ∈ ℕ∗ such that ₀ < , then ∈ ₀ ⊂ ( , ) so ( ( , ) ∖ { }) ∩
≠ ∅. 

 
3.2-Interior, boundary, exterior 
The interior. A point ∈  is an interior point of A, if ∈ ( ). The set of all interior 
points of A, is denoted by ( ) or ⁰, and is called, the interior of .  
Then ( ) =∪ ⊂ , i.e. ( ), is the greatest open set contained in A. In deed, if 

∈ ( ), there exists an open , ∈ ⊂ , then ( ) ⊂∪ ∈  and obviously, if 
∈∪ ∈ , there exists  an open , ∈ ⊂ , so ∈ ( ). 

Example 3.4. in the space ℝ. 
) ∀ , ∈ ℝ, ([ , ]) = (] , [) = (] , ]) =] , [ and (] − ∞, ]) =] − ∞, [. 
) ∀ ∈ ℝ, ({ }) = ∅. 
) (ℕ) = (ℤ) = (ℚ) = (ℚ ) = ∅. Prof that for example (ℕ) = ∅, suppose 

that, there exists > 0 such that ] − , + [⊂ ℕ, so ℕ contains an element of ℚ , 
contradiction. 
Example 3.5. 

) If A is the part of the indiscrete space E, ( ) =  if = ;
∅ if = ∅. 

) If, A is the part of the discrete space E, ( ) = . 
) If, = { , , , } and = {∅, { }, { }, { , }, } then ({ }) = ({ }) = ∅ and 

({ , , }) = { }. 
Corollary 3.2. ∈ ( )  ⟺  ∈ ( ). 
Proof. If ∈ ( ), witch is open, by proposition 2.2 ( ) ∈ ( ), as ( ) ⊂  by ₄ 
in theorem 2.1, ∈ ( ). Reciprocally, if ∈ ( ), there exists ∈ , ∈ ⊂  then 

∈ ( ). 
Proposition 3.3. 
1)  is open⟺ ( ) =  then, ( ( )) = ( ). 
2) If, ⊂ , then ( ) ⊂ ( ). 
3) ( ∩ ) = ( ) ∩ ( ). 
4) ( ) ∪ ( ) ⊂ ( ∪ ), the converse is not throw. 
Proof. 1) Evident. 2) If ⊂ , as ( ) ⊂ , then ( ) ⊂ , since ( ) is open and 

( ) is the greatest open contained in , then ( ) ⊂ ( ). 3) It is clear that by 2) 
( ∩ ) ⊂ ( ) and ( ∩ ) ⊂ ( ), so ( ∩ ) ⊂ ( ) ∩ ( ). 

Conversely, ( ) ⊂  and ( ) ⊂ , then ( ) ∩ ( ) ⊂ ∩  so, by definition of 
( ∩ ) and ( ) ∩ ( ) is open, we have ( ) ∩ ( ) ⊂ ( ∩ ). 4) It is 

clear that by 2) ( ) ⊂ ( ∪ ), ( ) ⊂ ( ∪ ), then ( ) ∪ ( ) ⊂
( ∪ ). To prof that the inverse is not true. Let in the space ℝ, = [−1,0[  =

[0,1[ then ( ) =] − 1,0[, ( ) =]0,1[,  ( ∪ ) =] − 1,1[⊈] − 1,0[∪]0,1[= ( ) ∪
( ). 
The duality properties in the sense of "complement" between the closure and the interior 

are given by the following corollary:  
Corollary 3.3. ( ) = ( )  and ( ) = ( ) . 
Proof. If, ( ) = ( )  then ( ( ) = ( ), so ( }) = ( ) . It remains to 
prof that ( ) = ( ) . Since, ( ) =∪ ∈△ , where ∀α∈△,  is open and ⊂ , 
then ∀ ∈△, ⊂  and ( ) =∩α∈△ = ( ) (by definition of the closure of ). 
The boundary. A point ∈  is an boundary point of A, if ∈ ( ) ∩ ( ). The set of all 
boundary points of A, is denoted by ( ) or ( ), and is called the boundary of A. Then 

( ) = ( ) ∩ ( ) = ( )\ ( ) is closed. 
Corollary 3.4. 
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) A is closed⟺ ( ) ⊂ . 
) A is open⟺ ( ) ∩ = ∅. 
) ( ( )) ⊂ ( ) and ( ( )) ⊂ ( ). 

Proof. ) A is closed iffy, ( ) = , then ( ) = ∩ ( ) ⊂ . Conversely, if 
( ) ⊂  and ( ) ⊈ , there exists ∈ ( ) and ∉ , i.e. ∈ ⊂ ( ) then 

∈ ( ) ⊂ , contradiction. ) A is open iffy ( ) = , since ( ) = ( ) = , 
then ∩ ( ) = [ ( ) ∩ ( )] ∩ ( ) = ∅. Conversely, if ( ) ∩ = ∅ and 

⊈ ( ), there exists ∈ ⊂ ( ) and ∉ ( ), i.e. ∈ ( ) = ( ), so 
∈ ( ) ∩ , contradiction. ) ( ( )) = ( ( )) ∩ ( ( ) ) = ( ) ∩
( ( ) ) ⊂ ( ) ∩ ( ) = ( ) and ( ( )) = ( ( )) ∩ ( ( ) ) =
( ( )) ∩ ( ( )) = ( ( )) ∩ ( ) ⊂ ( ) ∩ ( ) = ( ). 

It is obvious that. 
Corollary 3.5. If A is closed then: = ( )  ⟺ ( ) = ∅ ⟺ ( ) = . 
The exterior. A point ∈  is an exterior point of A, if ∈ ( ). The set of all exterior 
points of A, is denoted by ( ), and is called the exterior of A. Then ( ) = ( ) is 
open. 
Corollary 3.6. 

) ( ) =  ⟺ ( ) = . 
) ( ) = ( ( ) ) = ( ( )). 
) ( ∪ ) = ( ) ∩ ( ) and ( ) ∪ ( ) ⊂ ( ∩ ). 

Proof. ) ( ) = ∅ iffy ( ) = ∅ iffy ( ) = . ) ( ) = ( )  iffy ( ) =

( ) iffy ( ( ) ) = ( ) = ( ( ) ) = ( ) = ( ) =
( ) = ( ). ) ( ∪ ) = ( ∪ ) = ( ∩ ) = ( ) ∩ ( }) =
( ) ∩ ( ) and ( ) ∪ ( ) = ( ) ∪ ( ) ⊂ ( ∪ ) =
(( ∩ ) ) = ( ∩ ). 

Example 3.6. in the space ℝ. 
) ∀ , ∈ ℝ, ([ , ]) = (] , [) = (] , ]) =] − ∞, [∪] , +∞[ and (] −

∞, ]) =] , +∞[. 
) ∀ , ∈ ℝ, ([ , ]) = (] , [) = (] , ]) = { , } and (] − ∞, ]) = { }. 
) ∀ ∈ ℝ, ({ }) =] − ∞, [∪] , +∞[, ({ }) = { }. 
) (ℕ) =] − ∞, 0[∪ (∪ ∈ℕ] , + 1[), (ℕ) = ℕ;  (ℤ) =∪ ∈ℤ] , + 1[, (ℤ) =

ℤ;  (ℚ) = (ℚ ) = ∅, (ℚ) = (ℚ ) = ℝ. 
Example 3.7. 

) If A is the part of the indiscrete space E, ( ) =  if = ∅;
∅ if = . 

) In the discrete space E, (∅) =  and ( ) = ∅. 
) If, = { , , , } and = {∅, { }, { }, { , }, } then ({ }) = { , } and 

({ , , }) = ∅. 
 

4-Metric Space 
 

In this chapter, we are interested in the definition, of one special kind of a topological 
space, called metric space, i.e. a space witch a metric is defined. This space is very useful, in 
the study of the Cauchy sequences, uniform continuity, and enjoying several properties, which 
are not valid in a general topological space. We present here, and in the chapter 13 and 14, the 
particularities of this space such as: open, neighborhood, limit, continuity,...,etc. 
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4.1 Definitions and examples 
Definition 4.1. The application  from the set ×  into ℝ₊ is said to be a metric over E, if it 
satisfies for every , , ∈ , the following three axioms:  

₁) ( , ) = 0 ⟺  = , (separation axiom). 
₂) ( , ) = ( , ), (symmetry axiom). 
₃) ( , ) ≤ ( , ) + ( , ), (triangular inequality axiom). 

The couple ( , ) or simply E if no confusion (as in general, there are more than one metric 
defined on E) 
Example 4.1. 

) The function : ℝ × ℝ → ℝ₊ defined by: ∀ , ∈ ℝ, ( , ) = | − |, where |. | is the 
absolute value function on ℝ is a metric on ℝ, called the usual metric and (ℝ, ) is called 
usual metric space. 

) Let ℝⁿ, ∈ ℕ∗ be the  dimensional Euclidian space, and ₁, ₂, ∞ the functions from 
ℝⁿ×ℝⁿ to ℝ₊ defined respectively by :∀ , ∈ ℝⁿ, ₁( , ) = ∑ | − | ;  ₂( , ) =

∑ ( − ) ;  and ∞( , ) = | − |, where = ( , . . . , , . . . , ), =
( , . . . , , . . . , ), and ∀1 ≤ ≤ , , ∈ ℝ. Then (ℝⁿ, ₁), (ℝⁿ, ₂) and (ℝⁿ, ∞) are 
metric spaces. To prove the triangular inequality axiom for ₂, we us the following Cauchy-
Bouniakowsky inequality: ∀ , ∈ ℝⁿ, ∑ ≤ ∑ ∑ . 

) Let E be an ensemble, the function  from ×  to ℝ₊ defined by: ∀ , ∈ , ( , ) =
1, if x ≠ y
0, if x = y, is a metric on E called a discrete metric, and the metric space ( , ) is called a 

discrete metric space. 
) Let , ∈ ℝ be, and = ([ , ]) the set of the continuous functions from [ , ] to ℝ. 

The applications ₁, ₂, ∞ from ×  to ℝ₊ defined respectively by: ∀ , ∈ , ₁( , ) =

∫ | ( ) − ( )| ; ₂( , ) = ∫ ( ( ) − ( ))²  and ∞( , ) = | ( ) −

( )| are the metrics on E, so ( , ₁), ( , ₂) and ( , ∞) are metric spaces. To prove the 
separation axiom for ₁, we us the following result concerning the integral of the positive 
function: if the continuous function ℎ: [ , ] → ℝ₊ is such that ∫ h(t)dt=0, then ℎ( ) =
0, ∀ ∈ [ , ].To prove the triangular inequality axiom of ₂, we us the following integral 
Cauchy-Bouniakowsky inequality: 

∀ , ∈ , ∫ ( ) ( ) ≤ ∫ ( )² ∫ ( )² . 

Proposition 4.1. In a metric space ( , ), the following inequality holds: ∀ , , ∈
; | ( , ) − ( , )| ≤ ( , ). 

Proof. By, the symmetric and the triangular inequality property in the definition 4.1, 
∀ , , ∈ , ( , ) ≤ ( , ) + ( , ) and ( , ) ≤ ( , ) + ( , ), then ∀ , , ∈

, ( , ) − ( , ) ≤ ( , ) and ( , ) − ( , ) ≤ ( , ), so ∀ , , ∈ , − ( , ) ≤
( , ) − ( , ) ≤ ( , ), i.e. ∀ , , ∈ , | ( , ) − ( , )| ≤ ( , ). 

It's easy to check that: 
Proposition 4.2. If, ( , ) is a metric space and : ℝ₊ → ℝ₊ is an increasing function, which 
satisfies, for every , ∈ ℝ₊, ( + ) ≤ ( ) + ( ) and (0) = 0. Then, the 
composition function ∘  is a metric on . 
Example 4.2. Let ( , ) be a metric space, the functions , ′, ′′: × → ℝ₊, defined 
respectively by: ∀ , ∈ , ( , ) = (1, ( , ));  ′( , ) = ( , )

( , )
 and ′′( , ) =

(1 + ( , )) are metrics. Indeed, the function , , : ℝ₊ → ℝ₊ defined respectively by, 
∀ ∈ ℝ , ( ) = (1, );  ( ) =  and ( ) = (1 + ), where  is the Neperien 
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logarithm function, satisfy the conditions of the proposition 4.2, since ∀ , ∈ ℝ ,  ( +
) = (1, + ) ≤ (1, ) + (1, ) = ( ) + ( );  ( + ) = =

+ ≤ + = ( ) + ( ) and ( + ) = (1 + + ) ≤ (1 +
)(1 + ) = (1 + ) + (1 + ) = ( ) + ( ). The others conditions are obvious. 

Definition 4.3. Let a part A, of the metric space E. 
) A is said to be bounded, if there is > 0, such that ( , ) ≤ , ∀ , ∈ . 
) When A is bounded, the real number ( ) = , ∈ ( , ) is called, the diameter of A. 

It is clear that: 
Corollary 4.1. If A and B are two subsets of the metric space ( , ). Then: 

a) A is bounded⟺ ( ) < +∞. 
b) ( ) = 0 ⟺ = { }. 
c) ( ) = ( ( )). 
d) If A⊂ ⟹  ( ) ⊂  ( ). 
e) ( ∪ )= ( ) + ( , ) + ( ). 

Example 4.3. 
) In the metric space E, ∀ ∈ , the part { } is bounded and ({ }) = 0. 
) In the usual metric space,  ([ , ]) = , ∈[ , ]| − | = − . 

Definition 4.4. Let A and B are nonvoide parts of a metric space ( , ). We call distance 
between A and B, the real number ( , ) = ( , )∈ × ( , ), and for a fixed  in E, 
distance between { } and B, the real number ( , ) = ∈ ( , ). 
Remark 4.1. Since in the usual metric ℝ, for = {0} and = , ∀ ∈ ℕ∗ ( , ) =

, ∀ ∈ ℕ∗ = 0, then the first axiom in the definition of the metric is not checked, 
then the distance between the parts of a metric space, is not a metric. 
Definition 4.5. Let ( , ) be a metric space, ∈  and > 0. 

) The set ( , ) = { ∈ , ( , ) < }, is called the open bull, with center  and radius . 
) The set ( , ) = { ∈ , ( , ) ≤ }, is called the closed bull, with center  and radius 
. 
) The set ( , ) = { ∈ , ( , ) = }, is called the sphere, with center  and radius . 

Example 4.4. 
a) In (ℝ, ), if a∈ℝ; ( , ) = { ∈ ℝ, | − | < } =] − , + [; 

( , ) = { ∈ ℝ, | − | ≤ } = [ − , + ]; and ( , ) = { ∈ , | − | = } = { −
, + }. 

b) In (ℝ², ₁), (0,1) = {( , ) ∈ ℝ², | | + | | < 1}, witch is the surface of a lozenge. 
) In (ℝ², ₂), (0,1) = {( , ) ∈ ℝ², ² + ² ≤ 1}, witch is a disk. 
) In (ℝ², ∞), (0,1) = {( , ) ∈ ℝ², (| |, | |) = 1}, witch is a square. 
) In a discrete metric space E. 

If, < 1, ( , ) = ( , ) = { } and ( , ) = ∅. 
If, = 1, ( , ) = { } and ( , ) = ( , ) = . 
If, > 1, ( , ) = ( , ) =  and ( , ) = ∅. 
Proposition 4.2. A part of a metric space, is bounded⟺it is contained, in an open or closed 
ball. 
Proof. Let A a bounded part of a metric space E, then δ(A)<+∞ and ∀ , ∈ , ( , ) ≤

( ), so for =  (fixed), ∀ ∈ , ( , ) ≤ ( ), then ⊂ ( , ( )). Inversely, suppose 
that there exist ∈  and > 0, such that ⊂ ( , ), then ∀ , ∈ , ( , ) ≤  and 

( , ) ≤  since, by the triangular inequality axiom, ( , ) ≤ ( , ) + ( , ), then 
∀ , ∈ , ( , ) ≤ 2  and A is bounded. 
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4.2. Metric-induced topology 
The topology on a metric space, is closely related to the open balls, defined by the metric 

of this space. Then, if ( , ) is a metric space, the collection ∪ {∅} of the subsets of E, 
defined by: O∈ ⟺for every ∈ , there exists > 0, such that ( , ) ⊂ , is a topology 
on E, called a metric-induced topology, or associated topology, or adjacent topology to the 
metric space E. Let us verify that ∪ {∅}, satisfies the axioms of a topology: 

₁-It is clear that ∅ and E are in ∪ {∅}. 
₂-If, { , ∈△} is the collection of the elements of  then, for ∈∪ ∈△ , there exist 
₀ ∈ ∆ and ∈ ₀, so there exits r>0, such that ( , ) ⊂ ₀ ⊂∪ ∈△ , so ∪ ∈△ ∈ . 
-If, { , 1 ≤ ≤ , ∈ ℕ∗} is the finite collection of the elements of  then, for ∈

∩α , we have ∈ , ∀ = 1, . . . , ; then there exists > 0, such that ( , ) ⊂  , 
so for = { , 1 ≤ ≤ }, ( , ) ⊂∩α , therefore ∩α ∈ . 
Proposition 4.3. 

) The open ball is open. 
) The closed ball is closed. 

Proof. ) Let ∈ ( , ), then for = − ( , ) > 0, ( , ) ⊂ ( , ), so ( , ) is 
open. Indeed, for ∈ ( , ), ( , ) < = − ( , ), then ( , ) ≤ ( , ) +
 ( , ) < , therefore ∈ ( , ). ) Let ∈ ( , ) , then ( , ) ⊂ ( , ) , where 

= ( , ) − > 0. Indeed if ∈ ( , ), ( , ) < = ( , ) − ≤ ( , ) +
( , ) − , implies that < ( , ), so ∈ ( , )  hence ( , )  is open , so ( , ) is 

closed. 
Remark 4.2. 

) All the definitions given in a general topological space, remain valid for a space associated 
to a metric such as: the neighborhoods, the closure, the interior, the boundary,...etc. 

) Any open in  is the union of the open balls, indeed if, ∈ , =∪ ∈ { } ⊂
∪ ∈ ( , ) ⊂ . So for every  in a metric space, the collection { ( , ), > 0} of open 
balls, constitute a basis of neighborhoods of . Also, ∈ ( ) ⇔ ∃ > 0, ( , ) ⊂ . 
Indeed: ∈ ( ) ⇔ ∃ ∈ , ∈ ⊂ ⇔ ∃ > 0, ( , ) ⊂ ⊂ . Therefore in 
( , ), it suffices for neighborhoods of  to consider the collection of open bulls 
{ ( , ), > 0}. 

) It is clear that, in a metric space , for 0 < <  and ∈ , ( , ) ⊂ ( , ) ⊂ ( , ). 
) Do not believe that, the interior of a closed ball is the open ball, and that, the closure of an 

open ball is the closed ball. In fact, in a discrete metric space, ( , ) = { }, since 
( ( , )) = ({ }) = { } (We will see in chapter 13, that in metric space the singleton 

is closed) and ( , ) = , then ( ( , )) = ( ) = . 
 

5-Densety, Countability and Separation Axioms 
 

5.1-Densety, countability  
A topological space, with the concepts defined in the preceding chapters, becomes more 

and more interesting, if it is reinforced by additional conditions, such as: countability, 
separability, compactness, ... etc. In the sequel, we will introduce the axioms of this series in 
the order of their successive reinforcement. Let  be a topological space, A and B a non-
empty subsets of E. 
Everywhere dense part. The part A is said to be everywhere dense in E, if ( ) = . 
Dense part. The part A is said to be dense in E, if ( ( )) ≠ ∅. Equivalently, the part A is 
said to be nowhere dense in E, if ( ( )) = ∅. 
Example 5.1. 

) ℚ and ℚ  are everywhere dense in the space ℝ. 
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) In the space ℝ, all intervals are dense, for example: = [0,1[ is dense in ℝ, since 
( ( )) =]0,1[≠ ∅. 

) In the indiscrete space, all part A is dense in E, since ( ( )) = ≠ ∅. The only 
nowhere dense subset is ∅. 

) In the discrete space E, all part A, is dense in itself, since ( ) = . The only nowhere 
dense subset is ∅. 
It is obvious that. 
Proposition 5.1. 
1) If ( ) =  and ⊂ , then ( ) = . 
2) A part A of the space E is nowhere dense⟺cl(A) is nowhere dense⟺ ( )  is 
everywhere dense. 
3) If A or B are nowhere dense, then ∩  is nowhere dense. 
The following corollaries give useful characterizations for the everywhere dense parts. 
Corollary 5.1. ( ) = ⟺for every non empty open , ∩ ≠ ∅. 
Proof. Since ∀ ∈ , ∈ ( ) and ∈ ( ), then ∩ ≠ ∅. Inversely, let ∈  and 

∈ ( ), there exists an open , ∈ ⊂ , such that ∅ ≠ ∩ ⊂N∩A, so ∈ ( ). 
Corollary 5.2. If ( ) =  and O is an open, then ( ∩ ) = ( ). 
Proof. Let ∈ ( ) and ∈ ( ), there exists an open U, ∈ ⊂ , as ∈ ( ), then 

∩ ≠ ∅, furthermore ∩  is open. By corollary 5.1, ∩ ( ∩ ) = ( ∩ ) ∩ ≠ ∅, 
then ∩ ( ∩ ) ≠ ∅, so ∈ ( ∩ ), the converse is obvious. 
Remark 5.1. It may be that, the equality in corollary 5.2 is false, if O is not open, as shown in 
the following example. Let = {1,2,3}, = {∅, {1,2}, }, = {1} and = {3} no open, then 

( ) = , ( ∩ ) = ∅ and ( ) = {3}, so ( ∩ ) ≠ ( ). 
Corollary 5.3. Let U be a part, of a space E. Then, U is open⟺ ( ) ∩ ⊂ ( ∩ ), for 
all ∈ ( ). 
Proof. Let ∈ ( ) ∩  and ∈ ( ), as ∈ ( ), then ∩ ∈ ( ), so ∩ ( ∩

) ≠ ∅, therefore ∈ ( ∩ ). Reciprocally, if ( ) ∩ ⊂ ( ∩ ), for all ∈ ( ), 
then for = , ( ) ∩ ⊂ ( ∩ ) = ∅, so ( ) ∩ = ( ) ∩ = ∅, which 
implies that ⊂ ( ), hence U is open. 
Separable space. A topological space is called separable, if it has an everywhere dense 
countable subset. 
First countability. A space E, is called first countable or 1D-space, if each point of E, has a 
countable basis of neighborhoods. 
Second countability. A space E, is said to be, second countable or 2D-space, if the topology 
of E, has a countable basis. 
 
Example 5.2. 
) The space ℝ is: 
) Separable, since ℚ is countable and (ℚ) = ℝ. 
) 1D-space, since ∀ ∈ ℝ, the countable family − , + , ∈ ℕ∗  is a basis of 

neighborhoods of . 
) 2D-space, since the countable family − , + , ∈ ℕ∗and r ∈ ℚ  is a basis of . 
) The indiscrete space is separable, and 2D-space, since B=E. 
) The discrete space is clearly 1D-space, but it is 2D-space, only if it is countable. 
) The cofinite space is 2D-space, it is a discrete space if it is finite. 

Proposition 5.2. Any 2D-space, is 1D-space and separable.  
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Proof. It is clear that 2D-space is 1D-space. Let = { , ∈ ℕ} a countable basis and 
= { , ∈ ℕ}, ∈  then ( ) = , if not the open set = ( )  has no element of 

, impossible since there exists ₀ ∈ ₀ ⊂ . 
Remark 5.2. In general, the separable space is not 2D-space, for example 

= {∅, {[ , [, , ∈ ℝ}, ℝ} is a separable topology on ℝ, which is not 2D-space. 
Proposition 5.3. In the separable space, every disjoint collection of open sets is countable. 
Proof. Let { , ∈△} be a disjoint collection of open sets and  a countable subset of the 
space E, with ( ) = . Suppose that { , ∈△} is uncountable. Since for every ∈  
and every ∈△ ∩ ≠ ∅, then ∪α∈△ ( ∩ ) ≠ ∅ as { , ∈△} is a disjoint collection, 
this union is uncountable, therefore D is uncountable, contradiction. 
The collection { , ∈△} of the subsets of E, is called a cover of E, if ⊂∪α∈△ . We say 
that, { , ∈ δ ⊂△} is a subcover of { , ∈△} if, it is a cover of E. A cover of a space, 
where the elements are open (respectively closed) is called open cover (respectively closed 
cover). 
Proposition 5.4. In 2D-space, any open cover has a countable subcover. 
Proof. Let { , ∈△} be an open cover of a space E and { , ∈ ℕ} a countable basis of τ, 
then for ∈ , there exists ( ₀, ₀) ∈△× ℕ, such that ∈ ₀ ⊂ ₀. The collection { , ∈

⊂ ℕ} whitch contains ₀ is then finite or countable and the collection { , ∈ } cover 
E, since ⊂∪ ∈ . 
 
5-2. First variation of the separation axioms 

Another important type, of additional conditions, on a topological space, is provided by the 
separations axioms i.e. distinct points or disjoint closed sets, may be separated by disjoint 
open sets. In addition to the open sets, the separation axioms are required to complete the 
structure of the topology. We will give these axioms, according to the increasing degree of 
separation. 
A space E is: 
T₀ (or T₀-space, or Kolmogorov space), if ,  are distinct points of E, there exists an open set 
O, which contains one of the points but not the other. 
T₁ (or T₁-space, or Fréchet space), if ,  are distinct points of E, there exists: an open  
which contains  but not  and, an open  which contains  but not , (  and  are not 
necessarily disjoint). 
T₂ (or T₂-space, or Hausdorff space, or separate space ), if ,  are distinct points of E, there 
exist disjoint open sets  and  such that ∈  and ∈ . 
Regular (or Regular space), if for a closed set F in E, and ∈ , there exist disjoint open 
sets  and  such ⊂  and ∈ . 
T₃ (or T₃-space), if it is both T₁ and regular or T  and regular. 
Normal (or normal space), if F and G are disjoint closed sets, there exist disjoint open sets  
and  such that ⊂  and ⊂ . 
T₄ or (or T₄-space), if it is both T₁ and normal or T  and normal. 
Completely normal, if A and B are disjoint, there exist disjoint open sets  and  such that 

⊂  and ⊂ . 
T₅, (or T₅-space), if it is both T₁ and completely normal or T  and completely normal. 
Example 5.3. 

) (ℕ∗, ) defined in example 2.3 ), is T₀-space. Indeed, if , ∈ ℕ∗, m<n then, the open 
set = {1,2, . . . , } containing  and do not containing . In the other hand, since if 

, ∈ ℕ∗, < , any open = {1,2, . . . , } containing both  and , so (ℕ∗, ) is not T₁-
space. Then T₀⇏T₁. 
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) The space ℝ is Hausdorff. In fact, if , ∈ ℝ, ≠  ( < ) there exists ∈] , [, such 
that, − , ∩ , + = ∅. 

) The discrete space E, is T₀, T₁ and T₂-space. Indeed, if , , ∈ , ≠ ≠ , the open { } 
not containing , then E, is T₀ the open { , } not containing  and the open { , } not 
containing , then E, is T₁. As, the open { } and { } are disjoint, E is T₂. 

) Let = { , , } with the topology = {∅, { }, { , }, }, where its elements are clopen. 
Then ∉ { , }, ∉ { }, ∉ { } and { } ∩ { , } = ∅, so E is regular, since there is not open 
sets containing  but not  and no open set containing  but not . Therefore, E is not T₀-
space, so it is not T₁-space and it is not T . The only disjoint clopen sets are { } and { , }, 
then E is normal but it is not T₄-space. 

The T -space (i=0,...,5) are characterized by: 
Proposition 5.5. Let E be a space. The following assertions are equivalent: 
a) E is T₀. 

) If, ,  are distinct points of E then ({ }) ≠ ({ }). 
) If, ,  are distinct points of E, then  and  are not accumulation points of = { , }. 

Proof. ) ⟹ ). As, E is T₀ and ,  are distinct points of E, there exists an open ∋ , such 
that { } ⊂  which is closed, then ({ }) ⊂ , so ∈ ({ }) and ∉ ({ }) then 

({ }) ⊈ ({ }). ) ⟹ ). Since ,  are distinct points of E, by ) ∉ ({ }) and 
∉ ({ }), there exist an open ∋  and an open ∋  such that: ∩ { } = ∅ and 
∩ { } = ∅, so ∩ ( \{ }) = ∅ and ∩ ( \{ }) = ∅, then  and  are not accumulation 

points of = { , }. ) ⟹ ). If x is not an accumulation point of A, there exists ∈ ( ) 
such that ( \{ }) ∩ = ∅, therefore there exists an open sets , ∈ ⊂ , then ( ∖
{ }) ∩ = ∅, so ∉ ,. The same proof, for , it suffices to replace  by , hence E is T₀. 
Proposition 5.6. E is T₁⟺ ∀ ∈ , the singleton { } is closed. 
Proof. let ∈ , suppose that, there exists ∈ ({ }) and ∉ { } then, there exists an open 

∋ ,  and ∉ , such that ∩ { } = { }, contradiction. Conversely, let , ∈ , ≠ , 
then ∉ ({ }) = { }, so there exists an open ∋ ,  such that ∩ { } = ∅, hence 

∉ , so E is T₁.  
Corollary 5.4. In a T₁-space E. The point ∈ , is an accumulation point of a infinite part 

⊂ ⟺every neighborhood of , contains infinite points of A. 
Proof. Let  be an accumulation point of a part A. Suppose that, there exists ∈ ( ) 
contains, a finite number of points of A, and let = { ₁, . . . , } be this number, without 

 (if ∈ ), as E is a T₁-space, by the proposition 5.6, the singleton is closed, then =
∪ { } is closed,  is open, ∈ ( ), since ∩ ∈  ( ), and (( ∩ ) ∖ { }) ∩

= ∩ ∩ { } ∩ = ( ∩ ) ∩ { } = ∅, contradiction with (( ∩ ) ∖ { }) ∩ ≠
∅. It is clear that, without any condition on the space E, if ∈ ( ), N contains infinite 
points of A, then ( ∖ { }) ∩ ≠ ∅, so  is an accumulation point of a part . 
Remark 5.3. By proposition 5 2 and corollary 3.1, the finite part of a T₁-space, is closed, and 
does not have accumulation points. 
Proposition 5.8. E is Hausdorff⟺the intersection of the closed neighborhoods of any ∈ , 
is reduced to the singleton { }. 
Proof. Let E be a Hausdorff space, ∈  and ( ) the collection of the closed 
neighborhoods of . Let's demonstrate that ∩ ∈ ( ) = { }. Suppose that, there exists 

∈∩ ∈ ( ) , and ≠ , by the assumption, there exist disjoint open sets ∋ , , ∋ ,  
witch implies that ⊂ , therefore ∈ ( ) (absorption property ₄, theorem 2.1), 
since ∈∩ ∈ ( ) , then ∈ ( ) contradiction ( ∩ = ∅). If now, ∀ ∈ ,
∩ ∈ ( ) = { } then for ≠ , there exists ∈ ( ), such that ∉ , therefore there 
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exists an open , ∈ ⊂ , then ∉ , ∈ ⊂ ( ) ⊂ ( ) = , so ∈ ( )  and 
∩ ( ) = ∅, E is then Hausdorff. 

Example 5.4. 
) If, E is an infinite set, then cofinite space E is a T₁-space, but it is not Hausdroff space. 

Indeed, ∀ ∈ , { }  is open then {x} is closed, by proposition 5.6 E is a T₁-space. If, now 
,  are distinct points of E, and O is any open, such that ∈  and ∉ , then ∈  witch 

is finite and closed. Thus, there are no nonempty open sets disjoint with . Therefore E is not 
Hausdorff. Then T₁⇏T₂. 

) Let E be a non countable set, it is easy to verify that the collection  of all subsets of E, 
with countable complements, union ∅ is a topology in E, called cocountable topology and 
( , ) is called cocountable space. E is T₁-space but not Hausdorff. Indeed if, , ∈  and 

≠ , as ∈ { } ∈ , we can consider an open  containing  but not y.As  is 
countable and contains no nonvoide open sets, then E is not Hausdorff. 
Proposition 5.9. Let E be a space. The following assertions are equivalent: 

)  is regular. 
) Every element of E, has a basis of closed neighborhoods. 
) If ∈  and, O is an open containing , O contains a closed neighborhood of . 
) For every closed part ⊂ , the intersection of all closed neighborhoods of A is reduced 

to A. 
Proof. ) ⟹ ). If ∈ , and ∈ ( ) a neighborhood of , there exists an open , ∈

⊂ , since ∉  witch is closed, by ) there exist an open ∋ ,  and an open 
U⊃ such that ∩ = ∅, then ⊂ ⊂ , so ∈ ⊂ ⊂N,  is a closed 
neighborhoods of x. ) ⟹ ). Let ∈ , and  an open containing , since ∈ ( ), by ) 
there exists a closed neighborhoods F of , contained in O so, there exists an open , ∈

⊂ ⊂ , then ⊂ ( ) ⊂ ⊂ . ) ⟹ ). Let A be a closed set in E, suppose that 
the intersection of all closed neighborhoods of A is not contained in A, then there is  in this 
intersection witch is not in A, so ∈ =  witch is open, by ) there exists an open ∋ , 
such that ∈ ⊂ ( ) ⊂ = , then ⊂ ( ) ⊂ , so  is a closed 
neighborhood of A which does not contain , contradiction. Since A is in every closed 
neighborhood of A, A is in their intersection. ) ⟹ ) Let A be a closed set in E and x an 
element of E, witch is not in A, since by ) A is the intersection of all closed neighborhoods 
of A, there exists a closed neighborhood N of A such that ∉  i.e. ∈ =  witch is 
open. Therefore, there exists an open O such that ⊂ ⊂ , since ∩ = ∅, then E is 
regulat. 
Example 5.5. Example of a space which is Hausdorff, but not regular, and hence not T₃. Let 

= {( , ) ∈ ℝ², ≥ 0} be the subset of the Euclidian plane (ℝ², ‖. ‖), = ℝ × {0} =
{( , ) ∈ ℝ², = 0} the subset of S, and for each ( , ) ∈ × ℝ∗ , ( ) = { ∈ ℝ²: ‖ −

‖ < }, the open balls of center  and radius  and let 

( ) =
( ) ∩  if  ∈ ∖ ;                

( ) ∩ ( ∖ ) ⋃{a} if ∈ . 

Then, the collection = { ( ), ( , ) ∈ × ℝ∗ }, is a topology on S. If  and  are distinct 
points of , let ‖ − ‖ = 2 , then ( ) and ( ) are disjoint open subsets of S containing 

 and , respectively, hence S is a Hausdorff. Consider the point = (0,0), the open set 
( ), ∈  and the open subsets of ( ) which contain a sets of the form ( ), where 

0<s<r. Let ∈ { ∈ , ‖ − ‖ < }. Open sets containing  contain sets of the form ( ), 
> 0. Since ‖ − ‖ < , ( ) ∩ ( ) ≠ ∅ and ∈ ( ( )) but ∉ ( ), thus 
( ( )) is not a subset of ( ), therefore S is not regular. 
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Example 5.6. Let = { , , } and the topology = {∅, { }, { }, { , }, }, the closed 
nonempty sets in E are { , }, { , }, { } and E, since there are no nonempty disjoints closed 
sets, then E is not normal. Because, for  and { , }, there is no open set containing { , }, but 
not containing , then E is not regular. 
Example 5.7. Example of a space which is T₁ and regular, hence T , but not normal, hence 
not T . Let = {( , ) ∈ ℝ², ≥ 0} be the subset of the Cartesian plane (ℝ², ‖. ‖), =
{( , ) ∈ ℝ², = 0} the subset of S, and for each ( , ) ∈ × ℝ∗ , ( ) = { ∈ ℝ²: ‖ −

‖ < }, the open balls of center  and radius  and let ( ) =
( ) ∩  if  ∈ ∖ ;
( )⋃{a} if ∈ .       

Then, the collection = { ( ), ( , ) ∈ × ℝ∗ }, is a topology on S. Let ,  in S, and 
0 < ≤ ‖ − ‖, then ∉ ( ) and ∉ ( ), so S is T₁. Let O any nonempty open in S, 
then for every ∈ , there exists > 0, such that ∈ ( ) ⊂ . Since ( ) =

∈ ℝ , ‖ − ‖ ≤ ∩ ⊂ ( ), if ∈ ∖  and (η) = b ∈ ℝ², ‖η − b‖ ≤ , where 

= ,  when ξ=(x,0)∈L. Thus, ( ) ⊂ ( ). Therefore, ( ) ⊂ ( ) ⊂
( ) ⊂ , for every ∈ , by proposition 5.9 ) S is regular, then it is T . To demonstrate 

that, S is not T₄, therefore it is not normal. Since, any subset of L is closed, the two subsets 
= {( , 0), ∈ ℚ}, = {( , 0), ∈ ℚ } are nonvoide disjoint closed in S. If, S is T₄, there 

exist two disjoint open ⊃  and ⊃ . For each = ( , 0) ∈ , there exists > 0, 
such that ( ) ⊂ . Let { } be, the sequence of the subsets of G defined by: ∀ ∈
ℕ∗ = ( , 0) ∈ , ≥ . Now, it will be shown that, for some interval ⊂ , every point 
of I is arbitrarily close to . Suppose that, for each interval I and for each ∈ ℕ∗, there 
exists a subinterval J of I, such that ∩ = ∅. Let the rational numbers be ordred in a single 
sequence ( ₀, ₁, . . . , , . . . ). We then construct a sequence of closed intervals ⊂ , such 
that ⊂ , ∉  and ∩ = ∅. By the Cantor principal (see lemma 3.1), there exists 

∈ ℝ such that, ∀ ∈ ℕ∗, ∈ . Since ∉ , then s is not rational, so for sufficiently large 
, ∈ , therefore ∩ ≠ ∅, contradiction. Hence, for some n∈ℕ∗ there exists an interval 

I, such that every subinterval of I contains points of . Consequently, there are points of , 
arbitrarily close to ( ′, 0) ∈ ⊂ ⊂ , then there exists > 0 such that (( ′, 0)) ⊂ . 
On the other hand, for each = ( , 0) ∈  there is a set (( , 0)) ⊂ , with ≥ . Hence 
if,  is sufficiently close to ′, the sets (( ′, 0)) and (( , 0)) intersect, thus  and  are 
not disjoint, therefore S is not T₄ and not normal. 
Proposition 5.10. E is normal⟺every open set O contains a closed neighborhood of each 
closed set F. 
Proof. Since E is normal, = and F are closed, there exist disjoint open ⊃ , ⊃ , 
F⊂ ⊂ ⊂O, then O contains a closed neighborhoods  of each F. Inversely, let F and 
G are disjoint closed sets, since ⊂ = , then O contains a closed neighborhoods S of F, 
so there is an open W such that ⊂ ⊂ ⊂ . Let = , then ⊂ , as ∩ ⊂ ∩

= ∩ = ∅, therefore ∩ = ∅. 
Corollary 5.5. Let A be a closed part of a normal space E, contained in an open O of E. Then, 
there exists an open , such that ⊂ ⊂ ( ) ⊂ . 
Proof. Since A and =  are two disjoint closed in a normal space , there are two disjoint 
open ⊃ , ⊃ , or ⊃ , ⊃ , since ⊂  then ⊂ ⊂ ( ) ⊂ . 
Corollary 5.6. Let A be a closed part of a -space ( , ) and let ℬ be a basis of . Then for 
all ∈ , there exist , ′ ∈  ℬ such that ∈ ⊂ ( ) ⊂ ′ ⊂ . 
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Proof. As ∈ , there is ′ ∈  ℬ such that ∈ ′ ⊂  as E is -space, then { } is closed. 
As, { } ⊂ ′, which is open by the corollary 5.5, there is ∈  such that ∈ ⊂ ( ) ⊂

′. Then, there is ∈  ℬ such that ∈ ⊂ ⊂ ( ) ⊂ ′ ⊂ . Therefore ∈ ⊂
( ) ⊂ ′ ⊂ . 

Proposition 5.11. E is completely normal⟺ every subset ⊂ , contains a closed 
neighborhood of each ⊂ ( ), where ( ) ⊂ . 
 

6-Topological Subspace, Product Topological Space 
 

6.1. Topological subspace 
The notion of, topological subspace, is a convenient way, to define and study new 

topological spaces. Let  be a nonempty part of the space ( , ), the collection  defined by 
the part ⊂  is an element of  iffy, there exists ∈  such that = ∩  is a 
topology, in fact: 

- As, ∅, ∈ , then ∩ ∅ = ∅ ∈  and ∩ = ∈ . 
-As the family { , ∈△} of open sets in E, satisfies ∪ ∈△  is also an open in E and 

∪ ∈△ ( ∩ ) = ∩ (∪ ∈△ ) then ∩ (∪ ∈△ ) ∈ . 
-As the finite family { , = 1, … , } of open sets in E, satisfies ∩  is also an open 

in E and ∩ ( ∩ ) = ∩ (∩ ) then ∩ (∩ ) ∈ . 
The pair ( , ) is called a subspace of ( , ), and  is called the induced (or relative, or 
trace) topology for A. It is clear that  is closely related to , i.e.  changes if  changes. 
Example 6.1 In the space ℝ 

) If = [0,1[, then, ∩ − , = 0, ∈ , but 0, ∉ . So an open in A, is not 
necessary an open in E and an open in E, is not necessary an open in . 

) If = ℕ, ∀ ∈ ℕ, ℕ ∩] − 1, + 1[= { } are open sets in ℕ, while it is closed in the 
space ℝ. 
Proposition 6.1. Let ( , ) be, a subspace of a space ( , ), then 

) Every closed in A has the form ∩ , where F is a closed in E. 
) Every neighborhood of ∈ , has the form ∩ , where N is a neighborhood of  for τ. 

Proof. ) Let G be a closed in A, then its complementary  in A is open in A, therefore 
there exists an open O in E, such that = ∩ , so = ( ∩ ) = ∪ = ∅ ∪

= = ∩ = ∩ , where =  is closed. ) Let  be a neighborhood in A 
of ∈ , then there is an open  in A, such that ∈ ⊂ , therefore there exists O in E 
such that, = ∩ , let = ∪ , as ⊂  by N₄ in theorem 2.1, ∈ ( ) in E and 

⊂ ∩ = ∩ ( ∪ ) = ( ∩ ) ∪ ( ∩ ) = ∪ ⊂ , so = ∩ . 
Proposition 6.2. An open (respectively closed) in ( , ) is an open (respectively closed) in 
( , ), iffy A is an open (respectively closed) in ( , ). 
Proof. It suffices to demonstrate for open ones, that for closed ones is similar. If ∈ , 
there is ∈ , such that = ∩ , as ∈ , then ∈ . Reciprocally if, for every 

∈ , ∩ ∈ , then ∩ = ∈ . 
Let  in ( , ), ( ) the collection of the neighborhoods of x, then ( )={ = ∩ , 
∈ ( )} is the collection of the neighborhoods of ∈ . Indeed: 
-Let ∈ , if ∈ ( ), there exists ∈ ( ), such that = ∩ , since by ₁ in 

theorem 2.1, ∈  then ∈ . 
-Let { ;  ∈△} be a family of elements in ( ), then for any α∈△, there is ∈

( ), such that = ∩  so ∪ ∈△ = ∩ (∪ ∈△ ), as by ₂ in theorem 2.1, 
∪ ∈△ ∈ ( ), then ∪ ∈△ ∈ ( ). 
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-Let { ;  = 1, . . . , } be a finite elements of ( ), then for any ∈ {1, . . . , }, there 
exists ∈ ( ), such that = ∩  so ∩ = ∩ (∩ ) as by ₃ in 
theorem 2.1, ∩ ∈ ( ), then ∩ ∈ ( ). 

-Let ⊂ , containing ∈ ( ), then there is ∈ ( ), such that = ∩ . Let 
= ∪ , then ⊂ , by ₄ in theorem 2.1 ∈ ( ), as ∩ = ∩ ( ∪ ) =

( ∩ ) ∪ ( ∩ ) = ∪ = , then ∈ ( ). 
-Let ∈  and ∈ ( ), there is ∈ ( ) such that = ∩  , by ₅ in theorem 

2.1, there exists ∈ ( ) ( ⊂ ), such that ∈ ( ), ∀ ∈ . so = ∩ ∈
( ), ⊂  then ∈ ( ), for any ∈ . 
Let ( , ) be the subspace of a space ( , ) and ⊂ , then: 

Proposition 6.3. 
) If  is the topology in B induced by τ and   is the topology in B induced by . Then 
= . 

) If ℬ is a basis of τ, then the collection ℬ = { ∩ , ∈ ℬ} is the basis of . 
Proof. ) If ∈ , there exists ∈ , such that = ∩ ⊂ ∩ ∈ , then ⊂ . 
Inversely, if ∈ , there exists ∈ , such that =B∩ , as there is ∈ , such that 

= ∩ , then = ∩ ∩ = ∩ ∈ , then ⊂ . ) If ∈ , there is ∈ , 
such that = ∩ , since there is ∈ ℬ, ⊂ , then = ∩ ⊂ . 
Proposition 6.4.  

) ( ) = ∩ ( ), where ( ) is the closure of B in A. 
) ( ) ⊃ ∩ ( ), where ( ) is the interior of B in A. 
) ( ) = ( ) ⟺A is closed. 

Proof. ) Let ∈ ( ) ⊂ , then ∀ ∈ ( ), ∩ ≠ ∅, since there exists ∈
( ), such that = ∩ , then ∅ ≠ ∩ ∩ ⊂ ∩ . So ∈ ( ),.therefore 
∈ ∩ ( ). If now, ∈ ∩ ( )., and ∈ ( ), there exists ∈ ( ), such that 

= ∩ , as ∩ ≠ ∅, and ∩ = ∩ ( ∩ ) = ∩ , then ∩ ≠ ∅, so 
∈ ( ). ) As, ∩ ( ) is an open in A, containing in B, and ( ) is is the 

greatest open in A, containing in B, then ( ) ⊃ ∩ ( ). ) Since by ) ( ) =
∩ ( ) = ( ) witch is closed in E, proposition 6.2 implies that A is closed in E. 

Inversely, if A is closed in E, then ( ) = ∩ ( ) is a closed set in E, containing B, then 
( ) ⊂ ( ) ⊂ ( ), therefore ( ) = ( ). 
A set ⊂  is said, to have a particular property relative to A, if B has the property in 

the subspace ( , ). A set A is said to have a property which has been defined only for 
topological space, if it has the property when considered as a subspace. If for a particular 
property, every subspace has the property whenever a space does, the property is said to be 
hereditary. If every closed subset when considered as a subspace has a property whenever 
the space has property, that property is said to be weakly hereditary. Then we have the 
following hereditary properties. 
Proposition 6.5. Let ( , ) be the subspace of the space ( , ). Then, if E is: 

) First countable, then A is first countable. 
) Separable and A is open, then A is separable. 
) Hausdorff, then A is Hausdorff. 
) Regular, then  is regular. 

Proof. ) Let ∈  and let ( ) = { , ∈ ℕ} be a countable basis of neighborhoods of  
in E. Since for ∈ ( ), there exists ∈ ( ), such that = ∩  thus, there exists 

∈ ℕ,  such that ⊂ , then = ∩ ⊂ , therefore the countable family 
( ) = { = ∩ , ∈ ℕ} is a basis of neighborhoods of ∈ . ) Let  be a 
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countable part of E, such that ( ) = , then ∩  is a countable part of A, such that 
( ∩ ) = . Since, if ∈  (which is open), and ∈ ( ) then ∩ ∈ ( ), so 

( ∩ ) ∩ = ∩ ( ∩ ) ≠ ∅, therefore ∈ ( ∩ ). ) Let , ∈ , ≠ , there are 
two disjoint open ∋ , ∋ , therefore, there are in A two open = ∩ ∋  and 

= ∩ ∋  such that ∩ = ∩ ( ∩ ) = ∅. ) Let ∈  and  a closed in A, 
with ∉ , then there is a closed F in E, such that = ∩ , so ∉ , by regularity of E, 
there are two disjoint open in E, ∋ , ⊃ , therefore there are in A, two open = ∩

∋ , = ∩ ⊃ ∩ =  such that ∩ = ∩ ( ∩ ) = ∅. 
Remark 6.1. In general, separability is not hereditary. Indeed, let ( , ) be a topological 
space, where τ is the family of all parts of E, containing a fixed point ∈  and ∅. Since, if 

∈ , ∈ ( ), ∩ { } ≠ ∅ then ({ }) = , therefore E is separable, while = { }  
witch has = ( ) is not separable. But, the separability is hereditary, when A is open in E, 
in fact if D is a countable subset of E, with ( ) =  then ∩  is a countable subset of A, 
as for ∈  and ∈ ( ), there exists ∈ ( ), such that = ∩ , since A is open 
then ∈ ( ), then ∩ ∈ ( ), so ( ∩ ) ∩ ≠ ∅, so ( ∩ ) ∩ ( ∩ ) = ∩
( ∩ ) ≠ ∅ then ∈ ( ∩ ) and ( ∩ ) = . 
 
6.2. Product topological space 

Let {( , ), 1 ≤ ≤ } be a finite collection of topological spaces, and let =  
be the finite product space, that is ∈ , if = ( ₁, . . . , , . . . , ), where for every ∈
{1, . . . , } ∈ . If, = ( ₁, . . . , , . . . , ) then =  if, for every ∈ {1, . . . , }, =

. For any ∈ : The part ₁ ×. . .× × × ×. . .×  of E is called open 
elementary cylinder of basis  and the part , of E, is called open cylinder or open 
paving or elementary open set of E. Then we have: 

) An open elementary cylinder of basis ∈ , is an open cylinder, where =  for 
every ∈ {1, . . . , }. 

) An open cylinder is the intersection of the following open elementary cylinder: ₁ × ₂ ×
. . .× ,...,E₁×...× × × ×...× ,...,E₁×...× × . In fact, if ∈∩ (E₁ ×. . .×

× × ×. . .× ), then, for every ∈ {1, . . . , }, ∈ E₁ ×. . .× × ×
×. . .× , so for every ∈ {1, . . . , }, ∈  i.e. ∈ . The reverse is clear. 

) The intersection of two open cylinder is an open cylinder, since for every ∈ {1, . . . , }, if 
, ∈ , then ∩ ∈  therefore ( ) ∩ ( ) = ( ∩  ). 

) Since, for every ∈ {1, . . . , }, ∈ , then =  is an open cylinder. 
) If, there exists ∈ {1, . . . , } such that, = ∅, then ∈△ = ∅. 

Let τ be the collection of parts of E, defined by: ∈  if, for every ∈ , there exists an 
open cylinder containing  and contained in Ω. That is the elements of τ, are the union of any 
open cylinder. Then τ is a topology on E, called the finite product topology on E and the pair 
( , ) is called the finite product space of the topological spaces , 1 ≤ ≤ . Let us prof 
that τ is a topology. 

₁-Since, for every ∈ {1, . . . , }, ∅ , ∈ , then ∅ = ∅ , = ∈ . 
₂-Let ∇ be any index set, , ∈ ∇  a collection of the elements of τ, for every ∈ ∇, 

every ∈ , there exists an open paving , such that, ∈ ⊂ , so ∈∪ ∈∇ ⊂
∪ ∈∇ , as ∪ ∈∇ =∪ ∈∇ , = ∈△ ∪ ∈∇ ,  and ∪ ∈∇ , ∈ , for every 

∈ {1, . . . , }, then ∪ ∈∇ ∈ . 
₃-Let , ∈ {1, . . . , }  be a finite collection of the elements of τ, then for every 

β∈{1, . . . , }, every ∈ , there is an open paving  such that, ∈ ⊂ , so ∈
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∩ ⊂∩ , as ∩ =∩ , = ∩ ,  and ∩ , ∈
, then ∩ ∈ . 

Example 6.2. 
) Let the space ℝ be, the product topology on ℝⁿ = ℝ ×. . .× ℝ, (  time) is defined by the 

elements which are the union of the open paving  where, for every ∈ {1, . . . , },   is 
the open interval in ℝ. 

) If, {( , ), 1 ≤ ≤ }, is the finite collection, of the discrete topological spaces, then 
the product space, =  is also, a discrete space, since, =  with 1 ≤ ≤  

∈  then if, for ∈ {1, . . . , }, = , = , and if there is some ∈ {1, . . . , }, such 
that = ∅, = ∅, then the open set is E or ∅, so = {∅, }. 
Remark 6.1. 

) When, {( , ), ∈△} is an arbitrarily collection, the box topology, is a topology where, 
its elements are union of the part ∈△  of = ∈△ , where, for every ∈△, ∈ . 

) The family where, its elements are union of elementary open sets: ∈△ =
×. . .× × ∉{ ₁,..., }  (only a finite number ≠ ), ∈  is called the 

product topology. 
Let ( , ) be, a finite product topology space, ∈ , ( ) the collection of 

neighborhoods of , and for every ∈ {1, . . . , } ( ), the neighborhoods of  related to 
the topology . Then, the family ℬ( ) = { = , where ∀ ∈ {1, . . . , }, ∈
 ( )}, is a fundamental system of neighborhoods of . Indeed, if ∈ ℬ( ), there are 

₁, . . . , , . . . , , where for every ∈ {1, . . . , }, ∈  ( ) such that, = . 
Therefore, there is ₁, . . . , , . . . ,  where for every ∈ {1, . . . , }, ∈  such that 

∈ ⊂ , so ∈ = ⊂ , as ∈  then ∈ ( ) which implies that 
ℬ( ) ⊂ ( ). Inversely, let ∈ ( ), there exists ∈ , ∈ ⊂  therefore there are 

₁, . . . , , . . . ,  where, for every ∈ {1, . . . , }, ∈  such that ∈ = ⊂ , 
since ∈ ( ), then ∈ ℬ( ). 

Note that for a finite produced space, several notions mentioned previously can be 
introduced. We will introduce some one, let =  be, the finite product space and let 

=  be the part of E, where for every ∈ {1, . . . , },  is the part of . 
Proposition 6.6. 

) ( ) = ( ). 
) ( ) = ( ). 
)  is closed⟺ ∀ ∈ {1, . . . , },  is closed. 
) If, ∀ ∈ {1, . . . , },  is a subspace of , then =  is a subspace of E. 

Proof. ) If ∈ ( ) and ∈ ( ), there are ₁ ∈   ( ₁), . . . , ∈  ( ), . . . , ∈
 ( ) such that =  and ∩ = ( ∩ ) ≠ ∅, then, 
∀ ∈ {1, . . . , },. ∩ ≠ ∅, so ∈ ( ), ∀ ∈ {1, . . . , }, then ∈ ( ) 
Conversely, if ∈ ( ) and ∈ ( ), there are ₁ ∈   ( ₁), . . . , ∈
 ( ), . . . , ∈  ( ) such that = , as ∀ ∈ {1, . . . , }, ∈ ( ), then 
∀ ∈ {1, . . . , }, ∩ ≠ ∅, so ∩ = ( ∩ ) ≠ ∅ so ∈ ( ). ) It suffices 
to demonstrate that, if = ₁ × ₂, ( ₁ × ₂) = ( ₁) × ( ₂) equivalently 
( ( ₁ × ₂)) =( ( ₁) × ( ₂)) . Since ( ( ₁ × ₂)) = (( ₁ × ₂) ) =

[( ₁ × ₂) ∪ ( ₁ × ₂ )] = [ ( ₁ ) × ₂)] ∪ [( ₁ × ( ₂ )] =then ( ( ₁ ×
₂) = ₁ × ₂)∪( ₁× ₂ =( ( ₁)× ( ₂)) . ) A is closed iffy 
( ) = ( ) = =  iffy, ∀ ∈ {1, . . . , }, = ( ). ) Let ∈ , there 

are ∈τ₁,..., α∈ α,..., ∈  such that = α ∈ , and ∩ ∈ ₁, . . . , ∩ ∈
, . . . , ∩ ∈ , as ( ∩ )=( ) ∩ ( ) = ∩ , then  is a 

subspace of E. 
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Proposition 6.7. The product space =  is Hausdorff⟺ ∀ ∈ {1, . . . , }, the space 
 is Hausdorff. 

Proof. Let for ∈ {1, . . . , }, , ∈ , ≠ , then 
= ( ₁, . . . , , ,    , . . . , ) ≠ ( ₁, . . . , , ,    , . . . , ) =  since is 

Hausdorff there are two disjoint open sets ∋  and ′ ∋ , therefore there are , ′ ∈
₁, . . . , α, α

′ ∈ α, . . . , , α
′ ∈  such that =  and ′ = α

′ , as ∩
α
′ = ( α ∩ α

′ ) = ∅, and ∀ ∈ {1, . . . , }, ∈ α, ∈ α
′  then: for = 1, ₁ ∈

, ₁ ∈ ′  and ∀ ≠ 1, ∈ α ∩ α
′  ≠ ∅, so ∩ ′ =∅ witch implies that ₁ is 

Hausdorff, for = 2, ₂ ∈ ₂, ₂ ∈ ′  and ∀ ≠ 2, ∈ α ∩ α
′  ≠ ∅, so ₂ ∩ ₂′ = ∅ 

witch implies that ₂ is Hausdorff,...,for = , ∈ , ∈ ′  and ∀ ≠ , ∈ α ∩ α
′  ≠

∅, so ∩ ′ =∅ witch implies that  is Hausdorff. Inversely, let , ∈ , ≠  there are 
, ∈ , with ≠  since  is Hausdorff, there are two disjoint open sets α ∋  and 

α
′ ∋  so ∈ = ₁ ×. . .× × α × ×. . .× , ∈ ′ = ₁ ×. . .× × α

′ ×
×. . .×  witch are two open sets in E, and ∩ ′ = ₁ ×. . .× × ( α ∩ α

′ ) ×
×. . .× = ∅. 

Proposition 6.8. Let ( , ) be a topological space. The diagonal ⊿ = {( , ) ∈ ², = } is 
closed⟺E is Hausdorff. 
Proof. If , ∈ , ≠  then ( , ) ∉ ⊿  witch is a open in ², there are two open sets in E, 

∋ , ′ ∋  such that ⊿ = × ′, so ∩ ′ = ∅,  thus E is Hausdorff. Inversely, let 
( , ) ∈ ⊿  then ≠ , since E is Hausdorff there are two disjoint open in E, ∋ , ′ ∋ , 
then the open × ′ of ² satisfies ( , ) ∈ × ′ ⊂ ⊿ , so ⊿  is a neighborhood of all its 
elements, therefore ⊿  is open and ⊿ is closed. 
Example 6.3. 

) In (ℝⁿ, ), where τ is the product topology of usual topology in ℝ. For ∈ ℕ∗, the sphere, 
= { ∈ ℝⁿ, ∑ = 1} is a subspace of the finite product usual space ℝⁿ. 

) The cylinder ₁ × ℝ is a subspace of the space (ℝ²,τ), where τ is the product topology of 
usual topology in ℝ. 

) The -dimensional torus ₁ⁿ = ₁ ×. . .× ₁, (  times) is a topological subspace of 
(ℝⁿ,τ),where τ is the product topology of usual topology in ℝ. 

) Since the space ℝ, is Hausdorff, then ℝⁿ is Hausdorff. 
 

7-Sequences, Limits and Continuity. 
 
7.1 Sequences 

A sequence of points, of a nonempty set E, is an map : ∈ ⊆ ℕ ↦ ∈ , denoted 
{ ;  ∈ ℕ}; ( ) ∈ℕ or simply { }. 
Definition 7.1. We say that, a sequence { } of a space E, converges to a point ∈ , or that 

 is a limit of the sequence { } if, for every ∈ ( ), ∈  except, for a finite number 
of indices. In other words, for every ∈ ( ), there is ₀ ∈ ℕ, such that for every ∈
ℕ, > ₀, ∈ . We then write: →∞ =  or →  when → ∞ or simply → . 
A sequence which is not convergent is said to be divergent. 
Proposition 7.1. Let E be a topological space, ∈ , ℬ( ) a basis of neighborhoods of . 
Then: →∞ = ⟺for every ∈ ℬ( ), there is ₀ ∈ ℕ, such that for every ∈ ℕ, >

₀, ∈ . 
Proof. If, →∞ =  then, for ∈ ℬ( ) ⊂ ( ), there is ₀ ∈ ℕ, such that for every 

> ₀, ∈ . Reciprocally, if ∈ ( ), there is ∈ ℬ( ), such that ⊂ , therefore, 
there is ₀ ∈ ℕ, such that for every ∈ ℕ, > ₀, ∈ ⊂ , then →∞ = . 
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Note that, ₀ in the definition 5.1, depends of the neighborhood N of , and that, a limit of a 
sequence, in an arbitrary space, may not be unique. Also, the definition 7.1 remains true when 

≥ ₀. 
Proposition 7.2. In Hausdorff space, when the limit of the sequence exists, it is unique. 
Proof. If the sequence { } has two limits  and  in the space E, such that ≠ , there is 
two disjoint open ∋ , ∋ , therefore there are ₁, ₂ ∈ ℕ, such that for every ∈ ℕ, ≥

₁, ∈  and, for every ∈ ℕ, ≥ ₂, { } ∈ , then for every 
∈ ℕ, ≥ ( ₁, ₂), ∈ ∩ = ∅, contradiction. 

The converse of the proposition 7.2 is not true. There are spaces which are not Hausdorff in 
which every convergence sequence has a unique limit. 
Example 7.1. In the cocountable space E, which is not Hausdorff, the stationary sequence 
{ } (i.e. there exists ₀ ∈ ℕ, such that = ₀ = , ∀ > ₀) has only one limit. Indeed if, 
there are two limits , ∈  such that ≠ , since { }  is a neighborhood of , there exists 

′ ∈ ℕ, such that ∀ ≥ ′ , ∈ { } , so ∀ ≥ ₀, ′ , = ∈ { }  contradiction. In 
the case when { } is not stationary, for any ∈ , the set = ({ } ∪ (∪ ))  is a 
neighborhood of , witch not contains , therefore { } is not convergent in E. 
Although a space in which sequences have unique limits is not necessarily Hausdorff, it is 
must be T₁. 
Theorem 7.1. If, in a space E, every sequence has at most one limit, then E is T₁. 
Proof. If E is not T₁, there are , ∈ , ≠  such that evey open  containing , contains 
also . Since the constante sequence { }, converges to , also converges to  as the limit is 
unique then = , contradiction, thus ∉  and E is T₁. 
It is possible to have T₁-space, in which sequences do not have unique limit. 
Example 7.2. The sequence { } in the cofinite space ℕ∗ which is T₁-space, converges to any 

∈ ℕ∗, indeed if ∈ ( ),  contains a finite elements of ℕ∗ say ₀ then ∀ > ₀, ∈
. 

Example 7.3. 
) If,for every ∈ ℕ, = , i.e. the sequence { } is constant, then →∞ = . Since, 

for every ∈ ( ), ∈ . 
) In the indiscrete space E, any sequence { }, converges to any element ∈ . Indeed, the 

only neighborhood of any point  is . 
) In the discrete space E, the sequence { }, converges to ∈ ⟺{ } is stationary. 

Indeed, if ∈ , any part A of E, containing  is a neighborhood of , since there is ₀ ∈ ℕ, 
such that for every ∈ ℕ, ≥ ₀, = , then there is ₀ ∈ ℕ, such that for every ∈
ℕ, ≥ ₀, ∈ , so →∞ = . Now, if →∞ = , because, { } ∈  ( ), there 
exists ₀ ∈ ℕ, such that, for every ∈ ℕ, ≥ ₀, ∈ { }, so there is ₀ ∈ ℕ, such that, for 
every ∈ ℕ, ≥ ₀, = , i.e. the sequence { } is stationary. 

) In the space ℝ, the sequence,  converges to the unique limite 0. In fact, for any > 0, 

there is n₀∈ ℕ∗, such that, 
₀

< , so ∀ > ₀, <
₀

< , equivalently ∀ (0, ), there is 

₀ ∈ ℕ∗, such that, for every ∈ ℕ∗, > ₀, ∈ (0, ), i.e. →∞ = 0, since the space ℝ 
is Hausdroff, the limit is unique. 

) The sequence,  diverges in the discrete space ℝ. Because, if, there is ∈ ℝ, such that 

→∞ = , then for { } ∈  ( ), there is ₀ ∈ ℕ∗, such that, for every ∈ ℕ∗, >

₀, ∈ { }, so 
₀
=

₀
, then 0=1, contradiction. 
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Definition 7.2. A subsequence of a sequence { } in the set E, is the sequence 
( ) ⊂{ }where the function, : ∈ ℕ ↦   ( ) ∈ ℕ, is strictly increasing.  

It is clear that ( ) ≥ , ∀ ∈ ℕ. then: 
Proposition 7.3. Any subsequence of a convergent sequence, is convergent and, has the same 
limit of the sequence. 
Proof. let ( )  be a subsequence, of a convergent sequence { }, in a space E, if ∈  is 
a limit of { }, for every ∈ ( ), there is ₀ ∈ ℕ, such that, for every ∈ ℕ, > ₀, ∈

, as ( ) > ( ₀) ≥ ₀, then ( ) ∈  so ( ) ⟶ . 
Remark 7.1. The proposition 7.3 indicates that, if a sequence has two subsequences, which 
converge towards two different limits, then the sequence is divergent. For example in the 
space ℝ, which is Hausdorff, the sequence {(-1)ⁿ}, has tow subsequence {1} and {-1}, which 
converge to 1 if  is even and to −1.if  is odd. Then {(-1)ⁿ} is divergent. 
Proposition 7.4. If all subsequences, of a given sequence converge and they have the same 
limit, then, the sequence converges towards this limit. 
Proof. Let be the common limit of all subsequences, of a given sequence  in the space E. 
If, x is not the limit of the sequence{ }, there is ∈ ( ), such that for every ∈ ℕ, there 
is ∈ ℕ, ≥ , and ∉ , as the function : ∈ ℕ ↦ ( ) = ∈ ℕ is strictly 
increasing, so the subsequence ( )  satisfies, the following: there is ∈ ( ), such that 
for every ∈ ℕ, there is ( ) ∈ ℕ, ( ) ≥ , and ( ) ∉ , i.e.  is not the limit of the 
subsequence ( ) , contradiction. 

Let A be a part of the space E. If the sequence { } ⊂  has a limit , then for every 
∈ ( ), there is ₀ ∈ ℕ, such that, for every ∈ ℕ, > ₀,  ∈  so ( ∖ { }) ∩ ≠

∅, i.e. ∈ ′ the set of accumulation points of A, as ( ) = ⋃ ′ therefore ∈ ( ). If 
now ∈ ( ), is there a sequence in A, which converges towards ?. The answer is given by 
the following proposition, whose proof, is based on the fact that, if { , ∈ ℕ} is a countable 
basis of neighborhoods of ∈ , then the collection { , ∈ ℕ} where =∩  is also, a 
countable basis of decreasing neighborhoods of .  
Proposition 7.5. In 1D-space E, if ∈ ( ), there is a sequence { } ⊂ , witch converges 
to . 
Proof. Let ∈ ( ) and { , ∈ ℕ} a countable basis of decreasing neighborhoods of . 
Since, for every ∈ ℕ, ∩ ≠ ∅, there is a sequence { } ⊂ ∩ , which converges to . 
Indeed, if ∈ ( ), there is some ₀ ∈ ℕ, such that ₀ ⊂ , since, for every ∈ ℕ, >

₀, ⊂ ₀, then for every ∈ ℕ, > ₀, ⊂ , then for every ∈ ℕ, > ₀, ∈ ⊂
, so ⟶ . 

7.2-The adherent value 
Let { } be a sequenc in the space . For any ∈ ℕ,  let = { , ≥ } be. An element 

, of the space E, is called an adherent value (or a limit point) of the sequence { }, if 
∀ ∈ ( ), and ∀ ∈ ℕ, ∩ ≠ ∅, equivalentely, if ∀ ∈ ( ) and ∀ ∈ ℕ, there is 
 ≥  such that, ∈ . 

If { } converges to , then  is an adherent value of { }. Indeed for ∈ ( ), there is 
₀ ∈ ℕ, ∀ ∈ ℕ, > ₀, ∈ , then for every ∈ ℕ, there exists = + ∈ ℕ, ≥
 ( ≥ > ₀), such that ∈N. If,  is an adherent value of { }, then ∈ ({ }), since 

∀ ∈ ( ), ∩ { } ≠ ∅. But, an adherent element is not necessary an adherent value, as 
shown in the following example. 
Example 7.4. In the space ℝ: 

) The sequence  has 0 as an unique adherent value (its limit) and ∀ ∈ ℕ∗,  are the 
adherent elements witch are not the adherent values. 
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) The sequence {(−1)ⁿ} is divergent, but it has tow adherent values 1 and −1. 
Proposition 7.6. In a Hausdorff space, the only adherent value of a convergent sequence, is 
its limit. 
Proof. If, there exists an adherent value ∈  of the sequence { }, ≠ = → , 
there are tow disjoint open ∋ , ∋ , then for every ∈ ℕ, there exists ( , ) ∈ ℕ² such 
that for = ( , ) > , ∈ ∩ , contradiction. 
As a direct consequence of the proposition 7.5, we have. 
Proposition 7.7. In 1D-space, if  is an adherent value of the sequence { }, there exists a 
subsequence ( )  of { } witch converges to . 
Proposition 7.8. The set of the adherent values, of the sequence { }, in the arbitrary space E, 
is the closed =∩ ( ). 
Proof. Let ∈ , an adherent value of the sequence { } and ∈ ( ), then for every n∈N, 
there exists ∈ ℕ, ≥  such that ∈ , so for every ∈ ℕ, ∩ ≠ ∅ , so ∈ ( ), 
therefore ∈∩ ( ). Inversely, if ∈∩ ( ), ∈ ( ), ∀ ∈ ℕ, so ∀ ∈

( ), ∀ ∈ ℕ, ∩ ≠ ∅, therefore there exists ∈ ℕ, ≥  and ∈ , then ∈ . 
 
7.3 Limit and Continuity 

Functions on spaces are important tools for studying properties of spaces and for 
constructing new spaces previously existing ones. Let ( , ), ( , ) are tow topological 
spaces, ₀ an accumulation point of , ∈ , and the map : → . 
Definition 7.3.  is called, a limit of ( ) when  tends to ₀, and we write → ₀ ( ) = , 
or ( ) → , when → ₀ if, for every neighborhood  of , there exists ∈ ( ₀) such 
that ( ) ⊂ , or equivalently for every open  containing , there exists ∈ , ₀ ∈ such 
that ( ) ⊂ . 
Proposition 7.9. In Hausdorff space, the limit when it exists is unique. 
Proof. If  has in ₀ ∈ , two limits , ′ ∈ , and ≠ ′, there are two disjoint open in , 

∋ , ′ ∋ ′, thus there are two open , ′ ∈  , ₀ ∈ ∩ ′ such that, ( ) ⊂
 and ( ′) ⊂ ′, then ( ∩ ′) ⊂ ( ) ∩ ( ′) ⊂ ∩ ′ = ∅, so ( ∩ ′) = ∅, 

therefore ∩ ′ = ∅, contradiction. 
Definition 7.4.  is said to be continuous at a point ₀ ∈ , and we write → ₀ ( ) =

( ₀), or ( ) → ( ₀), when → ₀, if for any neighborhood  of ( ₀), there exists 
∈ ( ₀) such that ( ) ⊂ , that is to say that ( ₀) ∈ , is a limit of ( ) when  tends 

to ₀. 
Since ⊂ ⁻¹( ( )) ⊂ ⁻¹( ), then ⁻¹( ) ∈ ( ₀), so → ₀ ( ) = ( ₀), if for each 
neighborhood  of ( ₀), ⁻¹( ) ∈ ( ₀). If, this property holds for each point ∈ ,  is 
called continuous on E, or simply continuous. 
Proposition 7.10. Let ( , ), ( , ), ( , ) are topological spaces, if the map : ( , ) →
( , ) is continuous in ₀ ∈  and the map : ( , ) → ( , ) is continuous in ( ₀) ∈ , 
then the composition map ∘ : ( , ) → ( , ) is continuous in ₀. 
Proof. Let  be a neighborhood of ( ∘ )( ₀) = ( ( ₀)), since  is continuous in ( ₀), 
then ⁻¹( ) is a neighborhood of ( ₀), as  is continuous in ₀, then ⁻¹( ⁻¹( )) = ( ∘

)⁻¹( ) ∈ ( ₀). 
Theorem 7.2. The following assertions are equivalent: 
1) f is continuous. 
2) The inverse image of open sets is open. 
3) The inverse image of closed sets is closed 
4) For any ⊂ , ( ( )) ⊂ ( ( )). 
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Proof. 1) ⟹ 2) Let ∈  and ∈ ⁻¹( ), then ( ) ∈  witch is a neighborhood of ( ), 
since  is continuous in  there is ∈ ( ) such that ( ) ⊂ . Therefore, there is 

∈ , ∈ ⊂ ⊂ ⁻¹( ( )) ⊂ ⁻¹( ), so ⁻¹( ) ∈ . 2) ⟹ 3) Let  be a closed in , 
then  is an open, by 2) ⁻¹( ) = ⁻¹( ) ∈ , so ⁻¹( ) is closed in . 3) ⟹ 1) Let 

∈ ,  a neighborhood of ( ), there exists ∈ , ( ) ∈ ⊂ , as  is closed, by 3) 
⁻¹( ) = ⁻¹( )  is closed in E, so ⁻¹( ) ∈  and ∈ ⁻¹( ) ⊂ ⁻¹( ), then ⁻¹( ) ∈

( ), since  is arbitrary then  is continuous.The demonstration will be closed, if we 
demonstrate 3) ⟺ 4). 3) ⟹ 4) Since, ( ( )) is closed in F, by 3) ⁻¹( ( ( ))) is 
closed in , as ( ) ⊂ ( ( )), then ⊂ ⁻¹( ( )) ⊂ ⁻¹( ( ( ))), it follows that 

( ( )) ⊂ ( ⁻¹( ( ( )))) ⊂ ( ( )). 4) ⟹ 3) Let  be a closed in , since 
( ( ⁻¹( ))) ⊂ ( ( ⁻¹( ))) ⊂ ( ) = , then 
⁻¹( ( ( ⁻¹( )))) ⊂ ⁻¹( ( ( ⁻¹( )))) ⊂ ⁻¹( ( )) = ⁻¹( ), so ( ⁻¹( )) ⊂
⁻¹( ) ⊂ ( ⁻¹( )), so ⁻¹( ) is closed. 

Proposition 7.11. If  is a continuous function from a space E into the space ℝ. Then, for 
every ∈  and every > 0, there is an open O in E containing , such that, for every 

, ∈ , | ( ) − ( )| < . 
Proof. As  is continuous then, for all ∈  and > 0, ( ), = ⊂  is open 
and containing . Using the definition of the continuity of at the point , we have for every 

, ∈ , ( ), ( ) ∈ ( ), . Therefore, | ( ) − ( )| ≤ | ( ) − ( )| +
| ( ) − ( )| < + = . 

The relation between, the sequences and the continuity in a 1D-space, is given by the 
following theorem: 
Theorem 7.3. If E is 1D-space, then: → ₀ ( ) = ( ₀) ⟺for every sequence { } ⊂ , 
converging to ₀, ( ) converges to ( ₀). 
Proof. Let { } ⊂  be a sequence witch converges to ₀, and  an open in  containing 

( ₀), since → ₀ ( ) = ( ₀), there exists an open ∋ ₀, such that ( ) ⊂ , 
therefore there exists ₀ ∈ ℕ, such that for every ∈ ℕ, > ₀, ∈  then ( ) ∈ . 
Conversely,  
if  is not continuous, there is some open  such that ( ) is not open in . Then, 
( ( ) )   is not closed in E, so there is some  in (( ( ) ) ) which is not in 
( ( ) ) . By proposition 7.5, there is a sequence { } in ( ( ) )  witch converges to . 
As, ∈ ( ), thus ( ) ∈ , because for every ∈ ℕ, ∈ ( ( ) ) , then  is not in 

( ), so ( ) is not in . Therefore the sequence { ( )} not converges to ( ), 
contradiction. 

As a direct consequence of the theorem 7.3. We have 
Corollary 7.1. If E is 1D-space, then: → ₀ ( ) = ⟺for every sequence { } ⊂ , such 
that → = ₀, we have → ( ) = . 

Note that, the notion of continuity is closely related to the topologies defined on E and F. 
A map may be continuous for one topology, and not continuous for another, as shown in the 
following example: 
Example 7.5. 

) The function :(ℝ, ) → (ℝ, ), defined by ( ) = , ∀ ∈ ℝ is continuous on ℝ, it is 
also continuous from (ℝ, }) to the space (ℝ, ) but f is not continuous from (ℝ, ) into 
(ℝ, }), since for the neighborhood = { ( )} = { } of ( ), ⁻¹( ) = { }, which is not 
an usual neighborhood of . 

) We can demonstrate that the collection = {∅, ℝ} ∪ {] , +∞[, ∈ ℝ} is a topology on ℝ. 
The function : (ℝ, ) → (ℝ₊, ) defined by ( ) = ², ∀ ∈ ℝ is not continuous on ℝ, 
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since it is not continuous in 0, since there is > 0 such that a neighborhood (0, ) of 
(0) = 0 don't contains any image of any neighborhoods N of 0. As, we suppose there is 

∈ (0), such that ( ) ⊂ (0, ) then there exists ∈ ℝ, such that 0 ∈] , +∞[, and 
(] , +∞[) = ℝ₊ ⊂ ( ) ⊂] − , [ impossible. 

Example 7.6. 
) Let τ and  tow topologies on E, if ⊂  then, the identity map : ( , ) → ( , ) 

defined by: ∀ ∈ , ( ) =  is continuous on E. In fact, if ∈ , ⁻¹( ) = ∈ ⊂ . 
) Let : ( , ) → ( , ) be a map and σ any topology on F, then  is continuous on E, in 

fact ∀ ∈ , ⁻¹( ) ∈  . 
) Let : ( , ) → ( , τ  ) be a map, where τ is any topology on , then  is continuous on 

E, in fact ∀ ∈ , = ∅ or  then ⁻¹( ) = ∅ or  so ⁻¹( ) ∈ . 
) Let : ( , ) → (ℝ, ) be a continuous function on E, since {0}, ]-∞,0] are closed and 

]0,+∞[ is open in the space ℝ, then: = { ∈ , ( ) = 0} = ⁻¹({0}); = { ∈ , ( ) ≤
0} = ⁻¹(] − ∞, 0]) are closed in E and = { ∈ , ( ) > 0} = ⁻¹(]0, +∞[) is open in E. 

) Let E be a space and F a Hausdorff space. Then, the set = { ∈ , ( ) = ( )}, where 
, : ⟶  are continuous is closed. Indeed, for all ∈  ( ) ≠ ( ), as F is Hausdorff, 

there are ∈ ( ( )) and ∈ ( ( )) such that ∩ = ∅. Therefore, there are 
∈ ( ) and ∈ ( ) such that ( ) ⊂  and ( ) ⊂ .  As for any ∈ ∩ ∈
( ), ( ) ∈U and ( ) ∈ , then ( ) ≠ ( ), so ∈ . Hence, ∩ ⊂ , so 
∈ ( )  thus it is open. 

Proposition 7.12. Let ( , ) and ( , ) are two topological spaces, if  is a topology on , 
such that τ⊂ , and the map : ( , ) → ( , ) is continuous on E, then : ( , ) → ( , ) is 
continuous on E. 
Proof. Let ∈ , since : ( , ) → ( , ) is continuous on E, then for ∈ , ⁻¹( ) ∈ , 
since ⊂ , then ⁻¹( ) ∈  . 
Lemma 7.1. Let ( , ) be a subspace of a space ( , ), then the canonical injection : → , 
defined by ∀ ∈ , ( ) =  is continuous on A. 
Proof. Let ∈ , since ⁻¹( ) = { ∈ , ( ) = ∈ } = ∩ ∈  then j is continuous 
on A. 
Remark 7.2. The lemma 7.1 allows us, to find the topology of a subset A of a space E, by 
saying that the topology  is the coarser topology on A, which that the canonical injection  is 
continuous. 
Lemma 7.2. Let ( , ) be a subspace of a space ( , ), if : ( , ) → ( , ) is continuous on 
E, then the restriction of  to A that is : ( , ) → ( , ) is continuous in A. 
Proof. It suffices to remark that: = ∘  and use proposition 7.10. 
Lemma 7.3. Let ( , ) be, the finite product space, i.e. = . For every ∈
{1, . . . , }, the coordinate projection, π : ( , ) → ( , ), defined by: 
∀ = ( ₁, . . . , , . . . , ) ∈ , π ( ) =  are continuous and surjective. 
Proof. Let ∈ {1, . . . , }, ∈ , then π ( ) = { ∈ , π ( ) = ∈ } = ₁ ×. . .×

× × ×. . .× ∈ . So, for every ∈ {1, . . . , }, π  is continuous. As ( ) =
{ ( ) ∈ , ∈ }= , for all ∈ {1, . . . , }, then  is surjective for all ∈ {1, . . . , }. 
Remark 7.3. The lemma 7.3 allows us, to find the product topology on E, by saying that the 
topology τ is the coarser topology on E, such that all of the coordinate projection π  are 
continuous. 

Let ( , ) and ( , ) are topological spaces, where =  is a finite product space of 
to spaces ( , ),  ∈ {1, . . . , }. Then, the map : →  has  components 
( ₁, . . . , , . . . , ), where ∀ ∈ {1, . . . , }, : ( , ) → ( , ), that is ∀ ∈ , ( ) =
( ₁( ), . . . , ( ), . . . , ( )) and: 
Lemma 7.4.  is continuous on ⟺ ∀ ∈ {1, . . . , },  is continuous on E. 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 36 
 

Proof. Since ∀ ∈ {1, . . . , }, = π ∘  where π : ( , ) → ( , ) are the continuous 
coordinate projections, if f is continuous on  by proposition 7.10 ∀ ∈ {1, . . . , },  is 
continuous on E. Inversely, let ∈  and ∈ ⁻¹( ), so ( ) ∈ , there is an open cylinder 

= , where ∀ ∈ {1, . . . , }, ∈ , such that ( ) ∈ ⊂  i.e. ∈ ⁻¹( ) ⊂
⁻¹( ), since ⁻¹( ) = ⁻¹( ) then ∀ ∈ {1, . . . , }, ( ) ∈  or ∀ ∈

{1, . . . , }, ∈ ( ), then ⁻¹( ) =∩ ( ), as ∀ ∈ {1, . . . , },  is continuous 
on E, ( ) ∈  therefore ⁻¹( ) ∈ , so ⁻¹( ) ∈ ( ), ∀ ∈ ⁻¹( ), it follows that 

⁻¹( ) ∈ . 
 

8-Homeomorphism, Open and Closed Maps, Urysohn Lemma 
 

8.1-Homeomorphism, Open and Closed Maps 
The notion of homeomorphism is fundamental in topology, a homeomorphism is an 

isomorphism of topological structures. When two topological spaces are homeomorphic any 
property true for one is true for the other. 
Definition 8.1. Let ( , ), ( , ) are two topological spaces. The map : →  is said to be 
an homeomorphism if,  is biunivoque and bicontinuous i.e.  is bijective and both  and its 
inverse map ⁻¹: →  are continuous. When there exists an homeomorphism betwin E and 
F,  we say that E and F are topologically equivalent ( or homeomorphic). 
It is clear that: 
Lemma 8.1. The composition of two homeomorphisms is a homeomorphism. 
Example 8.1. 

) The function : ℝ → ℝ, defined by ( ) = + , ∀ ∈ , where ∈ ℝ∗ and ∈ ℝ are 
two given constants, is an homeomorphism. 

) The function : ℝ →] − 1,1[ defined by ( ) =
| |

, ∀ ∈] − 1,1[, is an 
homeomorphism. 

) The exponential function : (ℝ, ) → (ℝ∗ , ), defined by ( ) = , ∀ ∈ ℝ, is an 
homeomorphism. 

) The function : ]0,1[→] , [, defined by ( ) = ( − ) + , ∀ ∈]0,1[ , where  and  
are two given constants, is an homeomorphism i.e. ]0,1[ and ] , [ are homeomorphic. 

) Any bijective map, on a discrete space into a discrete one, is an homeomorphism. 
Remark 8.1. It is not true that, the bijective continuous map is an homeomorphism. Indeed, 
the function : (ℝ, ) → (ℝ, ), defined by ( ) = , ∀ ∈ ℝ is one to one, continuous 
but ⁻¹: (ℝ, ) → (ℝ, ) is not continuous. 
Proposition 8.1. Let ₁ × ₂ be a product space and ( ₁, ₂) ∈ ₁ × ₂. The two maps 

₁: ₁ → ₁ × { ₂} defined by ₁( ) = (ℎ₁( ), ℎ₂( )) = ( , ₂), ∀ ∈ ₁ and ₂: ₂ →
{ ₁} × ₂ defined by ₂( ) = ( ₁, ), ∀ ∈ ₂ are two homeomorphisms. 
Proof. ₁ is an homeomorphism. since, the components ℎ₁, ℎ₂ of ₁ are bijective and 
continuous and its inverse = ₁: ₁ × { ₂} → ₁, ( , ₂) ↦ ₁( , ₂) =  is continuous. 
By the same ₂ is an homeomorphism. 
Corollary 8.1. Let ₁ × ₂ be a product space, F a topological space, ( ₁, ₂) ∈ ₁ × ₂. If, 
the map : ₁ × ₂ →  is continuous, then the tow partial maps ₁: ₁ → , defined by 

₁( ) = ( , ₂), ∀ ∈ ₁ and ₂: ₂ → , defined by ₂( ) = ( ₁, ), ∀ ∈ ₂ are 
continuous. 
Proof. It suffices to note that: ₁ = ∘ ₁ and ₂ = ∘ ₂ and apply proposition 8.1 and 
proposition 7.10. 
Remark 8.2. 

) Corollary 8.1 is true for a finite product topological spaces. 
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) The inverse of the corollary 8.1 is not true. Consider the function : ℝ² → ℝ, defined by 
( , ) =

² ²
, if ( , ) ≠ (0,0) and (0,0) = 0, since ( , ) = ≠ (0,0), the function f 

is not continuous in (0,0), then it is not continuous on ℝ², but ₁( ) = ( , ₂) = ₂
² ₂

, if 

≠ 0, ₁(0) = 0 and ₂( ) = ( ₁, ) = ₁
₁² ²

, if ≠ 0, ₂(0) = 0 are continuous on ℝ. 
The introduction of the open map, (respectively of the closed map), is motivated by the 

fact that, the image of an open set (respectively of a closed set), by a continuous map not 
always an open set (respectively a closed set), as shown in the following example: the 
function : (ℝ, ) → (ℝ₊, ), defined by ( ) = ², ∀ ∈ ℝ, is continuous, but (] −
1,1[) = [0,1[, by the same the exponential function : (ℝ, ) → (ℝ∗ , ), defined by 

( ) = , ∀ ∈ ℝ, is continuous but (] − ∞, 0]) =]0,1]. 
Definition 8.2. Let  and  are two topological spaces. The map : →  is called: 

) Open if for any open  in E, ( ) is an open in F. 
) Closed if for any closed set C in E, ( ) is a closed set in F. 

Example 8.2. 
) If  is an open subspace (respectively a closed subspace) in a space E, the canonical 

injection : →  is open (respectively closed). 
) The homeomorphism is both open and closed. 

Corollary 8.2. Let =  be the finite product space. For every ∈ {1, . . . , }, the 
coordinate projections : E ⟶ ; ⟼ ( ) =  are open. 
Proof. If O is an open in E, there are ∈τ₁,..., ∈ ,..., ∈  such that = ∈  
then ( ) = { ( ) ∈ , ∈ } = ∩ = ∈ . Then  is open for all ∈
{1, . . . , }. 
Remark 8.3. It is not true that, the coordinate projection is closed, indeed the set =
∪ , + × 0,1 −  is a closed in the space ℝ², and ₂( ) = { ₂( , ), ( , ) ∈

} = { ∈ ℝ, ( , ) ∈ } = ∈ ℝ, ∈∪ 0,1 − =∪ 0,1 − = [0,1[, so 
₂: ℝ² → ℝ is not closed. 

Corollary 8.3. If a map  over a space E, into a Hausdorff space F is continuous, the graph 
= {( , ) ∈ × , = ( )} is closed. 

Proof. Since, the map ℎ: × → ×  defined by, ℎ( , ) = (ℎ₁( , ), ℎ₂( , )) =
( ( ), ), ∀( , ) ∈ ×  is continuous, since its components  and ₂ are continuous, as 
the diagonal ⊂ ×  is closed, then ℎ⁻¹( ) is closed, as ℎ⁻¹( ) = {( , ) ∈ ×

, ( ( ), ) ∈ } = {( , ) ∈ × , = ( )} = , thus  is closed. 
Remark 8.4. In general, the converse of the corollary 8.3 is false. Consider the function 

: (ℝ, ) → (ℝ, ) defined by ( ) = , if ≠ 0, (0) = 0, the graph = {( , ) ∈
ℝ², = 1} ∪ ({0,0}), since the function ℎ: ℝ² → ℝ, defined by ℎ( , ) = , ∀( , ) ∈ ℝ² 
is continuous on ℝ², then = ℎ⁻¹({1}) ∪ {(0,0)} is closed, but  is not continuous on 0, 
therefore it is not continuous in ℝ. 
Corollary 8.4. A sequence { } = {( , . . . , , . . . , )} of 1D-finite product space =

 converges to = ( ₁, . . . , , . . . , ) ∈ ⟺ ∀ ∈ {1, . . . , }, the component 
sequence { } converges to  in . 
Proof. Since by the lemma 7.3, ∀ ∈ {1, . . . , }, the coordinate projections  are continuous. 
If { } converges to  then ∀ ∈ {1, . . . , }, the sequence { ( )} = { } converges to 

( ) = . Inversely, if ∈ ( ), there are ₁ ∈ ( ₁), . . . , ∈ ( ), . . . , ∈
( ), such that = , since ∀ ∈ {1, . . . , }, the sequence { } converges to , 
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there is some ∈ ℕ, such that ∀ ∈ ℕ, >  we have ∈ , so there is ₀ =
{ , 1 ≤ ≤ } such that ∀ ∈ ℕ, > ₀, ∈ , therefore { } converges to . 

Note that, several results obtained for a finite product space remain valid for the product 
space, whose proofs of someone are not too far from those obtained for a finite product 
spaces: Let {( , ), ∈△} be a collection of the topological spaces and let = ∈△ be 
the induced product space. Then we have: 

) If, for every ∈△,  
)  is 1D-space, then E is 1D-space. 

        )  is 2D-space, then E is 2D-space. 
       )  is Separable, then E is separable. 

)  A sequence { } of the product space converges to ∈  if, for every ∈△, the 
component sequence { } converges to  in . 

c) For all ∈△, the projection map : ∈  ↦ ∈  is continuous open and 
surjective. 

) The map  from a topological space  into E, is continuous⟺ for every ∈△, the 
map = ∘  from F into  is continuous. 

Let  {( , );  ( , ), ∈△} be a family of the spaces , = ∈△  and let =
{ : ⟶ ;  ∈△} be a family of mappings. 
Definition 8.3. We say that:  

)  separates points, if for every , ∈ , ≠ , there is some ∈△, such that 
( ) ≠ ( )  in . 

)  separates  points and closed sets, if for every closed part ⊂  and every ∈ , 
there is some ∈△, such that ( ) ∉ ( ) . 
Definition 8.4. The map : ⟶  defined by: for all ∈ , ( ) = ∈△ ( ) i.e. ( ) ∈

 for all  ∈△, is said to be the evaluation map. 
Lemma 8.2. (Embidding Lemma). If, for all ∈ ,  is continuous and if,  separates 
points and separates  points and closed sets. Then  is an embedding i.e.  is a 
homeomorphism betwin ( , ) and the subspace ( ( ), ) of . 
Proof. It is obvious that,  is onto, as  separates points then  is also one-to-one. Since, 

= ∘  and  is continuous for all ∈△, then  is continuous. It remains to prove that, for 
all ∈ , the image ( ) is a neighborhood of each of its points, therefore it is open. Let 

∈ ( ) be, there exists ∈  such that = ( ), as ∉  which is closed in , because 
 separates points and closed sets, there is some ∈△, such that ( ) ∉ ( ) . As 

( )  is open in , and : ⟶  is continuous then ( )  is open 

in , therefore = ( ) ∩ ( ) ∈ . Since, ( ∘ )( ) = ( ) ∈
 then, = ∈ −1 , therefore ∈ . It remains to prove that ⊂ . Let ∈  

be, there is ∈ , such that = ( ′) ∈ ( ) , as ( ′) ∈ ( ) , 

then ( ′) ∉ ( ) and ′ ∉ , thus ∈ , which implies that = ( ′) ∈ ( ). It 
follows that ( ) ∈ ( ), for all ∈ ( ), thus ( ) ∈  . 

 
8.2. Second Variation of the Separation Axioms, Urysohn Lemma 

In this section, we introduce two new types of separation axioms (the stronger separation 
properties). The first involves to use of closed neighborhoods in place of open sets in axioms 
T₂, the second concerns the existence of the Urysohn function for a subset A and B of the 
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spaceE, i.e. a continuous function : → [0.1], such that ( ) = 0 and ( ) = 1. A space E 
is said to be: 
T  (or T -space or completely Hausdorff space), if for , ∈  ( ≠ ), there exist open 

sets ,  containing  and  respectively, such that ( ) ∩ ( ) = ∅. 
T  (or T -space), if A is a closed subset of E and y is an element of , there is a Urysohn 

function for A and { }. E is said to be Completely regular space, or Tychonoff if, E is T₀ 
and T . 

The following implications, specifies the relationships between both first and second 
variation separation axioms: 

⟹ ⟹ ⟹ ⟹ ⟹  
⟹  . 
⟹ . 
⟹ . 

Note that the implications are not reversible. 
A property is said to be, a topological property (or topological invariant), if whenever 

one space possesses a given property, any space homeomorphic to it, also possesses the same 
property. Similarly, a property is called a continuous, open, or closed invariant if any 
continuous (respectively open, closed) image of a space possessing the property also 
possesses the property. All the separation properties are topological properties. However, 
certain of the properties are preserved under less restrictive maps if. ( , ), ( , ) are two 
topological spaces and : →  is closed one to one, and E is T₀, T₁, Hausdorff, or 
completely Hausdorff, then F is T₀, T₁, Hausdorff, or completely Hausdorff. In particular if 

⊂  are topologies for E, that is  is an expansion of τ, the identity map : ( , ) → ( , ) 
is closed bijective and continuous, therefore it is an homeomorphism, then if ( , ) is T₀, T₁, 
Hausdorff, or completely Hausdorff, (E, ) is also T₀, T₁, Hausdorff, or completely 
Hausdorff. The stronger separation properties are not in general, preserved under expansion. 

Every subspace of a T₀, T₁, Hausdorff, completely Hausdorff, regular, completely regular 
or completely normal space is T₀, T₁, Hausdorff, completely Hausdorff, regular, completely 
regular or completely normal. But only closed subspace of normal space need be normal.  

Most separation properties are, however, preserved under products. Let {( , ), ∈△} 
be a collection of the topological spaces and let = ∈△ be the induced product space. 
Then  

) E is T₀, T₁, Hausdorff, completely Hausdorff, regular or completely regular space, iffy 
for every ∈ ∆,  is T₀, T₁, Hausdorff, completely Hausdorff, regular or completely regular 
space. 

) If  is normal or completely normal, each  is normal or completely normal, but the 
converse does not hold. 
Theorem 8.1 (Urysohn Lemma). If A and B are two disjoint closed sets, in a normal space E, 
there is a Urysohn function for A and B. i.e. the normal space is completely regular. 
Proof. Since ⊂ = ₁ which is an open, by corollary 5.5, there exists an open  such 

that ⊂ ⊂ ⊂ ₁, by the same, for ⊂  there is an open ⊂ , such that 

⊂ ⊂ ( ) ⊂  and for ( ) ⊂ ₁ there is an open   such that ( ) ⊂ ⊂

( ) ⊂ ₁, so ⊂ ⊂ ( ) ⊂ ⊂ ( ) ⊂ ⊂ ( ) ⊂ ₁. By iteration, 

∀ ∈ {1, . . . ,2ⁿ}, ∈ ℕ∗, there exist opens 
ⁿ
 such that for 0 < < , ⊂ ( ) ⊂ . 

Let's define, for all ∈ , the function ( ) = 1, if ∈  and ( ) = { , ∈  and 
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∉ }, then if ∈ ⊂
ⁿ
, ( ) =

ⁿ
, ∈ ℕ∗ = 0, since 0 <

ⁿ
≤ 1, ∀ ∈ ℕ∗, 

∀ ∈ {1, . . . ,2ⁿ}, then 0≤f(x)≤1, ∀ ∈ . It remains to demonstrate that, : → [0,1] is 
continuous. Let U an open in the subspace [0,1] of the space ℝ, there exists ] , [⊂ ℝ, such 
that = [0,1] ∩] , [=] , 1] if 0 < ≤ 1 < , or = [0, [, if < 0 ≤ < 1. Let 

∈ ⁻¹(] , 1]), then < ( ) ≤ 1, so there is ₀ > , such that ∉ ₀. For ₀ ∈] , ₀[, 
( ₀) ⊂ ₀ then ∉ ( ₀) or ∈ ( ₀) , so ⁻¹(] , 1]) =∪ ( ( ))  witch is an 

open in E. If now, ∈ ⁻¹([0, [), then 0 ≤ ( ) < , so there exists ₀ ∈ ℕ∗, such that 
0 ≤ ( ) ≤ ₀ = ₀ <

₀
< , then ∈ ₀ and ⁻¹([0, [) =∪  witch is an open in E. 

 
Remark 8.5.  

) The Urysohn lemma is true in any space homeomorphic to [0,1], in particular in any 
interval [ , ]. That is for two disjoint closed A and B in a normal space E, there is a 
continuous function : → [ , ], such that ( ) =  and ( ) = . It suffices to take 

= { , { , }}, where : → [0,1] is a continuous function. 
) If, for two disjoint closed parts  and  of the space E, there is an Urysohn continuous 

function . Then E is normal. In fact, for any open  in [0,1], 0, ∩  is an open in 

[0,1],  containing , and for any open  in [0,1], , 1 ∩  is an open in [0,1], 

containing . As 0, ∩ ∩ , 1 ∩ = ∅, then  
We need the following lemma, to demonstrate the extension theorem of continuous 

functions defined on closed part of a normal space (Tietze-Hurysohn Theorem). 
Lemma 8.3. If A is a closed part of the normal space E. The following properties are 
equivalent: 

) The bounded continuous function : → ℝ, has a bounded extension continuous function 
over E. 

) The continuous function : → ℝ, has an extension continuous function over . 
Proof. ) ⟹ ). Let : → ℝ  be a continuous function. Then, the function φ: → [0,1] 
defined by φ = , is bounded continuous on A, by ) there is an extended continuous 
function : → [0,1], i.e. = φ, on A. Then = ⁻¹({1}) is closed in E, and ∩ = ∅, if 
not there is some ₀ ∈ ∩ , then ( ₀) = 1 = ( ₀)

( ₀)
<1, contradiction. By the Hurysohn 

lemma, there is a continuous function ℎ: → [0,1], such that ℎ( ) = 1 and ℎ( ) = 0. Since, 
the continuous product function = ℎ: → [0,1], satisfies ( ) = ( )ℎ( ) = ( ) then 

 is also an extended continuous of φ. Let : → ℝ₊, defined by =  if ≠ 1, and 

= 0, if = 1, since ( ) = ( )
( )

= ( )
( )

= ( )
( )

= ( )
( )

(1 + ( )) = ( ), then  
is an extended continuous function of . In the case where : → ℝ∗ , we will do the same 
demonstration by considering the function − : → ℝ . If, now : → ℝ, we use the same 
argument for the composed continuous function |. | ∘ : → ℝ , where |.| is the absolute 
value function on ℝ. ) ⟹ ). Let : → [0,1] be a bounded continuous function. By ) the 
continuous function : → ℝ₊, defined by = , 0 ≤ ( ) < 1, has an extended 
continuous function : → ℝ , Since = ⁻¹({0}) is closed in  and ∩  = ∅, by the 
Hurysohn lemma, there is a continuous function ℎ: → [0,1], such that ℎ( ) = 1 and 
ℎ( ) = 0. As the continuous product function = ℎ: → ℝ₊ is also an extended 
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continuous of . Let : → ]0,1[, defined by = , then  is an extended continuous of  
to E. 
Remark 8.6. Since in ) the function is bounded then, there is , ∈ ℝ, such that ( ) ∈
[ , ], who is homeomorphic to [0,1], so the proof remains valid for [ , ] and since ]0,1[ is 
homeomorphic to ℝ, the conclusion remains valid for ℝ. 
Before stating Tietz's theorem, let us recall that if ( ) denotes the space of functions 
defined on the space E which are bounded and continuous, the map ∈ ( ) ⟼ ‖ ‖ =

∈ | ( )| ∈ (ℝ₊, |. |); is a norme i.e. for every , ∈ ( ) and every ∈ ℝ: ‖ ‖ =
0 ⟺ = 0; ‖ ‖ = | |‖ ‖ and ‖ + ‖ ≤ ‖ ‖ + ‖ ‖. The restriction of the map ‖. ‖, to 
the subspace ⊂ ( )  is also a norme. We come back in detail to this notion in the chapter 
on normed spaces later. 
Theorem 8.2 (Tietze-Hurysohn theorem). If A is a closed part of the normal space E. Then 
any bounded continuous function : → ℝ,  has a unique extension continuous function over 

. 
Proof. We can obviously take, : → [−1,1]. Because the two disjoint parts =

∈ , ( ) ≤ −   and = ∈ , ( ) ≥  are closed in E (see, proposition 6.2) and E 
is normal then it is completely regular, by Hurysohn lemma there is ∈ ( ) such that 

( ) = −  , ( ) =  and − ≤ ( ) ≤ , for every ∈ ,  so ‖ ‖ = . It follows that 
‖ − ‖ = ∈ |( − )( )| ≤ . Applying the same argument, for the function 

( − ): → [−1,1], there is ∈ ( ), ‖ ‖ =  and ( − ) − ≤  or 

( − ) − ≤ . By iteration up to ∈ ℕ, there is ∈ ( ), ‖ ‖ =  and 

( − ) − − − ⋯ − ≤ (∗) Because, the functions series 

∑ ( ) where ( ) = ( ), ∀ ∈ , satisfies: | ( )| = ( ) ≤

| ( )| ≤ ‖ ‖ = , for every ∈ , then ∑ ( ) is uniformly convergent 
to the continuous function , defined en , therefore it is simply convergent to the continuous 
function   defined on . As from (∗), ‖ − ‖ =0, then the restriction of  into  is . 

 
9-Connectedness 

 
9.1-Connected space 

In this chapter, we introduce the idea of connectedness, which is a topological property 
related to the separation axioms, it examines the structure of topological spaces from the 
opposite point of view. Intuitively, a topological space is connected if it is all in one piece. To 
make this precise, the parts A and B of a space E, are said to be a separation of E, if = ∪

 and ∩ = ∅. Then: 
Definition 9.1. A space E, is said to be connected, if there is no separation of E in two 
nonempty open sets. E is said to be disconnected if, it is not connected i.e. E can be written as 
the union of two disjoint nonempty open subsets. 

 . . Let E be a topological space. The following assertions are equivalent: 
) E is connected. 
) E has no separation by two nonempty closed sets. 
) E has nontrivial two open separation, i.e. the only separation of E is ∅ and E. 
)  does not have any nontrivial clopen sets, i.e. the only clopens of E are ∅ and E. 
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e) Any nontrivial part A of E, has its boundary ( ) ≠ ∅. 
) There is no surjective continuous function, from E to a discrete two point space. 
) Any continuous function from E to a discrete two point space is constant. 

Proof. ) ⟹ ). If, there are two nonempty closed sets D and G in E, such that ∩ = ∅ 
and = ∪  then ,  are two disjoint open sets in E and ∪ = , contradiction 
with ). ) ⟹ ). If, there is two non trivial separation open subsets O and U, then = ∪

 and ∩ = ∅, so ,  are two disjoint closed sets in E and  = ∪ , 
contradiction with ). ) ⟹ ). If, there is a nontrivial clopen subset  in E, then: A and  
are two disjoint separation clopen of E, contradiction with ). ) ⟹ ). If, there is a 
nontrivial part A of E such that ( ) = ∅ = ( ) ∩ ( ), if ∈ ( ), ∉ ( ) then 

∉  or ∈ , so  is closed and if ∈ ( ), ∉ ( ) then ∉ , or ∈  then  is 
closed it follows that A is open, therefore A is clopen, contradiction with ). ) ⟹ ). If 
there is a continuous function  from E to a discrete space = { , }, then the nontrivial 
subset { } in F is clopen therefore, by continuity the nontrivial subset ⁻¹({ }) is clopen in E, 
so ( ⁻¹({ })) = ⁻¹({ }) ∩ ( ⁻¹({ })) = ∅, contradiction with ). ) ⟹ ). If, there is 
a continuous function from E to a discrete space = { , }, witch is non constant, there are 

, ∈ , ≠  such that ( ) =  and ( ) =  then, a,b∈f(E), so = { , } ⊂ ( ) then 
 is surjective, contradiction with ). ) ⟹ ) If, E is written as the union of two disjoint 

nonempty open subsets  and U, then the function : → = { , }, defined by: ∀ ∈
, ( ) = , if ∈ , and ( ) = , if ∈ , is such that ⁻¹({ }) =  and ⁻¹({ }) =  

so,  is continuous, nonconstant, contradiction with ). 
Example 9.1. 

) Let = { , , }, = {∅, { }, { , }, }, clearly ( , ) is connected. 
) The indiscrete space is connected. The only clopen sets, are the trivial sets ∅ and E. 
) The space ℝ, is connected. Since the only clopen sets are ∅ and ℝ ( see example 2.2, )). 
) The singleton space is connected, since the only clopen are = { } and ∅. 
) The discrete space is disconnected. Since ∀ ⊂ , { } is clopen. 
) The finite Hausdorff space containing at last two elements, is disconnected, indeed 

∀ ∈ , { } is clopen. 
Definition 9.2. A subspace A of a space E is a connected set, if it satisfies the definition of 
connected space under induced topology. A is disconnected if, there exist two open O and U 
in E, such that ⊂ ∪ , ∩ ∩ = ∅, ∩ ≠ ∅ and ∩ ≠ ∅. 
Example 9.2. In the space ℝ. 

) The subspace ℝ∗ is disconnected, since ℝ∗ =] − ∞, 0[∪]0, +∞[ and ] − ∞, 0[∩]0, +∞[=
∅. 

) The subspace ℚ is disconnected, since ℚ = ℚ ∩ −∞, √2 ∪ ℚ ∩ √2, +∞  and 
ℚ ∩ −∞, √2 ∩ ℚ ∩ √2, +∞ = ∅. 
) In ( , ). Any infinite part A is connected, but any finite part B is disconnected . Indeed, 

if the infinite part A is disconnected, there exist two open O and U in E, such that ⊂ ∪ , 
∩ ∩ = ∅, ∩ ≠ ∅ and ∩ ≠ ∅, then ⊂ ( ∩ ) = ∪  witch is finite, 

contradiction. If = { ₁, . . . , , . . . , } is finite, in a T₁-space ( , ), then  is closed and 
= { ₁} ∪ { ₂, . . . , , . . . , }, with two closed disjoint { ₁} and { ₂, . . . , , . . . , }, then B 

is disconnected. 
Theorem 9.1. In the space ℝ, a part ⊆ ℝ, is connected⟺A is an interval. 
Proof. If, A is not an interval, then A is disconnected, indeed, as A is not an interval, there are 

, ∈ , ≤ , such that [ , ] ⊈ , so there is ∈ [ , ] and ∉ . The sets ∩] − ∞, [ 
and ∩] , +∞[ are a separation of A. Conversely, if A is a disconnected interval, there is two 
open O and U in E, such that = ( ∩ ) ∪ ( ∩ ) and ∩ ∩ = ∅. Let , ∈ , <
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, ∈ ∩  and ∈ ∩ , as , ∈ , witch is an interval, then [ , ] ⊂ , since the set 
= ∩ ∩ [ , ] = ∩ [ , ] ⊂ [ , ] then  is bounded, there is ∈ [ , ] such that 
= , so ∈ ∩  or ∈ ∩ . If, ∈ ∩ , there exists > 0, such that , +

⊂  and ∩ , + ⊂ ∩ , since ∈ [ , ] and ∉ , then < , so < + <

, indeed if < ≤ + , then ∈ ∩ ∩ = ∅, therefore + ∈ , so + ≤ , 

contradiction. If, ∈ ∩ , there exists ρ>0, such that − , ⊂ , and ∩ − , ⊂
∩ , since ∉ , then <  a fortiori, < − < , indeed if, − ≤ < , ∈ ∩
∩ = ∅, therefore − ∈ ∩ [ , ], since ∩ ∩ [ , ] ⊂ ∩ ∩ = ∅, then 
− ∉ ∩ [ , ] so, ≤ − , contradiction. Thus, ∈ [ , ] ⊂  and ∉  witch is an 

interval, impossible. 
Example 9.3. 
In the space ℝ, the subspaces ℕ, ℤ, ℚ are disconnected. Because, hey are not intervals of ℝ. 
Proposition 9.10. If, A is a connected subset of a space E, and there are two open sets O and 
U in E, such that: ∩ ∩ = ∅, and ⊂ ∪ , then ⊂  or ⊂ . 
Proof. if, ⊈  and ⊈ , there are , ∈  such that ∉  and ∉ , since ⊂ ∪ , 
then ∈ ∩  and ∈ ∩ , so A is a partition of the two nonempty open ∩  and ∩

, then A is disconnected, contradiction. 
Proposition 9.11. If, A is a connected subset of a space E, and B a subset of E, such that: 

⊂ ⊂ ( ), then B is connected, in particular ( ) is connected. 
Proof. If, B is disconnected, there are two nonvoide open sets O and U in E, such that: 

∩ ≠ ∅, ∩ ≠ ∅, ∩ ∩ = ∅ and ⊂ ∪ . If, ∈ ∩ , thus ∈ ( ), since 
∈ ( ), then ∩ ≠ ∅, by the same ∩ ≠ ∅. Moreover, ⊂ ∪  so A is 

disconnected, contradiction. 
Remark 9.1. 

) If, A is a connected subspace of a space E, and ( ) = , then E is connected. But, if A is 
a subset of a space E, such that ( ) = , then A is not always connected, for example in 
usual ℝ, (ℚ) is connected, but ℚ is disconnected. 

) If, A is a connected subset of a space E, the ( ), the intersection and the union are not 
always connected. Example in = { , , , } with = {∅, { }, { }, { , }, } the parts 

= { , , } and = { , , } are connected, but ( ) = { , } = ∩  is disconnected. 
In Hausdorff space the singletons are connected but their union is disconnected. 
Proposition 9.12. Let E be a topological space. If, A is a connected part of E and B a 
nonvoide part of E, which satisfy: ∩ ≠ ∅ and ∩ ≠ ∅. Then ∩ ( ) ≠ ∅. 
Proof. If, ∩ ( ) = ∅, as = ( ) ∪ ( ) ∪ ( ), then = ∪  where 

= ∩ ( ) and = ∩ ( ^{ }) are disjoint open sets in a subspace A, then A is 
disconnected, contradiction. 

As noted in the remark 9.1 ), in general, the connectedness is not stable by the union and 
the intersection. However, under suitable conditions, one can have stability for the union, as 
shown in the following proposition. 
Proposition 9.13. A collection of connected parts, of a topological space, is stable for union, 
if the intersection of its elements is not empty. 
Proof. Let { , ∈△} be, a collection of connected parts, in a space E, and =∪ ∈△ . 
Since for every ∈△,  is connected, there exist two disjoint open ,  in  such that, 

⊂ , or ⊂ . Thus, there exist two open  and  in E, such that = ∩ , 
= ∩ . As for every ∈△, ≠ ∅  then ∀ ∈△,  ( ≠ ∅ if = ∅) and ( ≠ ∅ 

if = ∅), then, if = ∅, =∪ ∈△ ⊂∪ ∈△ ⊂ ∩ (∪ ∈△ ) = ∩ =  where 
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=∪ ∈△  is a nonempty open in . Let = ∩ , where =∪ ∈△  is an open in E, 
then = ∩∪ ∈△ =∪ ∈△ ( ∩ ) =∪ ∈△ = ∅. Because, = ∪  where 

= ∅, then A is connected. The same argument used in the case when ≠ ∅ and = ∅, 
yields to the same result. 
Proposition 9.14 (Bolzano theorem). Let  be a continuous map, from a connected space E, 
into the space F. Then, the range ( ) is connected. 
Proof. Let  be a continuous map, from a connected space E, into the space F. If, the range 

( ) is disconnected, there exists a non trivial clopen part ⊂ ( ), so ⁻¹( ) is a non 
trivial clopen in , witch implies that E is disconnected, contradiction. 
As, a direct consequence, of the proposition 9.14 and theorem 9.1, we have: 
Corollary 9.1. The image of any interval in the space ℝ, by a continuous function from ℝ 
into ℝ is an interval. 
Corollary 9.2. If, E is a connected space,  is a continuous function from E, into ℝ, and 

, ∈ ( ). Then, for every every ∈ [ , ], there exists ∈ , such that ( ) = . 
Proof. By proposition 9.14, ( ) is connected in ℝ, therefore, by theorem 9.1 ( ) is an 
interval, then for , ∈ ( ), [ , ] ⊂ ( ), thus if ∈ [ , ] then ∈ ( ),so there exists 

∈ , such that ( ) = . 
Corollary 9.3. Let  be a continuous function, defined from the interval I in ℝ into ℝ. The 
following assertions are equivalent: 

)  is an homeomorphism from I into f(I). 
)  is one-to-one. 

c)  is strictly monotone. 
Proof. ) ⟹ ) clear. ) ⟹ ). If,  is not strictly monotone, there exist , , , ∈ , such 
that <  and ( ) > ( ); <  and ( ) < ( ). The function : [0,1] → ℝ, defined by: 
∀ ∈ [0,1], ( ) = ( + (1 − ) ) − ( + (1 − ) ) is obviously continuous and 

(0) < 0 < (1), by corollary 9.2 there exists ∈ [0,1] such that ( ) = 0 i.e. ( +
(1 − ) ) = ( + (1 − ) ), but + (1 − ) < + (1 − ) , then  is not one-to-
one, contradiction. ) ⟹ ). As  is continuous and strictly monotone, then  is one to one. 
It remains to prove that, the inverse function ℎ = ⁻¹: ( ) → , is continuous or equivalently 

 is open. Let  be an open interval in , there exists an open interval  in ℝ such that 
= ∩ , then ( ) = ( ∩ ) ⊂ ( ), since ( ) is connected then ( ) is an interval. As 
 is bijective and strictly monotone, ( ) is also open, so ℎ is continuous. 

Theorem 9.2. The product topological spaces = ∈△  is connected iffy, ∀ ∈△
, the space  is connected. 
Proof. Since  is connected and ∀ ∈△, the projection : →  is continuous, by 
proposition 9.14, ( ) =  is connected. Conversely, let , ∈ , if  differs from  by 
only one component , then , ∈ = { } × × { }, since by proposition 
8.1  and  are homeomorphic, then  is connected. If now,  is arbitrary, using ) in 
proposition 9.1, we shall demonstrate that, any continuous map : → = { , } is constant, 
i.e. ∀ , ∈ , ( ) = ( ). If ( ) = , because { } is open in the discrete space F and  is 
continuous then ⁻¹({ }) is an open in , containing , there exists an elementary open set 

= ×. . .× × ∉{ ,..., }  (only a finite number ≠ , ∈ ), such that 
∈ ⊂ ⁻¹({ }), so ∀ ∈ = { , . . . , } the component of  belongs to  then 
= (( ) ∈ , ( ) ∉ ) ∈  and ( ) = . The passage from  to  is given, by modifying only 

a finite number of components, whose indices are in . According to the above step  is 
constant for any modified component, so ( ) = ( ) = ( ) i.e.  is constant. 
9.2-Components 
Definition 9.3. Let E be a topological space and ∈ . 
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) A component of E, is the maximal connected part in E. 
) A component of , is the maximal connected part of E, containing . It will be noted by 
( ). 

Remark 9.2. 
) A connected part of a space E, not strictly included, in any other connected, part of this 

space, is a component of E. 
) C(x) is connected (see, proposition 9.13). 
) ( ) is closed. Indeed, ( ( )) is connected then ( ( )) ⊂ ( ) ⊂ ( ( )). 
) In the connected space, ( ) = . 

Example 9.4. 
) Since in ℚ, the singleton are connected, for ∈ ℚ, ( ) = { }. 
) In the subspace ℝ∗, if ∈] − ∞, 0[, then ( ) =] − ∞, 0[ and if ∈]0, +∞[ then ( ) =

]0, +∞[. 
c) The subspace ℚ×ℝ of the space ℝ² has for components, the lines { } × ℝ, where ∈ ℚ. 
Proposition 9.15. The components, of a space E, form a separation of E. 
Proof. Let { , ∈△} be a collection of components of the space E. ). Suppose there exist 
different , ∈△, such that ∩ ≠ ∅, by the proposition 9.13, ∪  is a connected 
containing  and , which are the maximal connected part in E, contradiction. ), let ∈

, since the singleton { } is connected, there exists ₀ ∈△ such that ∈ { } ⊂ ₀, so 
∈∪ ∈△ . 

From proposition 9.15, it follows that ( ) is an equivalence class of , i.e. the relation ℛ on 
E, defined by: ∀ , ∈ , ℛ ⇔ ∈ ( ) is an equivalence relation. 
Corollary 9.4. Any part A of a space E, is a union of a family of two by two disjoint 
connected parts. 
Proof. By the proposition 9.15, the components of a subspace A form a separation of A. 
 
9.3-Localy connected space 
Definition 9.4. A topological space, is said to be locally connected, if any element of this 
space, has a fundamental system of connected neighborhoods. 
 
Example 9.5. 

) In a space E, any element x∈E, is contained in its connected component. Indeed, ∀ ∈ , 
{ } is connected, since the connected component of , i.e. ( ), is the maximal connected set 
in  containing , then ∈ { } ⊂ ( ). 

) The space ℝ is locally connected, since ∀ ∈ ℝ, ∃ > 0; such that the neighborhood 
( , ) of , is connected. 

c) The discrete space E, is locally connected, since { } is a connected neighborhoods of . 
) The cofinite space E, is locally connected, since the open sets in  is an infinite part, then 

any neighborhood is connected. 
) The subspace ℚ, is locally disconnected, since ∀ > 0; the neighborhoods ℚ ∩ ( , ) of  

in ℚ, are not connected. 
Remark 9.3. 

) A connected space is not necessary locally connected. In fact, the function : ]0.1] → ℝ², 
defined by: ∀ ∈]0.1], ( ) = ,  is continuous and ]0.1] is connected, by Bolzano 

theorem, (]0,1]) = = , , 0 < ≤ 1  is connected in ℝ², therefore the 
subspace ( ) of the space ℝ², is connected. As, ( ) = ∪ , where = {0} ×] − 1,1[. 
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Since, ∀ ∈] − 1,1[, (0, ) has not a connected neighborhood in , then ( ) is not locally 
connected. 

) A locally connected part, in topological space, can not have its closure, locally connected. 
In fact, in the space ℝ, the  subspace = , ∈ ℕ∗  is locally connected, but ( ) = ∪
{0} is not locally connected, since ∀ > 0, the neighborhood ( ) ∩] − , [ of 0 in the 
subspace ( ) is an infinite part which is disconnected. 

The following theorem gives a characterization, of the locally connected space. 
Theorem 9.2. A space E, is locally connected⟺any connected component of any open in E is 
open. 
Proof. Let C be, the maximal connected part of an arbitrary open  in , and ∈ ⊂ , 
since  is locally connected, there exists a connected ∈ ( ). As ⊂ O, then ⊂ , by 

₄ in theorem 2.1 and proposition 2.2, C is an open neighborhood. Inversely, let ∈  and 
∈ ( ), there exists an open O in E, such that ∈ ⊂ , since a connected component 

( ) of  is an open in O, then ( ) is a connected neighborhood of , therefore E is locally 
connected. 
Corollary 9.5. In a locally connected space, the connected component is open. 
Proof. Let C be, the connected component of  and ∈ , as E is locally connected, there 
exists a connected ∈ ( ), therefore ⊂ , then by ₄ in theorem 2.1 and proposition 
2.2, C is an open neighborhood of . 
Corollary 9.6. The collection of the components of any nonempty open in the space ℝ, is 
finite or countable. 
Proof. Let ∈ , since the space ℝ is locally connected, by theorem 9.1; theorem 9.2 and 
corollary 9.4, the components of O, are two by two disjoint open intervals of ℝ. Since 

(ℚ) = ℝ, their intersection with ℚ is not empty. Let I be one of these intervals, and 
∈ ∩ ℚ, it is clear that = ( ) in O, as I contains at last one element of ℚ, then the 

collection of the components of O, are finite or infinite countable. 
 
9.3 Path and arc connectedness 

Path and arc connectedness, related to the existence of certain continuous applications, 
from the unit interval, into a part of a space. 
Definition 9.5. Let E be a topological space and the nonvoide part ⊆ . 

) Continuous application, from [0,1] into A is said to be path. 
) The one-to-one path is called arc. 
) A is said to be path connected if, for every pair of points  and  in , there exists a path  

such that (0) =  and (1) = .  (respectively ) is called the origin (respectively the 
end) of the path. 

) A is said to be locally path (respectively locally arc) connected if, every ∈  has a 
fundamental system of path connected (respectively arc connected) neighborhoods. 

) A is said to be arc connected if, for every pair of points  and  in A, there exists an arc  
such that (0) =  and (1) = . 

) The maximal subsets with respect to path (respectively arc) connectedness are called path 
(respectively arc ) components. 

) We say that a path crosses a part  of a space  if, there exists  in [0,1] such that 
( ) ∈  

Remark 9.4. Since in the space ℝ, the interval [ , ] is homeomorphic to [0,1], it is 
equivalent to define a path on [ , ]. 
Corollary 9.7. Let B be a part of the space E. If, a path crosses both B and , then it crosses 

( ). 
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Proof. Since, there exist , ∈ [0,1], such that ( ) ∈ , ( ) ∈ , [ , ] ⊂ [0,1], ([0,1]) 
is connected and ([ , ]) ⊂ ([0,1]), by proposition 9.12 ([0,1]) ∩ ( ) ≠ ∅, then there 
exists ∈ [0,1], such that ( ) ∈ ( ). 
Example 9.6 

)  The space ℝ, is arc connected, since for every , ∈ , the continuous function  from 
[0,1] into ℝ, defined by ∀ ∈ [0,1], ( ) = ( − ) + , satisfies (0) =  and (1) = . 

) The subspaces ℚ, and ℚ , in the space ℝ are not arc connected. 
Corollary 9.8. Every arc connected space E is connected. 
Proof. Suppose that E is disconnected, then there exist two disjoint open O and U in E, such 
that = ∪ . Let ∈  and ∈ , since  is arc connected, there exists an arc  such that 

(0) =  and (1) = . Let ([0,1]) =  witch is connected, as the nonvoide open ∩  
and ∩  form a partition of , then F is disconnected, contradiction. 
Remark 9.10. The converse in corollary 9.8, is not true, returning to remark 9.3. ) for ∈  
and ∈  there is no arc connected. 
Similar results of connected spaces are obviously valid for arcs connected, let us quote: 
Corollary 9.10. 

) The image by a continuous map, of an arc connected space is arc connected. 
) A collection of arc connected parts, of a space, is stable for union, if the intersection of its 

elements is not empty. 
) The product space = ∈△  is connected⟺ ∀ ∈△, the space  is connected 

It is also easy to verify that: 
Corollary 9.10. Both connected and locally arc connected space are arc connected. 
 

10-compacteness, separation and continuity 
 

10.1 Compact space and separation 
The closed and bounded interval [ , ] in the space ℝ satisfies the Borel-Lebesgue 

property, i.e. every open cover of [ , ] has a finite subcover. Therefore, several important 
results in the space ℝ are closely related to this type of interval as: Weierstrass-Bolzano 
theorem, Hein theorem, Weierstrass theorem, Rolle theorem,...etc. In this chapter, we will 
introduce a special and important topological spaces called compact spaces, whose closed and 
bounded intervals in the space ℝ are a particular case. 
Definition 10.1. The space  is called: 

) Compact, if it satisfies the Borel-Lebesgue property, i.e. every open cover of E has a finite 
subcover. 

) Countably compact, if every countably open cover of E has a finite subcover. 
) Sequentially compact, if every sequence has a convergence subsequence. 
) Lindelôf, if every open cover of E, has a countably subcover. 

Definition 10.2. A nonvoide subset A, in a space E, is compact if, the subspace A is compact. 
Proposition 10.1. A nonvoide subspace A, in a space E is compact⟺every collection of open 
of E, which cover A, has a subcover. 
Proof. Let { , ∈△} be a collection of opens in E, such that =∪ ∈△ , since { ∩

, ∈△} is the collection of open sets in A satisfying =∪ ∈△ ( ∩ ) and A is compact, 
there exists a finite open subcover { ∩ , 1 ≤ ≤ }. So, =∪ ∩ = ∩

∪ , hence =∪ . Conversely, let { , ∈△} be a collection of opens in A, 
such that =∪ ∈△ , there exists a collection { , ∈△} of opens in E, such that =
∪ ∈△ ( ∩ ) = ∩ (∪ ∈△ ), where = ∩ , ∀ ∈△, then =∪ ∈△ . By 
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hypothesis, there exists a finite open collection { , 1 ≤ ≤ } such that =∪ , witch 
implies that = ∩ (∪ ) =∪ ( ∩ ), then A is compact. 
Example 10.1. 

) 2D-space, is Lindelôf (cf, proposition 5.4). 
) The finite space is compact. 
) The subset = , ∈ ℕ∗  in the space ℝ is not compact, since their subsequences 

converges to 0 ∉ . But ∪ {0} is compact, because in the hausdorff space if the 
sequence{ } converges to ∈ , the subset = { } ∪ { } is compact, in fact if, the 
collection { , ∈△} of open in E, is a cover of A, there is some ∈△, such that ∈ , 
then there existes ₀ ∈ ℕ, such that for every ∈ ℕ, > ₀, ∈  so ⊂ ∪ ₀ ∪

 by proposition 10.1, A is compact. 
) A discrete space is compact (respectively Lindelôf)⟺it is a finite (respectively countable) 

space, indeed if E is finite, then =∪ ∈△ { }, where the indices set △ is finite and if  is 
countable, then =∪ ∈ℕ { }. 

) The space ℝ is Lindelôf, but it is not compact. In fact, ℝ =∪ ∈ℕ∗] − , [, but there is not 
a subcovert of these open cover. 

) The discrete ℝ, is not compact. In fact, there is no subcovert of the open cover {{ };  ∈
ℝ}. 

) Let E be a non countable set ∈  and = { } , the family = { ( ), } is a topology 
on E and ( , ) is Lindelôf.  
Lemma 10.1. Let E be a topological space, the following assertions are equivalents: 
C₁-E is compact. 
C₂-Every family of a closed subsets, whose intersection in empty, has a finite subfamily, 
whose intersection is empty ( the finite intersection property). 
Proof. C₁⟹C₂. Let { , ∈△} be a family of a closed subset, such that ∩ ∈△ = ∅, then 
(∩ ∈△ ) =∪ ∈△ = , since E is compact there exists a finite open subcovert 

, 1 ≤ ≤  of the open cover { , ∈△}, therefore ∪ = , so ∪ =
∩ = ∅. C₂⟹C₁. Let { , ∈△} be an open cover of E, then (∪ ∈△ ) =
∩ ∈△ =∩ ∈△ = ∅ where =  witch is closed, by C₂ there exists a finite closed 
subsets { , 1 ≤ ≤ } such that ∩ = ∅, so ∩ =∪ =∪ = , 
then E is compact. 
Corollary 10.1. In the compact space, any nonempty closed collection, totally ordered by 
inclusion, has a nonempty intersection. In particular any intersection of nonvoide decreasing 
sequence of closed sets has a nonempty intersection. 
Proof. If the collection has an empty intersection, as the space is compact, it has a finite 
subcollection whose empty intersection, contradiction with the finite subcollection has an 
nonempty minimum which is its intersection. 

We will give, in the form of a lemma, an equivalent of the Weierstrass-Bolzano theorem. 
Lemma 10.2. Any infinite part of a compact space has at last an accumulation point. 
Equivalently, any part of a compact space without accumulation points is finite. 
Proof. Suppose that there exists an infinite part A of space E, which has no accumulation 
point, then for every ∈ , there exists an open  containing  and only one element of  
(this element is ∈ ). Since, the family { , ∈ } is an open cover of E, which is compact, 
it has a finite subcover { , 1 ≤ ≤ }, then ⊂∪  and A has at most  elements, so it 
is finite, contradiction. 

As the accumulation point is an adherent element, by the proposition 7.5 and the lemma 
10.2, we have: 
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Corollary 10.2. Any sequence in the compact 1D-space has a convergence subsequence. 
Proof. Let = { } be a sequence in the space E, as  is a countable part it is an infinite part 
in the compact space, so by lemma 10.2,  has an accumulation point ∈ ( ). Because E is 
1D-space, by proposition 7.5, there is sequence { } ⊂ , which converges to  i.e. there is a 
convergence subsequence ( )  of the sequence { }  
Corollary 10.3. In the compact space, if a sequence has only one limit point, it converges 
towards this limit point. 
Proof. By proposition 7.8, the set of the limit points, of the sequence { }, in the arbitrary 
space E, is the closed =∩ ( ), where = { ;  ≥ }, for all ∈ ℕ. Let  be the 
unique limit point of A and ∈ ( ) an open neighborhood, because { ( ) ∩ , ∈ ℕ} 
is a decreasing sequence of closed sets whose empty intersection, if not there exists ∈

( ) ∩ , ∀ ∈ ℕ, then ∈  and ≠ , contradiction. Therefore, there exists ₀ ∈ ℕ 
such that ₀ ∩ = ∅, so ₀ ⊂  as, for every ≥ ₀, ( ) ⊂ ( )), which 
implies that, for every ≥ ₀, ( ) ⊂ , hence ∈ , it follows that ⟶ . 
Note that, in every space, neither direction of the equivalence holds, betwin the compact space 
and the sequentially compact space. 
Theorem 10.1. The Lindelôf sequentially compact space is compact. 
Proof. Suppose that, the space E is not compact, there is some collection { , ∈△} of open 
cover of E, which has no finite subcover, as E is lindelôf, there is some countable open 
subcover { , ∈ ℕ} of E. The sequence { } defined by: for every ∈ ℕ∗, ∉∪ , has 
by assumption a subsequence { ( )} which converges towards ∈ , as { , ∈ ℕ} covers 
E, there is some ∈ ℕ such that ∈ , because ( ) ∉∪ ( )  then, for every ( ) ≥

, ( ) ∉ , contradiction with the definition of . Then E is compact. 
Remark 10.1. As by proposition 5.4, 2D-space is Lindelôf, then the theorem 10.1 is valid, in 
2D-space i.e. If, the 2D-space E is sequentially compact, then E is compact. 
With the same arguments used in lemma 10.1, we have: 
Corollary 10.4. Let E be a topological space, the following assertions are equivalents: 
CC₁-E is countably compact. 
CC₂-Every family of a countably closed subsets, whose intersection is. empty, has a finite 
subfamily, whose intersection is empty (finite countably intersection axiom). 
It is obvious that, any compact space is countably compact, but the reverse is not always true. 
A condition ensuring that, countable compactness implies compactness is given by: 
Lemma 10.3. Any countably compact 2D-space, is compact. 
Proof. By the proposition 5.4, any open cover { , ∈△}, of the 2D-space E, has a countable 
subcover { , n ∈ ℕ}, since E is countably compact there exists a finite ⊂ ℕ, such that 

=∪ ∈ , then E is compact. 
Lemma 10.4. A compact Hausdorff space E, is normal. 
Proof. It suffices to demonstrate that E is a T₃-space. By using proposition 5.9, ) it remains 
to demonstrate that, if x∈E and O is an open containing , O contains a closed neighborhood 
of . Let ∈  and O an open containing , suppose that every ∈ ( ) (the set of a 
closed neighborhoods of ), ⊂ =  and consider a finite family of a closed 
neighborhoods of , denoted ℳ ( ), as ∩ ∈ℳ ( ) ( ∩ ) = ∩ ∈ℳ ( ) ∩ = ∩ ≠

∅ where ∩ ∈ℳ ( ) = ∈ ℳ ( ) and E is compact by C₂ in lemma 10.1, ∩ ∈ ( ) ∩
≠ ∅, since by proposition 5.8, ∩ ∈ ( ) = {x}, then { } ∩ ≠ ∅ i.e. ∈  

contradiction. 
Compactness is weakly hereditary: 
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Proposition 10.2. Any closed part in a compact space is compact. 
Proof. Let A be a subspace of the space E, and let { , ∈△} be a collection of closed set in 
A such that ∩ ∈△ = ∅, as there exists a collection { , ∈△} of closed sets in E, such that 
∩ ∈△ =∩ ∈△ ( ∩ )=∅, where = ∩ , ∀ ∈△, as A is closed in E, by proposition 
6.2, the collection { ∩ , ∀ ∈△} is closed in a compact E, therefore there exists a finite 
subcollection { ∩ , 1 ≤ ≤ } with ∩ ∩ = ∩ ∩ = ∅ or ∩ =
∅, so the subspace A is compact. 
Proposition 10.3. In Hausdorff space, every compact subspace is closed. 
Proof. Let A be a subspace of the space E. We will show that  is open. Let ∈ , since  
is Hausdorff for every ∈ , there exist two disjoint open ∋  and ∋ , as =
∪ ∈  and A is compact by proposition 10.1, there exists a finite collection { , 1 ≤ ≤ } 
such that =∪ . As =∩ , is an open containing , and 
O⊂∩ = ∪ = , then  is a neighborhood of the arbitrary , by proposition 
2.2,  is open and A is closed. 
Note that, there exists a space, which is not Hausdorff, but every compact subsets in the space 
is closed. 
Example 10.2. It is shown in example 5.4 ) that, the cocountable space E is not Hausdorff, 
but any compact subspace in this space is closed. Note that the infinite subsets of  are not 
compact, indeed, if A is an infinite subspace of E, then = ∪ { ₁, ₂, . . . }, where 
{ ₁, ₂, . . . } is a countably infinite subspace of A and  its complement in A. Let for avery 

∈ ℕ∗, = { , , . . . } , then the collection { , ∈ ℕ∗} of open sets in E, is a cover 
of A witch has not a subcover, therefore A is not compact. But, the finite or countable subsets 
of E are compact and closed. Therefore every compact sets in the cocountable space is closed. 
Corollary 10.5. If, every compact subspace in a space E is closed, E is T₁. 
Proof. Let  an element of a space E, as { } is compact, by the assumption it is closed, using 
proposition 5.6, E is T₁. 
The following example shows that the converse of the corollary 10.5 is false. 
Example 10.3. It is shown in example 5.4 ) that the cofinite spaceE is T₁. But there exists a 
compact subset of E, which is not closed. Let A be a nonempty subset of E,  any open cover 
of A it is clear that any ∈  is infinite and  is finite, hence it contains at most a finite 
number of points, say  of A. The number of open sets from  needed to cover these  points 
does not exceed , hence the maximum number of sets from  needed to cover A is + 1. 
Therefore A is compact subset of E with finite complements are not closed.  
Lemma 10.5. 

) Compactness of subspaces in any space is stable by the finite union. 
) Compactness of subspaces in Hausdorff space is stable by intersection 

Proof. ) Let  be the finite set of indices, { , ∈ } be a finite family of compact subspaces, 
=∪ ∈  and let { , ∈△} be a collection of open subsets in the space E, witch cover A, 

since ∀ ∈ , =∪ ∈△ , and  is compact, by proposition 10.1, there exists a finite subset 
{ , , 1 ≤ ≤ } of △, such that ∀ ∈ , =∪ , , so =∪ ∈ ∪ ,  witch is a 
finite open subcover, then A is compact. ) Let { , ∈△}  be a family of compact 
subspaces, =∩ ∈△ , as ∀ ∈△, ⊂  and by proposition 10.3,  is closed,  is 
obviously closed, proposition 10.2 implies that A is compact. 

Being given, the importance of closed and bounded intervals, in real analysis, we will 
present here, one of the demonstrations of their compactness using the Borel-Lebesgue 
property. 
Theorem 10.2. (Borel-Lebesgue). The bounded and closed interval in the space ℝ is compact. 
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Proof. Let ,  are two elements or ℝ and let { , ∈△}  be a family of opens in ℝ, which 
cover = [ , ], we will prove according to the proposition 10.1 that there exist a subcover 
of A. For that, consider the subset H of A defined by: ∈ ⟺there is a finite ⊂△, such 
that [ , ] =∪ ∈ . As [a,a]={a} then ∈ . We will prove that, H is clopen in the connexe 
subspace = [ , ], then by proposition 9.1 ), = . Let us show that H is an open in the 
subspace A. Let ∈ , by construction there exists a finite ⊂△, such that [ , ] =∪ ∈ , 
there is some ∈ , such that ∈ , so ∈ ∩  which implies that, ⊂ ∩ . If now 

∈ ∩ , ∈  and ∈ [ , ], because [a,x] is an interval, then [ , ] ⊂ [ , ], it follows 
that ∈ , hence H is open in A. It remains to prove that. ( ) ⊂ . Let ∈ ( ), as 

( ) ⊂ ( ) = , then, there is some ∈△ such that ∈ ∩ , it follows that ( ∩
) ∩ = ∩ ( ∩ ) ≠ ∅, thus ∩ ≠ ∅. Let ∈ ∩ , as ∈ , there is a finite 

⊂△, such that [ , ] =∪ ∈ . It is obvious that, if ≤ , ∈ , when < , [ , ] =
[ , ] ∪ [ , ] . As, , ∈  then [ , ] ⊂  Then [ , ] = (∪ ∈ ) ∪ , which is a finite 
subcover, it follows that ∈ , so = , therefore, there exists a subcover of A which 
implies that A is compact. 
Corollary 10.6. The part A in the space ℝ is compact⟺it is bounded and closed. 
Proof. As A is bounded, then A is contained in some interval [ , ] witch is compact, because 
A is closed, by proposition 10.2, A is compact. For the inverse, as A is compact in a Hausdorff 
space ℝ, by proposition 10.3 A is closed, also A is bounded, in fact, for every x∈A, there is 
some ∈ ℕ∗, such that ∈] − , [, so ⊂∪ ∈ℕ∗] − , [, as A is compact, there is a finite 
set ⊂ ℕ∗, such that ⊂∪ ∈ ] − , [=] ∈ (− ), ∈ ( )[, then A is bounded. 
 
10.2 Compact space and continuity 

A property is said to be a topological property (or topological invariant ) if whenever one 
space possesses a given property, any homeomorphic to it also possesses the same property. 
Similarly, property preserved by continuous (respectively open or closed) functions are called 
continuous (respectively open or closed) property or continuous (respectively open or closed) 
invariant. Compactness are continuous property. 
Proposition 10.4. let E, F are two topological space and let :E⟶F be a continuous map: If, 
A is a compact subspace in E, then ( ) is a compact subspace in F. 
Proof. Let { , ∈△} be a collection of opens in F, which covers ( ), by continuity of  
the elements of the collection { ⁻¹( ), ∈△} are open in E as ( ) =∪ ∈△ , and 

⊂ ⁻¹( ( )) = ⁻¹(∪ ∈△ ) =∪ ∈△ ⁻¹( ), then { ⁻¹( ), α∈△} covers A, which is 
compact, there exists a finite set ⊂△, such that ⊂∪ ∈ ⁻¹( ), then ( ) ⊂

(∪ ∈ ⁻¹( )) ⊂∪ ∈ ( ⁻¹( )) ⊂∪ ∈ , by proposition 10.1 ( ) is compact. 
As a direct consequence of the proposition 10.4, we have: 
Corollary 10.7. If, a map  from a compact space E into a space F is continuous. Then, ( ) 
is a compact subspace in F. 
Proof. It suffices to take = , in the proposition 10.4. 
Corollary 10.8. If, a map  from a compact space E, into a Hausdorff space F is continuous, 
then  is closed. Moreover, if  is one to one, then f is an homeomorphism. 
Proof. It suffices to demonstrate that  is closed. If, C is closed in the compact space E, by 
proposition 10.2, C is compact, as  is continuous from C into F, by proposition 10.4, ( ) is 
compact in a Hausdorff space F, by proposition 10.3, ( ) is closed. As, the inverse map ⁻¹ 
from F into E is continuous, f is then an homeomorphism. 
Theorem 10.3 (Heine theorem). A continuous function, from a compact space E into the 
space ℝ, is bounded and reaches these bounds. 
Proof. By corollary 10.7, ( ) is compact, the corollary 10.6 implies that ( ) is closed and 
bounded in ℝ. Let = ( ), then ∀ > 0, there is some ∈  such that − <
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( ) ≤ < + , so ∀ > 0, ( , ) ∩ ( ) ≠ ∅, therefore ∈ ( ( )) = ( ), then 
there exits ₁ ∈ , such that = ( ₁). By the same, if = ( ), ∀ > 0, there is some 

∈  such that − < ≤ ( ) < + , so ∀ > 0, ( , ) ∩ ( ) ≠ ∅, therefore 
∈ ( ( )) = ( ), then there is ₂ ∈ , such that = ( ₂). 

Remark 10.2. In the case when, the space is not compact, the continuous function can be 
bounded but not reaches these bounds or not bounded. For example, the function : ℝ ⟶ ℝ∗ ; 

⟼  is continuous but not bounded above. While the function : ℝ ⟶ ℝ;  ⟼
| |

 is 
continuous and bounded, but not reaches these bounds. 

Subsequently, we will give, the proof of the Tyckonoff theorem, concerning the 
compactness of any product of compact spaces. For that, we need to recall the famous Zorn’s 
lemma, which is used to prove Alexander subbase theorem bellow. Let ( , ≤) be a partially 
ordered set i.e. a binary relation ≤ is: reflexive, antisymmetric, transitive, and E may contain 
elements ,  such that neither ≤  nor ≤  holds, such pair of elements is said to be 
incomparable. One example is = {{1}, {2}, {1,2}}, with set inclusion ⊂ as a partial ordering. 
It is clear that {1} and {2} are not comparable. A pair , ∈  are comparable if ≤  or 

≤  or both. A partially ordered set E is said to be totally ordering, where every pair of its 
elements is comparable. An upper bound (if it exists) of a subset A of a partially ordered set 
E is an element ∈  such that ≤  for all ∈ . Note that, the upper bound need not be 
an element of A, but it must be an element of E. A maximal element (if it exists) of a 
partially ordered set E is an element ∈ , such that, if ≤  for some ∈ , then = , 
in other words, there is no ∈  such that ≤  but ≠ . If a maximal element exists for 
a totally ordered set, then it must be unique. Consider the set A={∅,{1},{2},{3},{1,2}}, with 
set inclusion ⊂ as a partial ordering. The maximal elements are {1,2} and {3} and if, we view 

 as a subset of the set = {1,2,3}, then the upper bound of A is the element {1,2,3}. The 
partially ordered set E is called inductive if, any totally ordered part of E, has an upper 
bound. We are now ready to formulate Zorn's lemma. 
Zorn's lemma. Every nonempty inductive, partially ordered set, has at last one maximal 
element. 
Lemma 10.6. (Alexander subbase theorem). Let ( , ) be a topological space and  a 
subbases of τ. If every open cover of E by the elements of , has a subcover, then E is 
compact. 
Proof. Suppose that, E is not compact. Then, there is some open cover of E, with no finite 
subcover. Let ℱ be, the collection of all open covers of E, with no finite subcover, provided 
with a partially ordered set inclusion. Let = { , ∈△} be the collection of subsets of ℱ 
witch is  totally ordered, then: its upper bound,  =∪ ∈△  has no finite open subcover. 
Indeed, if  contains a finite open subcover, { , 1 ≤ ≤ }, then for each , there exists 

∈△, such that ∈ , as  is totally ordering, there is some ₀ ∈△, such that { , 1 ≤
≤ } ⊂ ₀, therefore this finite subcover cannot cover E . It follows that,  is nonempty 

inductive, partially ordered subset of ℱ, by Zorn's lemma, there exists ℳ ∈ ℱ such that for 
every ∈△, ⊂ ℳ. As, the set = ℳ ∩  is an open cover of E. If not, there is some 

∈ , that is not in any element of , as ℳ covers E, there exists ∈ ℳ, containing . As 
 is a subbasis of τ, there are a finite open ₁, . . . , ∈  such that ∈∩ ⊂ . Because, 

for every ∈ {1, … , }, ∉ ℳ, in not,  would be an element of some member of . By 
maximality of ℳ, for each , the open cover ℳ∪  of E, contains a finite subcover 
ℳ ∪  where ℳ is a finite union of sets in ℳ, then, for each  = ℳ ∪  , so 

⊂∩ ℳ ∪ = ∩ ∪ ∩ ℳ ⊂ ∪ ∪ ℳ , witch is impossible by 
construction of ℳ. Because,  is an open cover of E containing in , by assumption it has a 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 53 
 

finite sucover, this is a contradiction, with the fact that,  is contained in ℳ. Therefore, the 
collection ℱ must be empty, so that E is compact. 
Theorem 10.4 (Tychonoff theorem). The product space, = ∈△  is compact⟺ ∀ ∈△ 
the space  is compact. 
Proof. As ∀α∈△, the coordinate projection : ⟶  is continuous, then if E is compact, 
by proposition 10.4, ( ) =  is compact. Conversely, we will prove that if, ∀ ∈△,  is 
compact, then = ∈△  is compact, by using Alexander subbase theorem and the 
following lemma: 
Lemma 10.7. Let {( ,τ ), α∈△} be a collection of a compact topological spaces and let 

= ∈△  be a product space. Then, any open cover = { ( ), ∈ τ } of E, has a 
finite subcover. 
Proof. Let, for every ∈△, = { ∈ τ , ( ) ∈ }. We claim that, there is some ∈△, 
such that  covers . If not, for every ∈△, there exists ∈ , witch is not containing 
in any ∈ , so ∈ , therefore for every ∈ , ({ }) ⊂ ( ) =
( ( )) , then ({ }) is not containing in any ( ) ∈ , witch is by assumption a 
cover of E, contradiction. Choose  such that  is a cover of , by compactness, there are a 
finite subcover ₁, . . . , ,, as = ( ) = (∪ ) =∪ ( ), then 
{ ( ₁), . . . , ( )} is a finite subcover of E. 
To finish the proof of the theorem, take as a subbase in the product topology E, the collection 

= { ( ), ∈ τ }, where ∈△. Any collection of  which covers E, by lemma 10.7 has 
a finite subcover, thus by Alexander subbase theorem, E is compact. 
Corollary 10.9. The part A in the space ℝⁿ is compact⟺it is bounded and closed. 
Proof. As A is compact in the Hausdorff ℝⁿ, by proposition 10.3, A is closed and it is also 
bounded, if not ∀ ∈ ℕ∗, there is some ∈  such that, ‖ ‖ > , so { } has no 
convergent subsequences, as by corollary 10.2, A is sequentielly compact, contradiction. 
Conversely, as A is bounded, then ⊂ [ , ], where ∀1 ≤ ≤ , the constants 

, ∈ ℝ. Borel-Lebesgue and Tychonoff theorems say that [ , ] is compact, because 
 is closed, by proposition 10.2, A is compact. 

Example 10.4.  
) The ellipse = ( , ) ∈ ℝ , ²

²
+ ²

²
− 1 = 0  where, the constants , ∈ ℝ∗, is a 

compact in ℝ². Because, the function : ℝ ⟶ ℝ, ( , ) ⟼ ( , ) = ²
²

+ ²
²

− 1 is 

continuous, then = ⁻¹({0}) is closed. Moreover ∀( , ) ∈ , ²
²

≤ 1 and ²
²

≤ 1, then 
( , ) ∈ [− , ] × [− , ], so ⊂ [− , ] × [− , ]. A is closed and bounded in ℝ², by 
corollary 10.9, it is compact. 

) Let ℝ be a space, the sphere = { = ( ₁, . . . , , . . . , ) ∈ ℝⁿ, ∑ − 1 = 0} is 
compact in ℝⁿ. Because, the function : ℝⁿ ⟶ ℝ, ⟼ ( ) = ∑ − 1 is continuous, 
then = ⁻¹({0}) is closed. Moreover, ∀1 ≤ ≤ , ≤ 1, then ⊂ [−1,1] 
witch is compact, thus  is compact. 

) As the circle ₁ is compact, then the torus ( ₁) , ∈ ℕ∗ is compact. 
Definition10.3. Let {( , ), ∈∧} be a family of spaces, such that for all ∈∧, ( , ) is 
homeomorphic to [0,1] usual. Then the product space ∈∧  is denoted ∧ and it is called a 
cub. 
As a consequence of the Tychonoff’s theorem, and because the subspace [0,1] is compact and 
Hausdroff. We have: 
Corollary 10.10. For any set ∧, the cube ∧ is compact and Hausdroff. 
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10.3 Locally compact space 
Starting from the fact that, in non compact space ℝ, the closure of an open interval is 

compact, we will define a new topological space: 
Definition 10.3. The part of topological space is called relatively compact, if its closure is 
compact. 
It is easy to see that: 

) Any interval in the space ℝ is relatively compact (since its closure is closed and bounded) 
) Any compact is relatively compact ( = ( )). 
) Any part of the relatively compact part is relatively compact (see, proposition 10.2). 

d) Any part of a compact space is relatively compact (see, proposition 10.2). 
) The finite union of relatively compact parts is relatively compact ( ( ∪ ) = ( ) ∪
( ) witch is compact). 

) The intersection of relatively compact parts is relatively compact ( (∩ ∈△ ) ⊂
∩ ∈△ ( ) witch is compact) 
Definition 10.4. The space E, is said to be locally compact, if every element of E, has a 
compact neighborhood. 
It is clear that, in a space E, if an element has a basis of compact neighborhoods, then it has a 
compact neighborhood, therefore E is locally compact. For the reverse, we have: 
Proposition 10.5. In locally compact, Hausdorff space E, any element has a basis of compact 
neighborhoods. Therefore E is regular. 
Proof. By assumption, every ∈  has a compact ∈ ( ), as E is Hausdorff, by 
proposition 10.3, U is closed. If now, we take an open ∈ ( ), then ∩  is an open 
neighborhood of  in U. Because, from proposition 6.5, ) and lemma 10.4, U is a normal 
space, by proposition 5.9, ) ∩  contains a closed neighborhood W of  in the subspace U, 
so W is compact. As, there is some closed C in E, such that = ∩ , then by proposition 
6.2, W is a closed neighborhood of  in E, containing in O. Therefore W is both closed and 
compact neighborhood of  in E, so by proposition 5.9, ) E is regular. 
Example 10.5. 

) A compact space E, is locally compact. In fact, E is an open neighborhood of each its 
elements, as it is compact then, it is locally compact. 

) The discret space is locally compact. In fact, any element is open and compact. 
) The space ℝ is locally compact, since ∀ ∈ ℝ, there is ∈ ℕ∗ such that ∈ [− , ] witch 

is a compact neighborhood. 
) In the space ℝ, ∀ , ∈ ℝ, ] , [ is locally compact. It suffieces to see that for every 
∈] , [, the interval [ − , + ], where = (| − |, | − |), is a compact 

neighborhood of . 
) In the space ℝ, ℚ is not compact nor relatively compact nor locally compact. In deed, 
(ℚ) = ℝ, then ℚ is not closed, so it is not compact nor relatively compact. If ℚ is locally 

compact, and V is a compact neighborhood of 0 in ℚ, then V contains the closed 
neighborhood of 0 of the form = ℚ ∩ [− , ], where ∈ ℝ∗ , A is then compact. Clearly, 
for any ∈ ℚ ∩ [− , ], the decreasing sequence of closed sets = ∩ − , +
1 , ∈ℕ∗ in A, has an empty intersection, which contradicts the corollary 10.1. So ℚ is not 
locally compact. 

Proposition 10.6. The finite locally compact subspaces is stable by intersection. 
Proof. Let ∈ =∩ . Because, ∀ 1 ≤ ≤ ,  belongs to the locally compact , there 
is some compact ∈ ( ), where ∀ 1 ≤ ≤ , ( ) is the set of neighborhoods  in . So 

=∩  is a compact neighborhood of  then A is locally compact. 
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Remark 10.3. The union of two locally compact subspaces is not necessarily locally compact. 
In fact, = {( , ) ∈ ℝ², > 0} and = {(0,0)} are locally compact subspaces in ℝ², but 

∪  is not locally compact subspace, because (0,0) has no compact neighborhood in the 
subspace ∪ . 
Proposition 10.7. The closed (respectively open) subspace of the locally compact, Hausdorff 
space is locally compact. In particular the open in the compact, Hausdroff space is locally 
compact. 
Proof. Let  be an element of the closed subspace C of the locally compact space E, there is a 
compact neighborhood N of  in E, as by proposition 10.3, N is closed, then ∩  is a closed 
neighborhood of  in C containing in the compact N, by proposition 10.2, ∩  is compact. 
Let now  an open subspace in E, as O is a neighborhood of any its element , by proposition 
10.5, there is some compact neighborhood of , containinig in O, then O is locally compact. If 
O is an open in the compact Hausdorff space E, which is locally compact then O is locally 
compact. 
As a direct consequence of the proposition 10.6, and proposition 10.7, we have: 
Corollary 10.11. The finite intersection of closed (respectively open) subspaces, of the 
locally compact, Hausdorff space is locally compact. 
Proposition 10.8. The finite product of locally compact space is locally compact. 
Proof. Let =  be a finite product of the spaces .and = (x₁, . . . , x , . . . , x ) ∈  As, 
∀ 1 ≤ ≤ , x ∈  which is locally compact, there exists a compact neighborhood of x , say 

, then =  is a compact neighborhood of  in E. 
Example 10.6. The spaces ℝⁿ and ₁ × ℝ are locally compact. 

At the end of this section, let us give some useful results on the Lindelôf space, which will 
be used in the following chapter. 
Lemma 10.7. The open cover of the closed set in a Lindelôf space has a countable subcover. 
Proof. Let F be a closed set in a Lindelôf space E and let { ;  ∈ ∆} be an open cover of F. 
As  is an open, and the collection { ;  ∈ ∆} ∪  is a cover of E, there is a countable 
subcover { ;  ∈ ℕ} of E. Then, the collection { ;  ∈ ℕ} ∖  is a cover of , since if 

∈ , thus ∈  ∖ , therfore ∈ (∪ ∈ℕ )  ∖ . 
The following lemma will transform a regular lindelôf space into a normal space.  
Lemma 10.8. (Normality Lemma). Let A and B be subsets of a space E and let { ;  ∈
ℕ∗ and ′; ∈ℕ∗ be two sequences of open sets such that 

) ⊆∪ ∈ℕ∗ ; 
) ⊆∪ ∈ℕ∗ ; 
) For every ∈ ℕ∗, cl( ) ∩ = ∅ and cl( ) ∩ = ∅. 

Then, there are two disjoint open sets  and  such that ⊂  and ⊂ . 
Proof. Define the two set sequences { ;  ∈ ℕ∗} and { ;  ∈ ℕ∗} as follows: = , 

= ∩ ∪  cl( )  and = ∩ ∪  cl( )  then for every ∈ ℕ∗,   and 
 are open. So =∪ ∈ℕ∗  and =∪ ∈ℕ∗  are open, ⊂ , ⊂ , and ∩ =

∅, indeed: if ∈  by ) there exists ∈ ℕ∗, such that ∈ , because for every ∈ ℕ∗, 

cl( ) ∩ = ∅ then ∉ cl , so ∉∪  cl( ), thus ∈ ∪  cl( ) , therefore 
∈ ⊂ . By the same argument ⊂ . Let now ∈ , we will show that ∉ . 

Because ∈ , there is ∈ ℕ∗ such that ∈ , then ∉∪  cl( ) hence ∉  for all 

< , so ∉  for all < . Let for ≤ , = ∩ ∪  cl . We know that 

∈ , as ≤ , ∈∪ cl , so ∉ ∪  cl , therefore ∉ .  Conclusion for 
all ∈ ℕ∗,  ∉ , then ∉ . 
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Theorem 10.5. Every regular, Lindelôf space is normal. 
Proof. Let A and B be two disjoint closed set a space E. As, E. is regular, for every ∈  
there exists two disjoint open sets  containing  and  containing  such that ∩ = ∅, by  
proposition 5.9 c),  contains a closed neighborhood F of , so there is an open  containing 

 such that ∈ ⊂ ⊂ , thus ∈ ( ) ⊂ , therefore ( ) ∩B=∅. Because the 
family { , ∈ } covers the closed set A and the space E is Lindelôf, by lemma 10.7, there 
is a countable subcover { , ∈ ℕ} of A such that for every ∈ ℕ, ( ) ∩B=∅. By the 
same argument there is a countable subcover { , ∈ ℕ} of B such that for every ∈ ℕ, 

( ) ∩A=∅. The conditions of the normality lemma 10.8 are therefore satisfied, so there are 
two disjoint open sets containing respectively A and B, so E is normal. 

Since 2D-space is Lindelôf, it is straightforward that. 
Corollary 10.12. The regular 2D-space is normal. 
 

11-Nets and filters 
 

11.1 Nets. 
We have seen in the previous chapters that: In a 1D-space an adherent point of a part of 

space is a limit of the sequence containing in this part. In a Hausdorff space, the limit of a 
sequence when it exists is unique. In a 1D-space, a limit of a function in the neighborhood of 
a point is the limit of the image of any sequence, which converges to this point. To obtain in 
some natural way, the above results as well as others. We will introduce the concept of the 
generalized sequence or the net, which is defined to general the sequence and to overcome the 
short coming of the sequence. The net allows us to find results obtained by the sequences 
without additional conditions on the space. Let E be any set and let ( , ≥) be a directed set 
i.e.  is partially ordered and every two elements of  have an upper bound.  
Definition 11.1. Let the map : ∈ ↦ ( ) = ∈  be. The subset { , ∈ } of E is 
called a net and it is denoted ( ) ∈ . 
Definition 11.2. Let  be a space and ∈  

) The net ( ) ∈  is said to be converges to  and we write ⟶ , if for every ∈
( ), there is ∈  such that for every ∈ , satisfaying ≥ , we have ∈  
ii)  is said to be an adherent value (or a limit point) of the net { } ⊂ , if ∀ ∈ ( ), 

and ∀ ∈ , there is ∈ , ≥  such that ∈ .  
Note that if  is an adherent value for ( ) ∈ . Then ∀ ∈ , the set ={ ∈ , ≥ } 
satisfies, for every , ∈ , ( ) ∩ ( ) ≠ ∅. Indeed, there is ≥  and ≥ , so 

⊂ ∩ ⊂ ( ) ∩ ( ).  Therefore for any finite part ⊂ , ∩ ∈  ( ) ≠ ∅  
Before giving in a general space, a characterization of the closure by nets. Note that if 

( ) ∈  is a net in the subset A of the space E which converges to ∈  then ∈ ( ). 
Indeed if, ∈ ( ) there is ∈ , such that for every ∈ , satisfaying ≥ , we have 

∈ , then ∈ ∩ , so ∈ ( ). The converse is given without E being 1D-space.  
Proposition 11 1. For every ∈ ( ), there is a net in  which converges to . 
Proof. If ∈ ( ), for every ∈ ( ), ∩ ≠ ∅,  ( ( ), ⊇ )  being directed, thus there 
is a net ( ) ∈ ( ) in ∩  , then for every ∈ ( ), satisfying ⊇ , we have ∈ , it 
follows that ⟶ . 
Let E and F are two spaces and let   be an element of E. We have the following equivalence 
without E being 1D-space. 
Proposition 11 2. The map : ⟶  is continuous in ⟺fore every net ( ) ∈  in  
converging to , the net ( ( )) ∈  converges to ( ) in . 
Proof. Let ∈ ( ( )), because,  is continuous in ∈ , there is ∈ ( ) such that 

( ) ⊂ . As the net ( ) ∈  converges to ,  there is ∈  such that for every ∈ , 
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satisfaying ≥ , we have ∈ ,  so ( )  ∈ , it follows that ( ) ⟶
 ( ). Conversely, if  is not continuous, there is an open  in F such that ( ) is not open 
in . Then, ( ( ) )   is not closed in E, so there is  in (( ( ) ) ) which is not in 
( ( ) ) . By proposition 11.1, there is a net ( ) ∈  in ( ( ) )  witch converges to . 
As, ∈ ( ), thus ( ) ∈ , because for every ∈ , ∈ ( ( ) ) , then  is not in 

( ), so ( ) is not in . Therefore, the net ( ( )) ∈  not converges to ( ), 
contradiction. 
Recall that (see example 7.1), a convergence sequence can have a unique limit without the 
Hausdorff property. This is not the case for the nets, if every net have a unique limit, then the 
space is Hausdorff: 
Proposition 11 3. A space E is Hausdorff⟺every net has a unique limit. 
Proof. Let ( ) ∈  be a convergence net in the Hausdorf space E. If the net has two distinct 
limits  and  in , there are  two disjoint open set ∋  and ∋ , so there are  and 

 in   such that for every ∈  satisfying ≥  and ≥  we have ∈ ∩ , 
contradiction. Conversely, suppose that E is not Hausdorff i.e. there are two different points 

 and  in E such that every ( , ) ∈ ( ) ( )  satisfies ∩ ≠ ∅. Let 
( , ) ( , )∈ ( )× ( ) 

 be a net in ∩ , then for every ∈ ( ) with ( , ) ≥ ( , )  
i.e. ⊇  and ⊇ , we have ( , ) ∈  it follows that ( , ) ( , )∈ ( )× ( ) 

 converges 

to . By the same, we have ( , ) ( , )∈ ( )× ( ) 
 converges to  as the limit is unique, 

contradiction. 
Definition 11.3. A subnet of the net ( ) ∈  is a net ( ) ∈

, where ( , ≥) is a directed 
subset of  and the map : ∈ ⟼ ( ) ∈  is such that: 

) If ≥ , then ( ) ≥ ( ) (  is order preserving). 
ii) For every ∈ , there is ∈  such that ( ) ≥  ( ( ) is co inal in ). 

Before giving, a characterization of compact spaces by the net. Note that, it is obvious to 
check, that, the finite intersection property⟺all directed and decreasing family of closed sets 
has a nonempty intersection. 
Theorem 11.1. A space is compact⟺every net has a convergence subnet. 
Proof. Let ( ) ∈  be a net in E . As, the family ({ ( ), ∈ }, ⊇), where for every 

∈ , = { , ≥ }, is directed and decreasing, and E is a compact space, then 
∩ ∈ ( ) ≠ ∅. Let ∈∩ ∈  ( )  then, for every ∈  and for every  ∈ ( ), 

∩ ≠ ∅, so, there is ≥  such that ∈ . Consider the set = {( , ) ∈ ×
( ) such that ∈ }, then ( , ≽) where, for every ( , ), ( , ) ∈ ; {( , ) ≽

( , )} ⟺ { ≥  and ⊇ } is a directed set. It is clear that the binary relation ≽ is 
partially ordered and for every ( , ), ( , ) ∈ ; there is an upper bound  of  and  in . 
As ∩ ∈ ( ), then ( ∩ ) ∩ ≠ ∅, there is, ≥  such that ∈ ∩ . Thus 
( , ∩ ) is an upper bound of ( , ) and ( , ) in . In the other hand, the projection 

: ( , ) ∈ ⟼ ( , ) = ∈  is obviously an order preserving and it is surjective, then 
( ) is cofinal in , thus ( , ) ( , )∈

 is a subnet of the net ( ) ∈ . If now, ∈ ( ), 
then, for every ∈ , ∩ ≠ ∅, so there is ≥ , such that ∈ , then ( , ) ∈ . By 
definition of , for every ( , ) ∈  , satisfaying ( , ) ≽ ( , ), we have = ( , ) ∈ , 
so ( , ) ⟶ . Conversely, if  is not compact, then there is a family ℱ of closed sets in E 
such that,  every finite sets of ℱ has a nonempty intersection, but the intersection of all its 
elements is empty. Let    be the collection of all finite subfamily of ℱ. It is clear that ( , ⊇) 
is a directed set. We can choose a net ( ℬ)ℬ∈  where ℬ ∈ ⋂ ∈ℬ . If, there is a subnet 

( ) ∈
 of ( ℬ)ℬ∈  witch convergence to  in . By assumption, there is ∈ ℱ such that 
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∉ ( ) = , so there is ∈ ( ), ∩ = ∅, then, ℬ ∉  for all ℬ ⊇ { }, As ( ) is 
cofinal in , there is ′ ∈  such that ( ′) ⊇ { }. Also, it exists ′′ ∈ , such that, ( ) ∈

, . for all e ≽  ′′. Let  an upper bound of ′ and ′′, then we must have ( ) ∈ . As 
( ) ⊇ ( ′) ⊇ { }, also ( ) ∉ , contradiction. So the net does not have a convergence 

subnet.  
Don't believe that a subnet is a subsequence; if not as in the compact space any sequence has a 
convergence subsequence ( see Lemma 10.2) then by the theorem 11.1, the compact space is 
sequentially compact which is false. 
Definition 11.4. A net in E is universal or an ultranet, if for every ⊂ , the net is either 
eventually in A or eventually in . 
Proposition 11.4. Every net has a universal subnet. 
 
11.2-Filtres 

Along with the net, we introduce filters, general notions of limits and we show that most of 
the results obtained using nets can equally well be proven using filters. Let E be a set, ( ) 
the family of all parts of E and ℱ, the nonempty subfamily of ( ). 
Definition 11.5. ℱ is said to be a filter if: 

-∅ ∉  ℱ. 
-If, , ∈ ℱ then ∩ ∈ ℱ. 
- If for ∈ ℱ, there is ⊃ , then ∈ ℱ. 

It is obvious that ∈ ℱ and if , ∈ ℱ, then ∪ ∈ ℱ. 
Definition 11.6. The nonempty subfamily ℬ of the filter ℱ is said to be a basis of ℱ. If, for 
every ∈ ℱ, there is B∈ ℬ such that ⊂ . 
It is clear that, if ℬ is a basis of the filter ℱ. Then 

-∅ ∉  ℬ. 
-For every , ∈  ℬ, there is ∈  ℬ such that ⊂ ∩ . 

Conversely, any part ℬ ⊂ ( ) satisfying  and  generates a unique filter ℱ on E such 
that, for every ∈ ℱ, there is B∈ ℬ with ⊂ . 
Example 11.1. 

) Let ∈  and ℱ( ).the family of all parts of  containing . Then ℱ( ) is a filter in . 
Such a filter is said to be a trivial filter. In the case where  is a space, ( ) is a filter on E. 

) ℬ = { , ∈ ℕ}, where = { ∈ ℕ, ≥ }, for every ∈ ℕ, is a basis of the filter, 
called a basis of Fréchet filter on ℕ. 

) If,  is nonvoide part of the set E, , then ℬ = { ∈ ( ), ⊇  } is a basis of the filter. 
) ℬ = {[ , +∞[, ∈ ℝ} is a basis of the filter on ℝ, called a basis of the filter of the 

neighborhood of +∞. 
) If,  is a part of the space  and ∈ ( ), then ℬ = {  ∩ , ∈ ( )} is a basis of 

a filter, called a basis of the adherent filter to  on . 
The family ( , ⊇) of all filters on the set E is a directed set. A filter ∈  is said to be an 
ultrafilter if, it is maximal i.e a filter on E which contains either A or , for all ∈ . For 
example, a trivial filter is an ultrafilter. The importance of ultrafilters lies above all, in the 
following proposition. 
Proposition 11.5. Every filter has an ultrafilter. 
Proof. It remains to demonstrate that ( , ⊇) is inductive. If, {ℱ , ∈ ∆} is a totally ordering 
collection of , then the filter ∪ ∈∆ ℱ  is an upper bound of , then ( , ⊇) is inductive. So, 
by Zorne’s lemma it has an maximal element ∈ . 
Proposition 11.6. Let E and F are two sets and a map : ⟶ . If, ℬ is a basis of the filter 
on E, then (ℬ) is the basis of the filter on , called the image filter basis. 
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Proof. ∅ ∉ (ℬ), if not there exists ∈ ℬ,  ≠ ∅, such that ( )=∅, as ⊂ ( ) =
(∅) = ∅,  contradiction. Also (ℬ) ≠ ∅, since for every ∈ ℬ, ( ) ∈ (ℬ). If now, 

, ∈ (ℬ),  there are , ∈ ℬ such that ( ) =  and ( )=W, therefore there is ∈ ℬ, 
such that ⊂ ∩ , then ( ) ⊂ ( ∩ ) ⊂ ( ) ∩ ( )= ∩ . By  and , (ℬ) is 
a basis of a filter on F.  
Definition 11.7. We say that a point  of the space E is a limit of the filter ℱ on E, or ℱ 
converges to  and we write, ℱ = , if ℱ contains any ∈ ( )  
Definition 11.8. We say that a point  of the space E is a limit of the basis ℬ of the filter ℱ on 
E, or ℬ converges to  and we write ℬ =   if, for any ∈ ( ), there is ∈ ℬ,  such 
that ⊂ . 
It is obvious that if the filter ℱ is generated by a basis ℬ then: ℱ =  ⟺  ℬ = . 
Proposition 11.7. The space E is Hausdorff ⟺ the limit of the basis of the filter on E, when it 
exists is unique. 
Proof.  Suppose that the basis ℬ has two different limits  and . As, the space E, is 
Hausdorff, there are ∈ ( ) and ′ ∈ ( ) whose ∩ = ∅. Because ℬ =  and 

ℬ = , there are A,B∈ ℬ such that A⊂  and B⊂ ′, therefore ∩ = ∅ ∈ ℬ, 
contradiction. Conversely, if , ∈ , ≠  and all ∈ ( ) and ′ ∈ ( ) satisfy 

∩ ≠ ∅. Then, the basis ℬ = { ∩ , ∈ ( ) and ′ ∈ ( ) } is such that for all 
∈ ( ) and all ∈ ( ), = ∩ ∈ ℬ, ⊂  and ⊂ , then ℬ converges to 

 and , contradiction. 
Lemma 11.1. The family of the closed sets has the property of the empty intersection⟺the 
directed decreasing family of the closed set has a nonempty intersection. 
Proof. Let (∆, ≥) be a directed set and let ( , ⊇), where = { , ∈ ∆} be a decreasing 
family of the closed sets in the space E, then ( , ⊇)  is directed. Suppose that ∩ ∈∆ = ∅, 
by assumption there is a finite ⊂ ∆, such that ∩ ∈ = ∅. Then there is ∈ , with = ∅. 
As, for every j∈ , ≥ , ⊇ ⊇ ∩ , then ∩ = ∅ and, as (∆, ≥) is directed, there 
is ∈  such that ≥  and ≥ , thus ⊇ ≠ ∅ and ⊇ , therefore ∩ ≠ ∅, the 
contradiction. Reciprocally, let = { , ∈ ∆} be a family of the closed sets in the space E. 
Suppose that for any finite ⊂ ∆, ∩ ∈ ≠ ∅. Let = , ∈ ∇  be, where (∇, ≥) is 
directed and for all ∈ ∇, =∩ ∈ , . Then ( , ⊇) is a decreasing directed family of the 
closed sets, which by hypothesis ∩ ∈∇ ≠ ∅, so ∩ ∈∇ ∩ ∈ , ≠ ∅ or ∩( , )∈∇× , ≠
∅, which implies that ∩ ∈∆ ≠ ∅. 
Definition 11.9. We say that, the point  of the space E, is an adherent point of the filter ℱ on 
E, if ∈ ( ) for every ∈ ℱ . The set (ℱ)  of all adherent points of ℱ, is called the 
closure of ℱ, and it is equal to ∩ ∈ℱ ( ). This definition is obviously valid for the basis of 
the filter. 
Lemma 11.2. A filter on the space E has an adherent point ⟺the ultrafilter has a limit. 
Proof. Let  be an ultrafilter, as the filter, by hypothesis  has an adherent point ∈ , then 
for all ∈  and all ∈ ( ), ∩ ≠ ∅. As the family ℱ = {( ∩ ), ∈  and ∈

 is a filter on E, ⊇ℱ, ⊇ℱ, and  is maximal, then =ℱ. As ⊇ , then for all 
∈ ( ), ∈ , so  converges to . Inversely, let ℱ be a filter on E, by proposition 11.5, 

ℱ has an ultrafilter , as by hypothesis,  converges to ∈ , then for all ∈ ( ), N∈ . 
Because, fore all ∈ ( ) and all ∈ ℱ; , ∈  by , ∩ ∈  , thus ∩ ≠ ∅, 
therefore  is an adherent point of ℱ. 
Corollary 11.1. When the filter converges to a unique point it adherent is reduced to this 
point. 
Proof. If, ℱ converges to ∈ , then for all ∈ ( ), N∈ ℱ; so for all ∈ ℱ, ∩ ∈ ℱ, 
thus ∩ ≠ ∅, therefore  is an adherent point of ℱ, as  is unique then (ℱ)={ }. If not 
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there is ∈  (ℱ) and ≠ , because by proposition 11.7, the space E is Hausdorff, there 
are ∈ ( ) and ′ ∈ ( ) such that ∩ = ∅. Because ∈ ℱ, then ∩ ≠ ∅ 
contradiction.  
Lemma 11.3. The directed decreasing family of the closed sets has a nonempty intersection 
⟺a filter in the space E has an adherent point. 
Proof. Let ℱa filter in the space E. the family = { ( ), ∈ ℱ} provided with the relation 
⊇ is a directed decreasing family of the closed sets in the space E, indeed if , ∈ ℱ with 

⊃  then  ( ) ⊇ ( ) as ∩ ∈ ℱ then ( ∩ ) ∈ , and ( ) ∩ ( ) ⊇
( ∩ ), by assumption ∩ ∈ℱ ( ) ≠ ∅. Then, there is ∈  ( ), for all ∈ ℱ i.e.  is an 

adherent point of ℱ. Conversely, let ℬ = { , ∈ ∆} be a directed decreasing family of the 
closed sets in the space E, then ℬ is a basis of the filter ℱ on E. If  is an adherent point of ℱ, 
then for all ∈ ℱ, ∈ ( ). As, for all ∈ ∆, ∈ ℱ and ( ) = . Then for all ∈ ∆, 

∈ , therefore ∩ ∈∆ ≠ ∅. 
Definition 11.10. Let  a map defined from the set E into the space F. The point ∈  is said 
to be a limit of  according to the basis ℬ, and we write (ℬ) =  or ℬ = . If. for all 

∈ ( ) there is ∈ ℬ, such that ( ) ⊂ . The closure of  denoted ( ), is the closure 
of (ℬ),  is equal to ∩ ∈ℬ ( ) . 
Theorem 11.2. The map  from the space E into the space F is continuous in ∈  ⟺for 
every convergent basis ℬ to , (ℬ) converges according to ℬ to ( ). 
Theorem 11.3. The space E is compact⟺ any filter on E, has an adherent point .  
Remarque 11.2. The proof of the theorem 11.3, is a straightforward consequence of the 
lemmas 11.1-11.3. This theorem can also be used, to give an elegant demonstration of 
Tychonoff's theorem, by comparison with that given by the nets. 
Remarque 11.3. If, ( ) ∈  is a net in the space , then the family ℱ ⊂ ( ), defined by: 

∈ ℱ ⟺there is d∈  such that ∈ , for every ≥  is a filter on E, which eventually 
contain the net ( ) ∈ . This filter has the same limits as ( ) ∈ . Conversely if, ℱ is a filter 
on E , one can consider the directed set (ℱ, ⊇). Then ℱ converges to a point ∈E ⟺any net 
( ) ∈ℱ, with ∈A, for all ∈ ℱ converges to . 
As a consequence of the proposition 11.7 and the theorem 11.3, we have. 
Corollary 11.2. In the Hausdorff compact space. The filter converges iffy it has a unique 
adherent point. 
Proof. Let ℱ be a filter on E which convergences to the limit ∈ , as E is Hausdorff,  is 
unique, so by the corollary 11.1,. (ℱ) = { }. Conversely, let ∈  be a unique adherence of 
ℱ. Then, ℱ convergence to , if not there is some open ∈ ( ) not contained in ℱ, such 
that for all ∈ ℱ, ∈ ( ) and ∩ ≠ ∅. As, the family { ( ) ∩ , ∈ ℱ} is clearly a 
directed decreasing family of the closed sets of E which is compact by lemma 11.1 and the 
theorem 11.3, ⋂ ( ( ) ∩ ) ≠ ∅∈ℱ . Therefore there is ∈ ⋂ ( ( ) ∩ )∈ℱ , so ∈

( ) ∩ , for all ∈ ℱ, then  is an adherent point of ℱ different from , contradiction. 
Example 11.2. 

) If E=ℕ, ℬ a Fréchet basis, and : ∈ ℕ ⟼ ∈ . (ℬ) = l ⟺for all ∈ ( ) 
there is ∈ ℬ, such that ( ) ⊂ ⟺ for all ∈ ( ), there is ∈ ℕ, such that ∈ , 
for every >  ⟺ ⟶ l. 

) If, E=ℝ, ℬ a basis of the neighborhood of +∞., and : ℝ ⟶ . If, (ℬ) = l, then 
for all ∈ ( ) there is ∈ ℬ, such that ( ) ⊂ ⟹ for all ∈ ( ), there is ∈ ℝ , 
such that for every  ≥ ,  ( ) ∈ ⟺ lim ⟶ ( ) = . 

) If, : ⟶ , where E and F are two spaces, ∈  and ℬ is a basis of the trivial filter 
( ), then Lim ⟶ ( ) = ( ) ⟺  (ℬ) = ( ). 
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12 Compactification 
 

Let E and F two topological spaces. We say that E embeds into a topological space F, if it 
is homeomorphe to a everywhere dense subset of F. Being given a non compact space, it is 
natural to ask the following question: Can you add some things to this space to make it 
compact? Other ways, is there a way to embed this space into another which is compact?. 
Under suitable conditions, the answer is affirmative. The process to imbed the non compact 
space into a compact one is called compactification. The main idea of the compactification, 
comes from the fact that an open space of a compact and hausdorff space is locally compact 
(see proposition 10.7). This leads us to concentrate primarily on the compactification of 
locally compact Hausdorff spaces. There are several paths to follow to compact a space. The 
most “efficient” or the “smallest” one in the sense that the embedding only misses one point is 
the Alexandroff-compactification or a point-compactification. Let's also mention the two 
points-compactification, the most general of all compactifications is the Stone- ech-
compactifcation. In the sequel, we will mainly focus on the first and last compactification 
paths. 
Definition 12.1. The space  is called a compactification of a given space E, if  is a 
Hausdorff compact space and containing a everywhere  dense part which is homeomorphe to 
E. In other words, if  is a Hausdorff compact space and there is a map : ⟶  such that 

: ⟶ ( ), is a homeomorphism and ( ( ))= . A compactification of a topological 
space , when it exists, is denoted by ( , ). 
Two compactifications ( , ) and ,  of the same space E are called equivalent if there is 

a homeomorphism ℎ: ⟶   such that ℎ( ) = , for every ∈ . 
Let ( , ) be a locally compact Hausdorff space and let = ∪ { } be, where ∉  

called a point at infinity of  and let  = ⋃  be, where  is the collection of all set in  
containing , whose  is a compact in E 
Theorem 12.1. (Alexandroff-Compactification). The space ,   is a unique (up to an 
equivalence) Alexandroff-compactified of E. 
Proof. We will prove that the couple ,   is the Hausdorff compact space, such that E 
embeds as a everywhere dense part of . 

) Let us show that ,   is a topological space. 
-Since ∅ ∈  and ⊂  , then ∅ ∈  . As ∈  and = ∅ which is a compact in E, 

then ∈  . 
-let { , ∈△} be a collection of elements of  . There are three cases: 

Case 1. All  are in  then = ⋃ ∈△ ∈   and hence ∈  . 
Case 2. All  are in , then, for every ∈△, there is a compact  in E such that =

, then ⋃ ∈△ = ⋃ ∈△ = (⋂ ∈△ ) , as ⋂ ∈△  is a compact of E, then 
⋃ ∈△ ∈  . 
Case 3. There are two collection { , ∈ } in  and , ∈  in  such that { , ∈△} =
{ , ∈ }⋃ , ∈ . Let's pose =∪ ∈  and =∪ ∈ , then ⋃ ∈△ = ⋃ , where 
by the case 2, =  with K a compact in E. Therefore, 

⋃ = ⋃ = ( ) ⋃ = ( ∩ ) , because ∩  is a closed in the 
compact K, it is a compact in E, then ⋃ ∈   

-Let { , 1 ≤ ≤ } a finite collection of the elements of  . As above there are three 
cases: 
Case 1. All  are in  then = ⋂ ∈   and hence ∈  . 
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Case 2. All  are in , then, for every ∈ {1, … , }, there is a compact  in E such that 
= , then ⋂ = ⋂ = (⋂ ) , as ⋂  is a compact of E, then 

⋂ ∈  .  
Case 3. There are two collection { , ∈  } in  and , ∈  in  such that { , 1 ≤ ≤

= , ∈ ⋃ , ∈ . Let's pose =⋂ =1  and =∩ ∈ , then ∩ ∈△ = ∩ , where 
by the case 2, =  with K a compact in E. Therefore, ∩ = ∩ , since E is 
Hausdorff, by proposition 10.3,  is closed, then ∩ ∈ ,  therefore ∩ ∈    

) Let us show that  is compact. 
Let { , ∈△} be a collection of elements of   such that = ⋃ ∈△ , then there is ∈△, 
such that ∈  so =  where  is a compact in E, then = ∪ . It follows 
that (⋃ ∈△ ) ∖ = , and there exists  a finite ⊂△ such that (⋃ ∈ ) = ∪

= , thus  is compact. 
) Let us show that  is Hausdorff. 

Let  be an element of  different of , then ∈   which is locally compact, therefore  has 
in E a compact neighborhood K (K is then closed), because ∈ ∈   and K∩ = ∅, 
then  is Hausdorff. 

) Let us show that ( ) =   
Let  be an element of  and ∅ ≠U∈   containing  if, ∈  then ∩ = ≠ ∅, so 

∈ ( ). If now ∈  there is a compact K in E such that =  then ∩ = ∩
= ∩ = ≠ ∅, so ∈ ( ). 

) Let us show that  is unique, in the sense that if  is another Alexandroff compactified of 
E, then  is homeomorphic to . Let = ∪ { ′}, where ≠  is the point at infinity of 

. It is clear that, the map : ⟶  defined by for every ∈ , ( ) =  if ∈ ;
 ′if =

                                              
is an homeomorphism. Indeed  is biunivoque, bicontinuous on E, and also, continuous in , 
because if  is an open in  containing ( ) = ′, there is a compact  in E such that 

= , as  is continuous from E into E, then ( ) = ( )  is a compact in E, 
so ( ) is an open in , containing , therefore  is continuous in . 

) Clearly  is homeomorphe to = . 
Remark 12.1. Two homeomorphe, locally compact Hausdorff spaces, are the same 
compactification. 
Example 12.1. 

) In the space ℝ. The locally compact Hausdroff subspace ]0,1], embeds as a subset of a 
compact Hausdorff space [0,1] via a natural inclusion map : ]0,1] ⟶ [0,1] = ]0,1] ∪ {0}, 
defined by: for every ∈ ]0,1] ( ) = , so (]0,1]) = (]0,1]) = [0,1]. Then [0,1] is a 
Alexandroff-compactification or one point compactification space of ]0,1]. 

) In the space ℝ. The locally compact Hausdroff subspace ]0,1[ embeds as a subset of 
[0,1] = ]0,1[ ∪ {0,1} via a natural inclusion map. This map misses two points 0 and 1, then 
[0,1] is a two points-compactification space of ]0,1[. 

) In the space ℝ. The interval ]0,1[, embeds as a subset of a compact Hausdorff space 
= {( , ) ∈ ℝ , + = 1} (the unite circle ), via the function : ]0,1[ ⟶ ℝ  defined 

by: ( ) = (2 ), (2 ) , for every  in ]0,1[. This function misses only the point 
(1,0) in . Then .is a Alexandroff-compactification of ]0,1[ 

) As, the space ℝ is homeomorphe to ]0,1[, then if ℝ is a compactification of ℝ, ℝ is 
homeomorphe to the circle . So,  is also a compactification of ℝ. 
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) The interval ]0,1[ in the space ℝ, embeds into the compact Hausdorff [0,1]ℕ, via a for 
example, the function : ]0,1[ ⟶ [0,1]ℕ defined by: ( ) = ( , 1,1, … ), for every  in ]0,1[. 

) Let ℝ = ℝ ∪ {+∞, −∞} be, (in this case the two points at infinity of ℝ are =+∞ and 
′ = −∞) enjoyed by the topology ̃ = ∪  where,  is the collection of the subsets U of ℝ 

such that, U = [−a, a] ℝ = [−∞, − [ ∪ ] , +∞], where ∈ ℝ∗ . Then ℝ is the two points-
compactified of ℝ. (to chek !). 

) Another two points-compactification of the space ℝ is as follows: The space ℝ is locally 
compact, Hausdroff. (ℝ) = ℝ = ℝ ∪ {+∞, −∞}. ℝ is compact, indeed, if { , ∈△} is a 
open cover of ℝ, there are two elements  and  in △ such that = [−∞, [ and =
] , +∞], where  and  are two constants in ℝ,  it follows that the collection { , ∈
△∖ ,  is a open cover of the compact , , then there exists a finite set  in △∖ ,  such that 
{ , ∈ } covers [ , ], thus { , ∈ } ∪ ∪  covers ℝ. 
ℎ) In the space ℝ, the compactified of ]0,1[ ∪ ]3,4[ is homeomorphe to a figure eight, thought 
of as a subspace of the space ℝ . More generally, the compactified of the union of disjoint 
open intervals is homeomorphe to  circles in ℝ , that are disjoint except for a single 
common point. 
) Let ℝ be the space, the compactified of any open ball in ℝ  is homeomorphe to the two 

dimensional unit sphere  in ℝ  via the usual stereographic projection : ∖ {(0.0.1)} ⟶
ℝ  defined by: ( , , ) ⟼  ( , , ) = , , which is biunivoque and bicontinuous (to 
chek!). Therefore the compactified of two disjoints open balls in ℝ  is homeomorphe to a 
subspace of ℝ  consisting of two spheres touching at only a single point (kissing spheres). 

Before talking about the “largest” path of compactification. Remember that, the locally 
compact Hausdroff space is regular (see, proposition 10.5). We still have better: a locally 
compact Hausdroff space is completely regular space or Tychonoff space. Because its one 
point-compactification is compact and Hausdorff, hence it is normal (see, lemma 10.4), 
therefore it is completely regular, and every subspace of a completely regular space is 
completely regular. 

Starting from the following basic question which arises, when we want to compact a 
topological space. If  is the compactification of the space E, under what conditions, can a 
continuous real-valued function  defined on E, be continuously extended in ?  
Obviously,  must be bounded, because  will carry the compact space  into ℝ, and 
compact parts of ℝ, must be bounded. But being bounded is not enough. A standard example 
is ( ) =  defined in ]0,1], ( ) is bounded and continuous in ]0,1], but it is has no 
extended continuous over [0,1]. Historically, this problem of continuously extending any 
bounded, continuous real valued function defined on E motivated the development of the 
Stone- ech-compactifcation, which will be exhibited after the following existence results: 
Corollary 12.1. Let  be a topological space and let ℎ be an embedding from  to a compact 
Hausdorff space . Then, there is a unique (up to equivalence), compactification ,  of , 
such that there is an embedding  from  into , with the property that ( ( )) = ℎ( ) for 
every ∈ . 
Proof. Because the map ℎ: ⟶ ℎ( ) is a homeomorphism, and  is a compact Hausdorff 
space then = ℎ( ) ⊂  is a compact Hausdorff space (see, proposition 10 2). 
Therefore ,  is a compactification of E. Clearly  embeds into F via the natural inclusion 
map, : ⟶ , which has the required properties. To demonstrate the uniqueness of the 
compactification ,  up to equivalence. Suppose ,   is another compactification of E 

that embeds into F via a map : ⟶  such that ( ( )) = ℎ( ) for every ∈ . Then, 
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( ( )) = ℎ( ). We must first, demonstrate that: = ℎ( ) . Because , is compact 

and the map j is continuous then  is compact in a Hausdorff F, so it is closed (see, 

proposition 10.3), therefore ℎ( ) = ( ( )) ⊂ = . Conversely, as 

( ( )) = , then = ( ( )) , as, by the continuity of j, we have ( ( )) ⊂

( ( )) = (ℎ( )), so ⊂ (ℎ( )). Therefore, = . Because, the map: 

∘ : ⟶  is obviously a homeomorphism, with the required property, then the 
compactification ,  is unique up to equivalence. 
Remark 12.2. The corollary 10.11 says that, the compactification  acts as an intermediary 
compact Hausdroff space, between the space  and the compact Hausdroff space . There is 
no hope of finding an interesting “largest” compactification, that can always act as an 
intermediary as in the above result. A space can be embedded into its one-point 
compactification  and so any such  could not be largest than . 
Definition 12.2. Let E be a Tychonoff space. The Stone-Cech compactification of E, is the 
unique (up to equivalence) Hausdorff compact space denoted by ( ), satisfying the 
following universal property: If  is a continuous function from  into a compact Hausdorff 

, there is a unique continuous function  from ( ) into  such that  ∘ = . Where  
is a homeomorphism map, from E into ( ). 
Theorem 12.2. The Tychonoff space has a Stone-Cech compactification. 
Proof. Let E be a Tychonoff space, following the theorem 8.3 (Urysohn lemma), the set of 
the continuous function from E into the [0,1] is nonempty. Let ={ , ∈ ∆} be the 
collection of such functions. Consider for every ∈ ∆, the space, = ∏ ∈∆ , where for 
every ∈ ∆,  =[ ( ), ( )], which is homeomorphic to [0,1], therefore by 
corollary 10.10, the cube = ∆ is compact and Hausdroff. As obviously, the family  is 
separates points and closed sets in E witch is Hausdorff (the singletons are closed), then  
separates points as well. By the lemma 8.2 (embidding lemma), the function : ⟶ =
∏ ∈∆  defined by: for every ∈ , ( ) = ∏ ∈∆ ( ) is an embedding. We will check that, 
the space ( ) = ( ( )) in  is the Stone- ech compactification of E. Since ( ) is a 
closed subspace of the cub ∆, then it is a compact Hausdroff. From the corollary 12.1, there is 
a unique (up to equivalence), compactification ( ( ), ) of , such that there is an embedding 

 from ( ) into , with the property that ∘ = . It remains to prove that the desired 
application  is well defined and unique. As, ( ) is a Hausdroff compact space, therefore 
it is normal. Since is closed in ( ) and for every ∈ ∆, : ⟶  is continuous and 
bounded, by the lemma 8.3 and the Tietze-Hurysohn theorem 8.2, there is a unique 
continuous extension function  of  defined from ( ) into . The, the function  from 

( ) into  defined by: for every ∈ ( ), ( ) = ∏ ∈∆  ( ) is a unique extended 
continuous function of . Therefore ( ( ), ) is  the Stone- ech compactification of E.  
 

separation axioms, 
metric compact space, metrizability 

 
13.1-Metric space and separation axioms 
Before giving the properties of metric spaces, we will give a very interesting result related to 
the countability and separation axioms. 
Proposition 13.1. A metric space is 1D-space. 
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Proof. Let  an element in the metric space E and ∈ ( ), there exists > 0, such that 
( , ) ⊂ , therefore there exists ∈ ℕ∗ such that , ⊂ ( , ) ⊂ , the sequence of 

sets , , ∈ ℕ∗  constitute a system of countable neighborhoods of , then E is 1D-
space. 
Theorem13.1. Let  be a metric space. Then,  is separable iffy it is 2D-space. 
Proof. As if O is an open in of the metric space ( , ), containing the element  of E, there 
exists > 0, such that , ⊂ ( , ) ⊂ , therefore there exists ₀ ∈ ℕ∗, such that 

,
₀

⊂ , . Since E has an everwhere dense part = { , ∈ ℕ}, then ,
₀

∩

≠ ∅, so, there exists ₀ ∈ ℕ such that ₀ ∈ ,
₀

 which implies that ∈ ₀,
₀

, 

as ∀ ∈ ₀,
₀

, ( , ) ≤ ( , ₀) + ( ₀, ) <
₀

< , then ₀,
₀

⊂ . 

Therefore the collection , , ( , ) ∈ ℕ × ℕ∗  is a countable basis of , then ( , ) 
is 2D-space. For the reverse, let { , ∈ ℕ} be a countable basis of , then the countable 
collection = { , where ∀ ∈ ℕ, ∈ } is everwhere dense in E. Indeed, if ∈  and 

∈ ( ) there exists ₀ ∈ ℕ∗ such that ∈ ₀ ⊂ , as ₀ ∈ ₀ then ₀ ∩ ≠ ∅, which 
implies that ∩ ≠ ∅, so ∈ ( ). 
Proposition 13.2. A metric space is Hausdorff space.  
Proof. Let , ∈ , ≠  then ,  and , , where = ( , ), are two disjoint 

open sets in E, since if there exists ∈ , ∩ , , then = ( , ) ≤ ( , ) +
( , ) < + = . So, E is Hausdorff. 

Definition 13.1. The sequence { } in the metric space ( ,  ) converges to ∈ , iffy for all 
> 0, there is ∈ ℕ∗ (  depends to  ) such that for all > , [ ∈ ( , ) ⟺
, < . Equivalently, lim ⟶+∞ , =0. 

Not that, the definition 13.1, remains true when the inequalities >  and ( , ) < , are 
large. 
Proposition 13.3. In a metric space, any convergence sequence is bounded. The reverse is 
false. 
Proof. If { } converges to  in the metric space ( ,  ), then for > 0, there is ∈ ℕ∗ such 
that for all > , ( , ) < . let = max ( , ) then, { } ⊂ ( , ) where 

= ( , ). The reverse is false, as in the usual metric space (ℝ, ), the sequence 
{(−1) } 
Proposition 13.4. Let A be a nonvoide part of a metric space ( , ), and ∈ . Then: 

) ∈ ( ) ⇔ ( , ) = 0 ⇔ ∀ > 0, ∃ ∈ ;  0 < ( , ) < . 
) For > 0, the set ( ) = { ∈ , ( , ) < } is an open neighborhood of A. 

) ( ) =∩ ∈ℕ∗ ( ) . 

Proof. ) It suffices, to demonstrate the first equivalence, the second one comes from the 
property of the infimum. Let ∈ ( ), since ( , ) ≤ ( , ) ∀ ∈ , then 0 ≤ ( , ) ≤

( , ) = 0, so ( , ) = 0. Inversely, if ( , ) = 0, for any ε>0, there exists ∈
;  ( , ) < , then ∈ ( , ) therefore ( , ) ∩ A ≠ ∅, then ∈ ( ). ) Let ∈ , 

since ( , ) ≤ ( , ), ∀ ∈ , then 0 ≤ ( , ) ≤ ( , ) = 0 < , so ∈ ( ) and 
⊂ ( ). As, for x∈ ( ) and = − ( , ), the open ball ( , ) ⊂ ( ), then 
( ) is open. So for r>0, ( ) is an open neighborhood of A. ) If, ∈ ( ), then 
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( , ) = 0 < , ∀ ∈ ℕ∗, so ∈ ( ), ∀ ∈ ℕ∗ then ( ) ⊂∩ ∈ℕ∗ ( ) , if now 

∈ ( ), ∀ ∈ ℕ∗, then ( , ) < , ∀ ∈ ℕ∗ so ( , ) = 0, from ) ∈ ( ). 

Corollary 13.1. Let ( , ) be a space, ∈ , A⊂ , and le  be a metric on E. Then  is a 
topology induced by , iffy the following statement holds: 

∈ ( ) in ( , ) ⟺for all > 0, there is ∈A such that ( , ) < . (∗) 
Proof. As ( , ) is a metric space, by the proposition 13.4 ), the statement (∗) holds. 
Conversely, let ∈  be and ∈  then, there is > 0 such that ( , ) ⊂  . If, not, for all 

> 0, ( , ) ∩ ≠ ∅. Then, there is ∈ , such that ( , ) < , so ∈ ( ) =
, contradiction. 

Theorem 13.2. A metric space is a T -space. 
Proof. Let F and G are two closed sets in a metric space E, and the two sets = { ∈

, ( , ) < ( , )} and = { ∈ , ( , ) < ( , )} by proposition 13.4, )  and 
 are open sets containing respectively F and G. In addition ∩ = ∅, indeed, if 

∈ ∩  then ( , ) < ( , ) and ( , ) < ( , ), so d(z,G)-d(z,F)<0<d(z,G)-
d(z,F), impossible. Therefore  is normal because it is T , then it is a T -space. 
As a consequence of the above results, and the relation between the separation axioms, we 
have: 
Corollary 13.2. The metric space is T₀, T₁, T₂, T₃, T₄, regular and normal. 
Definition 13.2. Two distances  and  , on a non-empty set E, are said to be equivalent, 
and we write ₁ ∽  , if there are two, strictly positive real numbers  and , such that: 

≤  ≤ , i.e. ( , ) ≤  ( , ) ≤ ( , ), ∀ , ∈ . 
Example 13.1. In the -dimensional Euclidian space ℝⁿ, ∈ ℕ∗, ,   and  are 
equivalents. Indeed, ) ≤ ₁ ≤ √ . ) ≤ ₂ ≤ √ ≤ . c) From ) and ) 

√
≤  ≤ √ . Then ∽ ∽  ∽ . 

Proposition 13.5. Let  , are two distances on E, if there exists ∈ ℝ∗  such that: 
≤  . Then, ₁ ⊂ ₂. 

Proof. If, ∈ ∈ ₁, there exists r>0, such that ( , ) = { ∈ , ( , ) <   } ⊂ , as 
≤  , then ( , ) = ∈ ,  ( , ) < ⊂ ( , ), so O∈ ₂. 

It is straightforward to check that: 
Corollary 13.3. Two equivalent distances define the same topology and exchange the 
sequences convergence i.e. { } converges in ( , ) iffy, { } converges in ( , ). 
Definition 13.3. Two metrics  and  over the space , are said to be, topologically 
equivalent or t-equivalent. If, the identity map : ( , ) ⟶ ( , ), is a homeomorphism, i.e. 

 and  induce the same topology. 
By, the corollary 13.3, the equivalent distances are t-equivalent. But, the converse is not 

true. 
Example 13.2. Let ( , ) be a metric space, then the distances  and =  are t-equivalent 
but are not equivalents. It is clear that ≤ , but if there exists, a strictly positive real number 

, such that ≤  then ( , ) ≤ , ∀ , ∈ , with implies that, in (ℝ, ), ( , ) =
| − | ≤ , ∀ , ∈ ℝ, so ( , 0) = | | ≤ , ∀ ∈ ℝ, then for = , we have 2 ≤ 1 
impossible. 
Definition 13.4. Let A be a nonvoide part of the metric space ( , ). The restriction  of d 
to A i.e. : × → ℝ₊, is a metric on A called the induced metric from  and ( , ) is 
called metric subspace of the metric space ( , ). 
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Let  be, the associated topology to the metric subspace ( , ) and  the induced 
topology of  on A. Let ∈ ,  ( , ) (respectively ( , )) the open ball in ( , ) 
(respectively the open ball in ( , ). Note that, ( , ) = ∩ ( , ), where B(x,r) is the 
open ball in E, centered in , with radius > 0 and ( , ) = ( , ), indeed if ∈

( , ), ∈  and ( , ) = ( , ) < , so ∈ ∩ ( , ) = ( , ), if now, 
∈ ( , ) = ∩ ( , ), then ∈  and ( , ) < , so ( , ) = ( , ) <  implies 
∈ ( , ). Then: 

Corollary 13.4. = . 
Proof. If, ∈  and ∈ , there exists > 0, such that ( , ) = ∩ ( , ) ⊂ , since 
the open ball ( , ) centred in x, with radius r in ( , ), is contained in ( , ), then 

∈ , so ⊂ . Now, if ∈ ∈ , there exists > 0, such that ( , ) ⊂ , 
since ( , ) ⊂ ( , ), then ∈ , so ⊂ . 
 
13.2-Compact metric space 
Before giving a characterization of a compact metric space, we will demonstrate the following 
property. 
Lemma 13.1. In a metric space the assertions ) and ) are equivalent: 

) Every infinite part has an accumulation point. 
) Every sequence has a convergence subsequence. 

Proof. ) ⟹ ). Let = { } be a sequence in the metric space E, as  is a countable part it 
is an infinite part by )  has an accumulation point ∈ ( ). Because E is 1D-space, by 
proposition 7.5, there is sequence { } ⊂ , which converges to  i.e. { } has a convergence 
subsequence. ) ⟹ ). Let A be the infinite part in the metric space E. As A containing a 
sequence { } which has a subsequence ( )  that converges towards , then  is an 
accumulation point of . 

The study of compact metric spaces is based on the following fundamental lemma. 
Lemma 13.2. If, in the metric space ( , ),  any sequence of the closed part A in E, has a 
convergence subsequence in A. Then, for any open cover = { , ∈ ∆} of , there is 

> 0 such that for all ∈ , ( , ) is containing in at last one of the element of . 
Proof. Suppose that, for all > 0, there is ∈  such that ( , ) ⊄ , for all ∈ ∆. 
Then, for all ∈ ℕ∗, there is ∈ , such that , ⊄  for all ∈ ∆. As there is a 
subsequence ( )  of the sequence { } which converges to ∈ = ⋃ = ( )∈∆ , 
then there is ∈ ∆, such that ∈  thus, there is > 0, such that ( , ) ⊂ . Because, for 
all ∈ ( ), , ( , ) ≤  , ( ) + ( ), < + , ( ) , and ( ) ⟶ , 
then for  > 0, there is ∈ ℕ∗ such that for all > , , ( ) < , when ⟶ +∞ in 

the inequality we obtain ( , ) ≤  < , then ( ), ⊂  ( , ) ⊂ , for all > , 
contradiction. 

We have shown in lemma 10.2 that, in a compact space, every infinite part has an 
accumulation point, and under the supplementary 1D condition see corollary 10.2 every 
sequence has a convergence subsequence. In a metric space which is 1D-space, we also have 
the reciprocal. 
Theorem 13.3. In a metric space ( , ). If, every infinite part has an accumulation point, then 

 is compact. 
Proof. Let = { , ∈ ∆} be an open cover of the closed , by the lemma 13.1, there is 

> 0 such that for all ∈ , ( , ) is containing in at last one of the element of . Let 
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∈ , then ⊂ ( , ) ⊂ , where ∈ , so E is compact. If not, there is ∈  such 
that ( , ) ≥  and ( , ) ⊂ , where ∈ , so ⊂ ( , ) ∪  ( , ) ⊂ ∪ , 
so E is compact. After a finite number of iterations, we obtain -balls 

( , ), ( , ), … , ,  which cover E and therefore p-open , , … ,  which cover 
E, so E is compact. The points , , … ,  satisfy , ≥  for ≠ . If the number of 
the points , , … , , … is infinite, by assumption the sequence { }, has an accumulation 
point ∈ . Then, for > 0 there is ∈ ℕ∗, such that 0 < ( , ) <   and for > 0 there is 

∈ ℕ∗ such that 0 < , < . As, ≤ , ≤ ( , ) + , < + < , 
contradiction. Conclusion, there is only a finite open bulls centered in , , … ,  with 
radius > 0, such that ⊂∪ ( , ) ⊂∪ , then  is compact. 

As a direct consequence of the lemma 13.1 and theorem 13.3, we have. 
Corollary 13.5. In a metric space E, if any sequence has a convergence subsequence, E is 
compact. 
Lemma 13.3. A part A of the metric space ( , ) is relatively compact iffy, any sequence in 
A, has an adherent value in E. 
Proof. Let { } be a sequence in A, as A⊂ ( ) ⊂  then { } is a sequence ( ), which is 
compact, there is a subsequence ( )  of { } converging to ∈ ( ), then  is an 
adherent value of { } in E. Conversely, let { } be a sequence in ( ), then for every 

∈ ℕ∗, there is  ∈A, such that lim ⟶ ( , ) = 0. As, by assumption the sequence 
{ } has an adherent value ∈ ( ), there is a subsequence ( )  of the sequence { } 
which converges to . Because, 0 ≤ , ( ) ≤  , ( ) + ( ), ( ) , and 
lim ⟶ ( ), ( ) = 0, then , ( ) ⟶ 0, therefore ( ) is compact. 
Lemma 13.4. Let  be a map, from a metric space ( , ), into the topological space ( , ). 
Then,  is continuous on  iffy,  is continuous on any compact of E. 
Proof. If,  is continuous in E, then it is continuous in any subset of E. Therefore, it is 
continuous in any compact of E. Conversely, let { } be a converging sequence to  in E. As, 
by corollary 13.5, the set { , , , … } is a compact in E and  is continuous on this compact, 
then (  ) ⟶ ( ), so  is continuous in the arbitrary  in E. Thus,  is continuous on E. 
Lemma 13.5. A compact metric space is separable. 
Proof. Let ( , ) a metric space, because for all ∈ ℕ∗, the collection , , ∈   is 
an open cover of  which is compact, there is a finite set of points of , say  =

, , … , ( )  such =∪ ( ) , . It is clear that, the part =∪  is a countable 
subset of E. It remains, to show that, ( ) =E. Let ∈  be, and ∈  then there is ∈ ℕ∗ 
such that , ⊂ ( , ). On the other hand, there is ∈ {1, … , ( )} such that ∈

,  for all ∈ ℕ∗, then ∈ , . Therefore, for all ∈  and all ∈ , ∅ ≠

, ∩ ⊂ , ∩ ⊂ ( , ) ∩ . As for every ∈ ( ),  there is > 0,  such 
that ( , ) ⊂ , then ∩ ≠ ∅, hence ∈ ( ). 
Remark 13.1. As by the theorem13.1, a metric space is separable iffy, it is 2D-space. Then, a 
metric compact space E is 2D-space.Therefore, E has a countable basis constitute of the open 
balls. More precisely, the collection ℬ =∪ ℬ , where for all ∈ ℕ∗, ℬ = , , 1 ≤

≤ ( )   constitutes a basis for the induced metric topology of E. Indeed, for any open  in 
E and any ∈ , there is > 0, such that ( , ) ⊂ . Therefore, there is ∈ ℕ∗ such that 
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, ⊂ ( , ) ⊂ . As ∈ =∪ ( ) , , there is ∈ {1, … , ( )} such that 

∈ ,  for all ∈ ℕ∗, thus ∈ , . It remains to check that, , ⊂ ( , ). 

Let ∈ , , as ( , ) ≤ , + , ≤ + , when ⟶ ∞, ( , ) ≤ < . 
So, ∈ ( , ) ⊂ . 
 
13.3-Product Metric space 

Let ( , ), 1 ≤ ≤  be a finite collection of metric spaces, it is obvious to check that the 
space = Π  provided with one of the three distance ( , ) = ∑ ( , ), ( , ) =

∑ ( , ) or ( , ) = max ( , ), for all , ∈ , is a metric space. 

Furthermore, ≤ ≤ ≤ ,  i.e. ,  and  are equivalent and if  is the induced 
product topology of , 1 ≤ ≤ , then = . It suffices to consider ( , ) =
Π ( , ), where ( , ) = { ∈ , ( , ) < }, 1 ≤ ≤ . 

In the case, where the collection {( , ), ∈ ℕ} of metric spaces is countable. In general 
we cannot define D1 because the series ∑ ( , ) is not always convergent. On the other 
hand, by considering the distances on , ( , ) ↦  ( , )

( , )
 which are t-equivalent to 

the distance , for all ∈ ℕ∗. We can define for all , ∈  ( , ) = ∑ ( , )
( , )

 
which is well defined, whose induced topology  is identical to the product topology . 
Where for > 0 and ∈ , the collection { ( , ), 1 ≤ ≤ }, with ( , ) =

∈ , ( , )
( , )

< , 1 ≤ ≤  constitute a basis of this product topology. To prove that 

= . Let, for 1 ≤ ≤ , ( , ) then ( , ) of E, where 0 < ≤ ≤  is containing in 

( , ). Because, if ∈ ( , ), ( , ) = ∑ ( , )
( , )

<  then ( , )
( , )

< 2 , so 

for 2 ≤ , ( , ) ⊆ , ⊆ ( , ). Conversely, let ( , ) be in E, then for 

1 ≤ ≤ , ( , ) ⊆ ( , ), where = . Because, if ∈ ( , ), then ( , )
( , )

<r for 

1 ≤ ≤ . As for  big enough, ∑ ⟶ 0, for > 0, there is ∈ ℕ∗ such that for all 

> , we have ∑ < . So, ( , ) = ∑ ( , )
( , )

= ∑ ( , )
( , )

+

∑ ( , )
( , )

<r ∑ + <r ∑ + =2r= . 
Example 13.3. let = { = { } ⊂ ℝ, ∑ < +∞ } be, the set of summable square 
numerical sequences. The function : × ⟶ ℝ  defined by ( , ) =  ∑ ( − ) , 
for all , ∈  is a metric. As ( ± ) ≤ 2( + ), ( , ) is well defined. The 
conditions ) and ) in the metric’s definition are obviously checked. Concerning the 

condition ) it suffices to take the limit when ⟶ ∞ in the inequality: ∑ ( − ) ≤

∑ ( − ) + ∑ ( − ) , where , , ∈ .  

Definition 13.5. A space ( , ), by is said to be metrizable if, there is a metric  in , such 
that the topology  induced by  is equal to . 

As we have already seen, a metric offers one of the most important definition of the 
topology of a space, and that a metric space is 1D-space and it is normal. Therefore, in a space 
devoid at least one of these two properties, it is impossible to define the topology using a 
metric. However, we have the following theorem, which is relatively simple in comparison 
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with to other metrization theorems and it is an highly useful result, for determining whether a 
given space is metrizable. 
Theorem13.4. (Urysohn’s metrization theorem). The regular, 2D-space is metrizable. 
Proof.  As E is regular and 2D-space, by, corollary 10.12, E is normal and has a countable 
basis ℬ = { , ∈ ℕ}. By corollary 5.6, we can consider the family of all pairs ,  of ℬ, 
with ( ) ⊂ , clearly this family is countable, so we can write the pairs as , , … , , …. 
Since,  is closed and ∩ = ∅, by theorem 8.1 (Urysohn’s lemma), for all pair 

= , , there is a continuous function : ⟶ [0,1] such that = 0 and 

= 1. We will verify that, a function : × ⟶ ℝ , defined by, for all , ∈ , 

( , ) = ∑  | ( ) − ( )| which is well defined, is a metric. It follows to check the 
conditions ), )and ) in the definition 4.1. 

) Let , ∈  be, such that ≠ , i.e. ∈ { } , which is open in T -space, by the 
corollary 5.6, there is ∈ ℕ such that = ( , ), with ∈ ⊂ ( ) ⊂ ⊂ { } . By 
Urysohn’s lemma, there is a function : ⟶ [0,1] such that ( ) = 0 and =
1, as ∈ ( ) and ∈ , then ( ) = 0 and ( ) = 1, then | ( ) − ( )| = 1, 
therefore ( , ) > 0. If, now, = , then ( ) = ( ) for all ∈ ℕ, so ( , ) = 0. 

) As, for all , ∈  and for all ∈ ℕ, | ( ) − ( )| = | ( ) − ( )|, then ( , ) =
( , ) 

) As, for all , , ∈  and for all ∈ ℕ, | ( ) − ( )| ≤ | ( ) − ( )| +
| ( ) − ( )|, then ( , ) = ∑  | ( ) − ( )| ≤ ∑  (| ( ) − ( )| +

− =1∞ 12 − +1∞ 12 −  = , + , .  
It remains to prove that  is induced by the metric . By the corollary 13 1 it suffices to prove 
that, if ⊂  and ∈ . Then  ∈ ( ) in ⇔ ∀ > 0, ∃ ∈ ;  ( , ) <   
" ⟹ " Let ∈ ( ) be and > 0, since the sequence  ⟶ 0, there is N∈ ℕ∗ such that, for 

all > ,  <  , then < . As, for all ∈ {1, … , }, the function  is continuous from 
 into [0,1] and > 0,  by proposition 7.11, there is , … , , … , ∈  containing , such 

that for all , ∈ , | ( ) − ( )| < . Because the set O=∩  is an open containing 
, then ∩ ≠ ∅, so there is ∈ ∩ , then 
( , ) =

∑  | ( ) − ( )|=∑  | ( ) − ( )| + ∑  | ( ) − ( )| < ∑ 2 +

∑  = + ∑  = + < + = . 
" ⟸ " Suppose that ∈   satisfies ∀ > 0, ∃ ∈ ;  ( , ) < , but ∉  ( ), then there 
is ∈  containing , such that ∩ = ∅, then the closed { } ⊂ . Once again, by the 
corollary 5.6 and Urysohn’s lemma, there is a pair of basis elements = ( , ), which 
satisfies ∈ ⊂ ( ) ⊂ ⊂  and there is a function : ⟶ [0,1] as ( ) and  are 
two disjoint closed, then ( ) = 0 and ( ) = 1, for all ∈ , so | ( ) − ( )| = 1. 
As for 0 < <  we have ( , ) ≥ >  for all ∈ , ( ∉  then ∉ , so ∈ ), 
contradiction. 

As we noticed in example 4.1 c) and example 5.2 c) iii). The uncountable discrete space is 
a metric space which is not 2D-space. Then, we don't have the opposite in the theorem 13.4. 
But under the compact assumption we have. 
Corollary 13.6. Let E a compact Hausdorff space. Then, E is metrizable iffy it is 2D-space. 
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Proof. As, a compact Hausdorff space is normal, if in addition it is 2D-space, by the theorem 
13.4 it is metrizable. Conversely, from the theorem 13.1 and the corollary 13.5, the metric 
compact space is 2D-space.  
Remar 13.1. 

) Let = 0,
ℕ∗

,  be the set of all numerical sequences { } ⊂ 0, , enjoyed by the 

metric ( , ) =  ∑ ( − ) ,  where , ∈ . It is clear that  is a metric space 
containing in . The set = [0,1]ℕ under the sup metric ( , ) = sup ∈ℕ| − |, where 

, ∈  is said to be a Hilbert cub and it is identified up to homeomorphisms with . By 
Tychonoff’s theorem  is compact. Therefore  is compact metrizable space and hence it is 
normal 2D-space. So a space is a normal 2D-space⟺it is homeomorphe to . 

) We can also prove the theorem 13.4, by using the lemma 8.2 (embidding lemma) to 
check, with almost the same tools used in the proof of theorem 12.2, that the space E can be 
embedded in the compact metric Hilbert cub [0,1]ℕ. Therefore  is metrizable. 
Corollary 13.7. Let {( , ), 1 ≤ ≤ } be a finite collection of metric spaces and =
Π . Then, the sequence { } converges to  in ( , ) iffy,  the sequence  converges 
to , in ( , ), for all 1 ≤ ≤ . 
Proof. As 0 ≤ , ≤ , , for all , ∈ ℕ∗ and for all 1 ≤ ≤ . If, 

, ⟶ 0, then , ⟶ 0, for all 1 ≤ ≤ . Reciprocally, let > 0, as for all 
1 ≤ ≤ , and for all , ∈ ℕ∗, , ⟶ 0, there is ∈ ℕ∗, such that for all >

, > , we have , < , for all 1 ≤ ≤ . So, sup , < , for 
= sup  and all > , > , we have , < . 

 
14-Complete metric space, fixed point theorem 

 
14.1-Cauchy sequence 
Definition14.1. A sequence { } in a metric space ( , ) is said to be a Cauchy sequence or 
simply a Cauchy if, for all > 0 there is ∈ ℕ∗ (  depends to  ) such that, for all 

, >  ,  we have , <  . Equivalently, lim , ⟶ , =0. 
Note that, the definition 14.1 remains true when the inequalities , >  , and , <
 ,. are large. 
Proposition 14.1. The Cauchy sequence is bounded. 
Proof. If, { } is a Cauchy sequence, for = 1, there is ∈ ℕ∗ such that, for all >  , 

>   we have , <  1. As, for all , ∈ ℕ∗, , ≤  , + ,  
then, for all >  , >  , , <  , + 1. So for all ∈ ℕ∗, , ≤
 , + 1=r i.e. { } ⊂ , , thus { } is bounded. 
Proposition 14.2. In a metric space, every convergence sequence is a Cauchy. 
Proof. Let > 0 be, as { } converges to  in the metric space ( , ), then when , ∈ ℕ∗ 
tend towards +∞, ,  and ,  tend towards 0. As 0 ≤ , ≤  , +

,   So, when , ∈ ℕ∗ tend towards +∞, , ⟶ 0. 
Remark 14.1. 

) The reciprocal of the proposition 14.1, is not true. Indeed, in the usual metric space ℝ, 
the sequences { ( )}, {(−1) } are bounded but there are not a Cauchy. 

) The reciprocal of the proposition 14.2, is not allows true. Indeed, in the metric space 
]0,1], the sequence  is a Cauchy but it is not convergent in ]0,1]. 
Proposition 14.3. A subsequence of a Cauchy is also a Cauchy. 
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Proof. As { } is a Cauchy in the metric space ( , ), there is ∈ ℕ∗ such that, for all 
>  , >   we have , < . So, if ( )  is a subsequence of { }, ( ) ≥ >

  and ( ) ≥ >   then ( ), ( ) < , therefore ( )  is a Cauchy. 
Proposition 14.4. If a subsequence of a Cauchy converges to , then the Cauchy also 
converges to . 
Proof. Let ( )  be a subsequence of the Cauchy { }, which converges to  in the metric 
space ( , ). As 0 ≤  ( , ) ≤   , ( ) +  ( ),  for all ∈ ℕ and 

, ( ) ⟶ 0, ( ), ⟶ 0, when ⟶ 0, then ( , ) ⟶ 0, when ⟶ 0. So 
{ } converges to . 
It is clear that: 
Corollary 14.1. If, the sequence = { , ≥ } in the metric space ( , ) satisfies 

( ) ⟶ 0, then the sequence { } is a Cauchy. 
Definition 14.2. The map : ( , ) ⟶ ( , ) is said to be continuous in ∈ .  
If, for all > 0, there is > 0 (  depends to  and  ), such that, for all ∈  satisfies 
0 < ( , ) < , we have ( ), ( ) < .  is said to be continuous on E, if it is 
continuous in any element of E. 

We will now introduce, a property closely related to metric spaces. 
Definition 14.3. The map : ( , ) ⟶ ( , ) is said to be uniformly continuous on .  
If, for all > 0, there is > 0 (  depends to ), such that, for all , ∈  satisfies 0 <

( , ) < , we have ( ), ( ) < . 
Remark 14.2. 

) The definitions 14.2 and 14.3, remains true when, the second and third inequalities are 
large. 

) The uniform continuity implies the continuity. It suffices to take =  in the 
definition 14.2. 

) The Continuity dos not implies the uniform continuity.  
Example 14.1. The function ∈ ℝ ↦ ( ) = ∈ ℝ  is continuous on (ℝ, ). But, for 

= 1 and for any > 0, there is = , = + ∈ ℝ∗ , such that ( , ) = | −
= 2<  but , = − =1+ 24>1. Then,  is not uniformly continuous on ℝ. 

Corollary 14.2. Let : ( , ) ⟶ ( , ) be uniformly continuous on  Then, the image 
{ ( )} in the metric ( , ) of the Cauchy { } in the metric space ( , ) is a Cauchy. 
Proof. Let > 0 be, as  is uniformly continuous on , there is > 0 such that, for any 

, ∈  satisfying 0 < ( , ) < , we have ( ), ( ) < . As { } is a Cauchy, in the 
metric space ( , ), for > 0, there is ∈ ℕ∗ such that, for all > , >  we have 

, < , so , < , it follows that { ( )} is a Cauchy in F. 
Remark 14.3. The image by the continuous map, of the Cauchy is not allows a Cauchy, as 
shown in the following example:  
Example 14.2. the function : (ℝ∗ , ) ⟶ (ℝ∗ , ) be, defined by: ( ) =  , for all 

∈ ℝ∗ . The sequence  is a Cauchy in (ℝ∗ , ), indeed for any > 0, there is =

+1∈ ℕ∗, where  is the integer part of , such that, for all >  , >   we have 

− < . But the sequence ={ } is not a Cauchy, since for = 1, and any ∈ ℕ∗, 
there are = + 1 and = 2 + 1 such that |2 + 1 − | = ≥ 1. 
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Theorem 14.1. The map : ( , ) ⟶ ( , ) is uniformly continuous on , iffy for any 
sequences { } and { } in , satisfying ( , ) ⟶ 0, we have ( ), ( ) ⟶ 0. 
Proof. Let > 0 be, as  is uniformly continuous on , there is > 0 such that, for any 

, ∈  satisfying 0 < ( , ) < , we have ( ), ( ) < . Because ( , ) ⟶ 0, 
for > 0, there is ∈ ℕ∗ such that, for all >  we have ( , ) < , so 

( ), ( ) < . Conversely, 
Suppose that,  is not uniformly continuous on , i.e. there is > 0, such that for all ∈ ℕ∗, 
there are  and  in E satisfying ( , ) <  but ( ), ( ) ≥ . Because 

( , ) ⟶ 0 and lim ⟶ ( ), ( ) ≥ >0, contradiction. 
Corollary 14.3. The composition of two uniformly continuous maps, is uniformly 
continuous. 
Proof. Let : ( , ) ⟶ ( , ), : ( , ) ⟶ ( , ) are two maps ant let { } and { } in , 
satisfying ( , ) ⟶ 0, as  is uniformly continuous on E, by the theorem 14.1, 

( ), ( ) ⟶ 0, because  is uniformly continuous on F, always by the theorem 14.1 
( ∘ )( ), ( ∘ )( ) ⟶ 0, i.e. the composition map ∘ : ( , ) ⟶ ( , ) is 

uniformly continuous on E. 
As given, in the following result. In the compact metric space, the continuity implies the 

uniform continuity. 
Theorem 14.2. Any continuous map  from the compact metric space ( , ), into the metric 
one ( , ), is uniformly continuous. 
Proof. Suppose that,  is not uniform continuous from ( , ) into ( , ), by the theorem 
14.1, there are sequences { } and { } in , satisfying ( , ) ⟶ 0, but 

( ), ( ) ↛ 0. As E is compact there are subsequences ( )  and ( ) , such that 
( ) ⟶ ∈ , ( ) ⟶ ∈ .  Because  is continuous,  ( ), ( ) ⟶ 0= ( , ), 

then = . By the continuity of  and , ( ) , ( ) ⟶ ( ), ( ) = 0, 
contradiction. Because ( ), ( ) ↛ 0, implies that, there is > 0, such that for any 

∈ ℕ∗ there is ∈ ℕ∗, when > , ( ), ( ) ≥ , as for any ∈ ℕ∗, ( ) ≥ >
  then ( ) , ( ) ≥ , it follows that ( ) , ( ) ↛ 0. 
Remark 14.4. Any continuous map  from the compact subspace ( , ) of the metric space 
( , ), into the metric one ( , ), is uniformly continuous on K. 

On a metric spaces, in addition to the definition of a topological isomorphism or the 
homeomorphism, we also define, the uniform isomorphism, i.e. a uniformly continuous, 
bijective map : ( , ) ⟶ ( , ) where its reciprocal map : ( , ) ⟶ ( , ) is 
uniformly continuous. Clearly, the uniform isomorphism is an homeomorphism; but the 
reverse is false. The bijective map : ( , ) ⟶ ( , ) is said to be a uniform isometric if, 
for all , ∈ , ( ), ( ) = ( , ). It is clear, from the theorem 14.1 that, the uniform 
isometric is a uniform isomorphism. 
Example 14.3. The identity map : (ℝ , ) ⟶ (ℝ , ) where for all , ∈ ℝ , ( , ) =
| − | and ( , ) = | − | is neither uniform isometric nor uniform isomorphism. 
Because, for = 0, = , 0, = ≠ 0, =  and for = , = +  , , +
1 =1 ⟶0, but ′ , +1 =2+1 2⟶2. 

Definition 14.4. Two metrics  and  over the space , are said to be -equivalent if, both 
the identity map : ( , ) ⟶ ( , ), and its inverse : ( , ) ⟶ ( , ), are uniformly 
continuous. 
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Proposition 14.5. Two equivalent metrics are -equivalent. 
Proof. Let  and  two equivalent metrics over the space  i.e. there are , ∈ ℝ∗  such that 
for all , ∈ , ( , ) ≤ ( , ) ≤ ( , ). (∗) Then, for any sequences { } and  { } 
satisfying ( , ) ⟶ 0, we have ( , )= ( ), ( ) ⟶ 0, by the theorem 14.1 the 
identity map : ( , ) ⟶ ( , ) is uniformly continuous. As (∗) implies that ( , ) ≤

( , ) ≤ ( , ), for all , ∈ . Then, for any sequences { } and  { } satisfying 
( , ) ⟶ 0, we have ( , )= ( ), ( ) ⟶ 0, by the theorem 14.1 the 

inverse identity map : ( , ) ⟶ ( , ), is uniformly continuous. Clearly the identity map 
is one to one, then it is -equivalent. 
Remark 14.3.  

) The reverse in the proposition 14.5 is not true, as shown in the following example. Let 
( , ) be a metric space, we have seen, in the example 13.2 that, the two metrics  and 

=  over  are not equivalent. Let us proof that,  and  are -equivalent. As 0 ≤
( , ) ≤ ( , ). Then, for any sequences { } and  { } satisfying ( , ) ⟶ 0, we 

have ( , )= ( ), ( ) ⟶ 0, by the theorem 14.1 the identity map : ( , ) ⟶
( , ) is uniformly continuous. In the other hand, for any > 0,  there is ∈ 0,  such 
that for all , ∈ ,  0 < ( , ) < , we have ( ), ( ) = ( , ) < , then the 
inverse identity map : ( , ) ⟶ ( , ), is uniformly continuous. Therefore,  and  are 

-equivalent. 
) Clearly, the uniform isometric map, exchange the Cauchy sequences i.e. If, : ( , ) ⟶

( , )  is a uniform isometric. Then, { } is a Cauchy in E iffy { ( )} is a Cauchy in F.  
Corollary 14.4. Two -equivalent metrics are -equivalent. 
Proof. It is deduced from the remark 14.2. ). 
From the proposition 14.5, the remark 14.3.and the corollary 14.2 it follows that: 
Equivalent metrics⟹u-equivalent ⟹t-equivalent metrics 
and, none of the reverse implications is true.  

Another interesting type of application, also related to metric space is. 
Definition 14.5. The map : ( , ) ⟶ ( , ) is said to be Lipshitz with the ratio   or -
Lipshitz. If, there is > 0, such that, ( ), ( ) ≤ ( , ), for all , ∈ . When 
0 < < 1,  is said to be a contraction mapping. 
Remark 14.5. It is obvious that, any -Lipshitz map is uniform continuous, and the 
composition of two -Lipshitz maps is -Lipshitz. 
Example 14.4.  

) Since for all , ∈ ℝ, | | − | | ≤ | − |, then the function : (ℝ, ) ⟶ (ℝ , ), 
defined by ( ) = | |, for all ∈ ℝ is 1-Lipshitze. 

) The function : (ℝ, ) ⟶ ([−1,1], ), defined by ( ) = , for all ∈ ℝ is 1 
Lipshitze, because, | − | = 2 ≤ 2 | | = | − |, for all 

, ∈ ℝ. 
) The function : ( , ) ⟶ (ℝ, ), (  is ixed in ) defined by: ( ) = ( , ), for all 

∈ ℝ is 1-Lipshitze, because by the proposition 4.1, ( ) − ( ) = | ( , ) −
′, ≤ , ′, for every , ′∈ . By the same the function : , ⟶ℝ, ,  is fixed in  

defined by: ( ) = ( , ), for all ∈ ℝ i is 1-Lipshitze. 
d) The function : (ℝ, ) ⟶ ([−1,1], ) defined by ( ) = cos  is a contraction, 

because by the finite increment theorem, for every , ∈ ℝ, there is ∈ ] , [ such that 
( ) − ( ) = ( )( − ) so | ( ) − ( )| = | ( )|| − | ≤ | − |. 
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Definition 14.6. Let ( , ) and ( , ) are metric spaces. We say that the map  from  into 
 has a modulus of continuity if, there is an increasing function, : [0, +∞] ⟶ [0, +∞] 

verfying: lim ⟶ ( ) = (0) = 0, such that ( ( ), ( )) ≤  ( , ) , for every 
, ∈ . 

Proposition 14.6. Let ( , ) and ( , ) are metric spaces.. Then, the map  from  into  is 
uniformly continuous on E, iffy  has a modulus of continuity. 
Proof. If,  is uniformly continuous on E, the function : [0, +∞] ⟶ [0, +∞], defined by, for 
every ∈ [0, +∞], ( ) = sup{ , ∈ ; ( , ) } ( ( ), ( )) is clearly a modulus of 
continuity of . Conversely, if there is an increasing function, : [0, +∞] ⟶ [0, +∞] 
verfying: lim ⟶ ( ) = (0) = 0, such that ( ( ), ( )) ≤  ( , ) , for every 

, ∈ . Then, for every > 0, there is > 0 such that, for every ∈ ]0, +∞[, satisfying 
0 < <  , we have ( ) < , then for every , ∈ , such that ( , ) <  , we have 

( ( ), ( )) ≤  ( , ) < . So,  is uniformly continuous on E. 
Note that, the most used modulus of continuity, are the functions, : [0, +∞] ⟶ [0, +∞] of 
the form ( ) =  , where , ∈ ℝ∗ . When = 1, we obtain the definition of the -
Lipschitz maps. Also, if  is a modulus of continuity of : ⟶  and  is a modulus of 
continuity of : ⟶ , then ∘  is a modulus of continuity of ∘ : ⟶ . 

It is easy to show that: 
Corollary 14.5.  

) The uniform isometric exchange the Cauchy sequences. 
) Two equivalents metrics exchange the Cauchy sequences. 

Proposition 14.7. Let ( , ), ∈ {1, … , }  be a finite family of the metric spaces and 
= Π . Then, the sequence { } is a Cauchy in metric space ( , ) iffy for every 

∈ {1, … , }, the sequence  is a Cauchy in ( , ). 
Proof. Since, for every , ∈ ℕ∗, ∈ {1, … , }, 0≤ ( ,  ) ≤  ( , ) then if { } is 
a Cauchy in metric space ( , ), for every ∈ {1, … , }, the sequence  is a Cauchy in 
( , ). Conversely, let > 0, since for every ∈ {1, … , }, the sequence  is a Cauchy in 
( , ), there is ∈ ℕ∗ such that for all , ∈ ℕ∗,  > >   we have ,  <  , so 
for = max   and > >  we have , <  . 
 
14.2-Complete metric space 
Definition 14.7. The metric space ( , ), is said to be complete if, any Cauchy sequence in E 
is convergent. The subset  of  is complete if, the metric space ( , ) is complete. 
Example 14.5. 

) (ℝ, ) is a complete space. In fact, if { } is a Cauchy, from the proposition 14.1, 
{ }  is bounded, then it is containing in a compact of ℝ. So { } has a convergence 
subsequence ( ) , therefore by the proposition 14.4, the sequence { } is convergent. 

) (ℚ, ) is not complete, because the sequence = ∑
!
, for all ∈ ℕ is a Cauchy in 

ℚ, As for all , ∈ ℕ, ( > ) − = ∑
!

=
( )!

1 + +
( )( )

+ ⋯ +

( )( )…( )
< 1 + +

.
+ ⋯ +

. …
< 1 + + + ⋯ + =

1 − < . It follows that, − ⟶ 0,. when , ⟶ +∞. Then { } is a 
Cauchy and converges to the Euler’s number ∈ ℝ ∖ ℚ. In fact, if we suppose that ∈ ℚ, 
then there are ∈ ℤ and ∈ ℕ∗, ∧ = 1 such that =  . As the two sequences { } and 

{ } where = +
!
, for all ∈ ℕ are adjacent and ≤ ≤ ≤  { } is 
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increasing, and { }  is decreasing, then, their common limit satisfies ≤ ≤ , therefore 
2 < < 3. It follows that 1 +

!
+ ⋯ +

!
! ≤ ! ≤ 1 +

!
+ ⋯ +

!
+

!
! or [ ! +

( − 1)! + ⋯ + 1] ≤ ( − 1)! ≤ [ ! + ( − 1)! + ⋯ + 1] + 1. By setting [ ! + ( − 1)! +
⋯ + 1] =N∈ ℕ∗, we have N≤ ( − 1)! ≤ + 1 i.e. between two successive natural 
numbers there is a third, contradiction. 
Lemma 14.1. A complete subspace ( , ) of the metric space ( , ) is closed. 
Proof. Let ∈ ( ), there is a sequence { } in , which converges to , then { } is a 
Cauchy in the metric space ( , ), hence { } is also Cauchy in the complete metric subspace 
( , ). Then, ⟶ ∈ . As ( , ) is Hausdorff then =  and ( ) = . 
Lemma 14.2. Any closed subset in the complete metric space is complete. 
Proof. Let { } be a Cauchy in ( , ), as { } is also Cauchy in the complete metric space 
( , ), there is ∈  such that ⟶ , so, for every > 0, ( , ) ∩ { } ≠ ∅. Therefore 
for every > 0, ( , ) ∩A≠ ∅, which implies that ∈ ( ) = , then ( , ) is complete. 
Lemma 14.3. 

) Completeness of subspaces in any metric space is stable by the finite union. 
) Completeness of subspaces in any metric space is stable by intersection. 

Proof. ). Let ( , ) and ( , ) are two complete subspaces of the metric space ( , ). If, 
{ } is a Cauchy in ∪ , then there is a Cauchy subsequence ( )  of { } in ( , ) or 
( , ) which is complete, so ( ) ⟶ ∈ ∪ , by proposition 14.4, ⟶ , thus ∪  
is complete. 

)  Let { , ∈ ∆} be a family of the complete subspaces ( , ) of a metric space ( , ) 
and =∩ ∈∆ . Because, by lemma 14.1, for every ∈ ∆,  is closed, then  is closed in 
the complete subspace ( , ), for every ∈ ∆,  by lemma 14.2,  is complete in 
( , ), for every ∈ ∆ and hence it is complete in the metric space ( , ). 
By the corollary 13.7 and proposition 14.6 we have. 
Corollary 14.6. Let ( , ), ∈ {1, … , }  be, a finite family of the metric spaces and 

= Π . Then, the metric space ( , ) is complete iffy for every ∈ {1, … , }, ( , ) is 
complete. 
Remark 14. 6. The corollary 14.6 remains throw for a countable product metric spaces ( , ) 
where = Π ∈ℕ∗ , ( , ) = ∑ ( , ) for every , ∈  and ( , )<1, for 
every n ∈ ℕ∗. 

The use of, corollaries 4.1 and 14.1 and the proposition 14.4, allows us to demonstrate the 
following characterization of the completeness of metric spaces: 
Theorem 14.3. A metric space ( , ) is complete, iffy any decreasing sequence of closed 
balls in , whose radius tend to zero, has for intersection a singleton. 
Proof. Let { ( , ), ∈ ℕ} be a decreasing sequence of closed balls in E centered in , 
whose radius ⟶ 0. As for any , ∈ ℕ∗, 0 ≤ , ≤ , + , ≤ 2 , 
then the sequence { } is a Cauchy in a complete metric  and as for any ∈ ℕ, ( , ) is 
closed ⟶ ∈ ( , ), for every ∈ ℕ, therefore ∈∩ ∈ℕ ( , ). Because 
0 ≤ ∩ ∈ℕ ( , ) ≤ ( , ) , and ( , ) ⟶ 0, we have 

∩ ∈ℕ ( , ) = 0 it follows that ∩ ∈ℕ ( , ) = { }. Conversely, let { } be a 
Cauchy in E. We are going to construct a subsequence  of { } converging to  and 
therefore the sequence itself converges to , so E is complete. As for every > 0, there is 

∈ ℕ∗ such that, for every >  d , < , then for , there is ∈ ℕ∗ such that, for 

every > , d , <   and for  there is ∈ ℕ∗ such that, for every > > , 
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d , < , by iteration until the order + 1, for  there is ∈ ℕ∗ such that, for 

every > > , d , < . 

Because, the sequence , , ∈ ℕ  of closed balls in  is decreasing and 

⟶ 0,  

then ∩ ∈ℕ , = { }. Therefore the constructed subsequence  converges to 
. 

Even better, one part of the theorem 14 3, can be generalized as follows: 
Theorem 14.4. In the metric complete space, any nonempty decreasing closed sets, whose the 
diameter tends to zero, has for intersection a singleton. 
Proof. Let { , ∈ ℕ}  be a sequence of nonempty decreasing closed sets whose the diameter 
tends to zero and ∈ , ∈ ,…, ∈ ,…, as for every ≥ ,  ∈  then =
{ , ≥ } ⊂ , so ( ) ≤ ( ), therefore ( ) ⟶ 0, hence { } is a Cauchy in a 
complete metric E, thus ⟶ ∈ . As, for every , ∈ ℕ the subsequent { } of { } 
is containing in the closed  and converges to , then ∈  for every ∈ ℕ, it follows that 

∈∩ ∈ℕ . Because 0 ≤ (∩ ∈ℕ ) ≤ ( ) for every ∈ ℕ, then (∩ ∈ℕ ) = 0 ⟺
∩ ∈ℕ = { }. 
Lemma 14.4. Let ( , ) be a metric space and let ( , ) be a complete metric space. If, the 
map : ⟶  is a uniform isomorphism, then  is complete. 
Proof. Let { } be a Cauchy in , since the map  is uniformly continuous on , by corollary 
14.2. the sequence { ( )} in the metric ( , ) is a Cauchy, however E is complete, 

( ) ⟶ ∈ . As the inverse map : ⟶  is continuous on , then ( ) =
⟶ ( ) = ∈ , Therefore  is complete. 
We are now, going to give a theorem for the extension, of a uniformly continuous function 

on an everywhere dense part, of a metric space. 
Theorem 14. 5. Let  be an everywhere dense part, of a metric space ( , ). If, the map  
from  into the complete metric space ( , ) is uniformly continuous. Then, there is an 
uniformly continuous extension map of  to . 
Proof. Let ∈ = ( ), there is a sequence ∈  which converges to . As { } is a 
Cauchy in , then it is a Cauchy in the subspace ( , ), by corollary 14.2. the sequence 
{ ( )} in the complete metric ( , ) is a Cauchy. Therefore, ( ) ⟶ ∈ . The map 

: ∈ ⟼ ( ) = ∈  is unique because  is Hausdorff and  is independent of the 
sequence { }. Indeed, if another sequence  of  converges to , we have 0 ≤ ( , ) ≤

( , ) + ( , ) then ( , ) ⟶ 0, by the uniform continuity of ,  and the theorem 
14.1, ( ( ), ( )) ⟶ 0 = ( , ) ⟺ = = ( ) for every ∈ . Then, 
lim ⟶ ( ) = ( ) for any ∈ . Because  is continuous on ,  lim ⟶ ( ) = ( ) =

,   for each ∈ . It remains to show that  is uniformly continuous on . Let >0 be, we 
will show that, there is > 0 such that, for any , ∈  satisfying ( , )<  we have 

( ), ( ) < . Since, for ∈ , there are ∈  and ∈ ℕ∗ such that, for any > , 

( , ) <   and for ∈ , there are ∈  and ∈ ℕ∗ such that, for any > , 

( , ) < . So, for any > = ( , ), ( , ) + ( , ) < , since ( , ) ≤
( , ) + ( , ) + ( , ) < 2 , and  is uniformly continuous on , then 
( ( ), ( )) < , as  is continuous, we have ( ), ( )) ≤ < . 
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14.3-Fixed point theorem and Baire’s lemma 
In several mathematic fields, we are led to find the solution of the equation  ( )  =  . 

This equation can be a numerical equation, differentiated equation, integral equation, implicit 
equation,... The bellow theorem, known under the name of, fixed point theorem, ensures the 
existence and uniqueness of this solution. 
Definition 14.8. The point  in the , is said to be a fixed point of the map  form  to , if 

( ) = . 
Theorem 14. 6 (Picard-Banach).If,  is a contraction map from a complete metric space  to 
E. Then,  has a unique fixed point. 
Proof. We will construct a Cauchy sequence { ∈ , = ( );  ∈ ℕ} in , whose 
limit is the desired fixed point of : Let ∈  be, setting successively =  ( ) ∈ , 

= ( ) =  ( ) =  ( ) ∈ , … , = ( ) =  ( ) ∈ ,… As  is a 
contraction map: 

( , ) ≤ ( , ), ( , ) ≤ ( , ), … By induction, ( , ) ≤ ( , ) 
for every ∈ ℕ. Because, ( , ) ≤ ( , ) + ( , ) + ⋯ + ( , ) ≤

1 + + + + ⋯ + ( ) + ⋯ ( , ) ≤ [ ( , )] ∑ , for every 
, ∈ ℕ, ( > ). As, the geometric series ∑  with the general term  (0 < < 1), 

converges to  . Then, 0 ≤ ( , ) ≤  ( , ) , for every , ∈ ℕ, ( > ). 
Thus ( , ) ⟶ 0, when ⟶ ∞ and ⟶ ∞. So, { } is a Cauchy in the complete , 

⟶ ∈ . Because, = ( ), and  is continuous on E, =  ( ). For the 
uniqueness, if, there is ∈  ( ≠ ), such that =  ( ) then, 
0 < ( , ) =  ( ), ( ) ≤ ( , ), so 1 ≤  contradiction. 
Remark 14. 7.  

) The method used in the proof of the theorem 14.6, is known as the successive iteration 
or successive approximation method. This method gives us not only the existence and 
uniqueness  of the fixed point but the scheme to finding this point via the sequence { }. 

) As,  , − ( , ) ≤ ,  for every ∈ ℕ, and from the proof 
lim ⟶  , ≤ ( , ) , then ( , ) ≤ ( , ) , for every 

∈ ℕ∗. This inequality, gives an estimate of the error in our iteration scheme, i.e. we can 
estimate, how far we are from the solution at each step, and halt our numerical algorithm 
accordingly. 
Example 14.6.  

) The function : [ , ] ⟶ [ , ], which is derivable on [ , ] and its derivate ′ satisfies 
| ′ ( )| ≤ , for every ∈ [ , ] with 0 < < 1, has a unique fixed point in [ , ]. Indeed, 
by the Lagrange theorem, for every , ∈ [ , ] ( < ), there is ∈ ] , [, such that 

( ) − ( ) = ′ ( )( − ), so | ( ) − ( )| = | ′ ( )|| − | ≤ | − |, for every 
, ∈ [ , ].  Then,  is a contraction on the complete [ , ], therefore it has a unique fixed 

point in [ , ]. This idea has been used to resolve the numerical equations. 
) The function : [1, +∞[ ⟶ [1, +∞[, defined by ( ) = + , for every ∈ [1, +∞[ is a 

contraction. Indeed, for every , ∈ [1, +∞[, ( < ), there is ∈ ] , [, such that ( ) −
( ) = ( )( − ) = − ( − ) ⟹ | ( ) − ( )| ≤ | − |, for every , ∈

[1, +∞[. Hence, it has a unique fixed point in the complete [1, +∞[ i.e. there is ∈ [1, +∞[, 
such that = +  then, = √2. 

) The function : ℝ ⟶ ℝ, defined by ( ) = √ + 1 for every ∈ ℝ, isn’t a 
contraction. If, not there is ∈ ℝ, such = ( ) then 1 = 0 impossible. But  is 1-Lipschitz, 
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indeed for every , ∈ ℝ, there is ∈ ] , [, such that ( ) − ( ) = ( )( − ) =

√
( − ) ⟹ | ( ) − ( )| < | − |, for every , ∈ ℝ. 

Corollary 14.7. If,  from a complete metric space  to E is such that, for every ∈ ℕ, 
= ∘ … ∘  ( − times) is a contraction map. Then,  has a unique fixed point. 

Proof. As  is a contraction from a complete metric space  to E, by the theorem 14.6 there 
is a unique point ∈  such that = ( ) ⟹ ( ) = ( ) ⟹  ( ) is a fixed point 
of , therefore = ( ). If, there is ∈  such that = ( ) then = ( ), the 
uniqueness gives = . 

Solving some equations, require the following most adequate, parametric version of the 
fixed point theorem. 
Theorem 14. 7. Let ( , ) be a topological space, ( , ) a complete metric space and let  be 
a continuous map from ×  to E. Suppose that, for ∈ , the map : ∈ ⟼ ( , ) ∈  
is a contraction of ratio ∈ ]0,1[, which is independent of . Then, the map ∈ ⟼ =

( , ) ∈  is continuous on . 
Proof. Let ∈  be, let ( , ) be the open bull of the metric space ,  centered in 

= ( , ) with arbitrary radius > 0. Since  is continuous from ×  to E, there is a 
neighborhood  of  such that, for any ∈ , , , , < , as , =

, , ( , ) ≤ , , , + , , ( , ) , then , <
+ , , for every ∈ . Hence, for every ∈ , every > 0, 0 ≤ , <

, when ⟶ 0, , = 0 for every ∈ , which implies that, 
lim ⟶ , = lim ⟶ , =0, then lim ⟶ = . The map ∈ ⟼ =

( , ) ∈  is continuous in the arbitrary ∈ , then it is continuous on S.  
Lemma 14.5. The compact metric space is complete. 
Proof. If, { } is a Cauchy sequence in the compact metric space E, by corollary 10.2, there is 
a  subsequence ( )  which converges to ∈   By proposition 14.3 and proposition 14.4, 
the sequence { } converges to , so E is complete.  
Corollary 14. 8. If, in the metric space E, for any > 0 and for any ∈ , , the closed ball 

( , ) is compact. Then E is complete. 
Proof. If, { } is a Cauchy sequence in metric space E, there is ∈  and > 0 such that 
{ } ⊂ ( , ), as the metric subspace ( , )  is compact, by lemma 14.5 it is complete. 
So ⟶ ∈ ( , ) ⊂ . Then,  is complete. 
     We will give now an interesting result in the complete metric spaces known by Baire’s 
property. 
Lemma 14.6. (Baire’s property). If { } is a sequence of closed subsets of a complete metric 
space ( , ), satisfies =∪ ∈ℕ∗ . Then, it exists ∈ ℕ∗ such that ≠ ∅. 
Equivalently, if { } is a sequence of open subsets of a complete metric space ( , ) such 
that ( ) =  for all ∈ ℕ∗, then (∩ ∈ℕ∗ ) = . 
Proof. Let =∩ ∈ℕ∗  be, proof that ( ) ⊃ . Let ∈  be and > 0, because ( ) ⊃

 then ( , ) ∩ ≠ ∅ hence, it exists ∈ ( , ) ∩  which is an open thus, it exists 
> 0 such that ( , ) ⊂ ( , ) ∩ . Thus, it exists 0 < < ≤  such that 

( , ) ⊂ ( , ) ∩  By the same, for ∈  and > 0, it exists ∈ ( , ) ∩  
and it exists  0 < < <  such that ( , ) ⊂ ( , ) ∩ ⊂ ( , ) ∩ ( ∩ ), 
and ( , ) < . By induction, we construct the sequences { } in  and { } in ℝ∗  where 
 0 < <  for all ∈ ℕ∗, such that ( , ) ⊂ ( , ) ∩ and 
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( , )< < . Because for all , ∈ ℕ∗, 0 ≤ , ≤ ( , ) +

( , ) + ⋯ + , < + +…+ = + + ⋯ +

= 1 − < , it follows that , ⟶ 0, when  and  tend to ∞. Thus, the 
sequence { } is a Cauchy in the complete ( , ), hence it converges to ̅ ∈ . As for all 

, ∈ ℕ∗, ∈ ( , ) which is closed, then ̅ ∈ ( , ) ⊂ ( , ) ∩  for all ∈ ℕ∗, 
therefore ( , ) ∩  ( ) = . 
Remark 14.7. We can also use the Baire’s lemma in its following equivalent form: 
If { } is a sequence of closed subsets of a complete metric space ( , ), such that ( ) =
∅ for all ∈ ℕ∗. Then (∪ ∈ℕ∗ ) = ∅. 
 
14.4-Completion of a metric space 

Starting from the fact that, there are Cauchy sequences, in the metric subspace ℚ of the 
complete (ℝ, ) which converge towards elements containing in ℚ  (see, example 14.5, )), 
i.e. ℚ is neither complete nor closed in (ℝ, ) and (ℚ)= ℝ. It is natural to wonder, if we 
can embed a given incomplete metric space, into a complete metric one. The answer is yes. 
The process of embedding a non-complete metric, in a complete one, is called the completion. 
Theorem 14.8. A non complete metric space ( , ), has (up to an equivalence), a unique 
completion. 
Proof. We will prove by steps that there is a unique complete metric space ( , ), such that E 
embeds as a everywhere dense part of .  

Step 1. Construction of the metric space ( , ). Let ∼ be the relation defined on the set 
( ) of all Cauchy sequences { } in E, defined by: for any { }, { } ∈ ( ): { }  ∼

{ } iffy ( , ) ⟶ 0. It is clear that, ∼ is an equivalence relation in ( ). Let  be the set 
of all equivalence class, of Cauchy sequences in E and let  be any element of . As, 0 ≤
| ( , ) − ( , )| ≤ | ( , ) − ( , )| + | ( , ) − ( , )| ≤

( , ) + ( , ) for any , ∈ ℕ, then { ( , )} is a Cauchy in ℝ , therefore 
lim ⟶ ( , ) exists and it is independent of the choice of the representative. Indeed, if 

∼  and ∼  then 0 ≤ | ( , ) − ( , )| ≤ | ( , ) − ( , )| +
| ( , ) − ( , )| ≤ ( , )+ ( , ), for every , ∈ ℕ, so lim ⟶ ( , ) =
lim ⟶ , . The map : × ⟶ ℝ , defined by ( , ) = lim ⟶ ( , ), for 
any , ∈  is well defined and satisfies the metric properties. It is clear that, for every 

, , ̂ ∈  
) If ( , ) = lim ⟶ ( , ) = 0 ⟺ ∼ ⟺ = , (properties of the 

equivalence classes). 
) ( , ) = lim ⟶ ( , ) = lim ⟶ ( , )= ( , ). 
) ( , ) = lim ⟶ ( , ) ≤

lim ⟶ [ ( , ) + ( , )]=lim ⟶ ( , )  + lim ⟶ ( , )= ( , ̂)+ ( ̂, ). 
Step 2. The metric ( , ) embeds as a subspace in ( , ) i.e. there is an isometric  

: ⟶  and ( )= . Let : ⟶  be defined by, for every ∈ , ( ) =  where,  is 
the class of equivalent Cauchy sequences in  converging to  (it contains the Cauchy { }) . 
Because, for ever , ∈ , there are Cauchy sequences { }, { } in ; ⟶ , ⟶ , as 
0 ≤ | ( , ) − ( , )| ≤ | ( , ) − ( , )| + | ( , ) − ( , )| ≤ ( , ) +

( , ), then ( ), ( ) = ( , ) = lim ⟶ ( , )= ( , ). Thus,  is an 
isomorphism from  into ( ), so  is topologically equal to ( ) ⊂ , therefore, ( , ) is a 
subspace of , . Let us show that, with ( )= . If ∈ , > 0,  and { } in E is a 
representative of . As { } is a Cauchy, there is ∈ ℕ∗ such that, for any , ≥  we 
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have ( , ) ≤ . Then, for the class  of equivalent constant Cauchy sequences  in 
E, ( , ) = lim ⟶ , < , therefore ∈ ( , ) ∩  hence, ∈ ( ). 

Step 3. The metric space ,  is complete. Let { } = , , … , , …  be a Cauchy in 
. As, ( ) = , for a fixed ∈ ℕ∗, there is a sequence ,  in , such that 

lim ⟶ , , = 0. So, there is ( ) ∈ ℕ∗ such that, for any ≥  ( ) we have 

, , ≤ . Setting = ( ), , the sequence  satisfies: 0 ≤ , =

, ≤ , + , + , ≤ + , + , for any , ∈ ℕ∗. Since 
{ } is a Cauchy in , lim , ⟶ , = 0, thus lim , ⟶ , = 0 i.e. { } is a 
Cauchy in E. Let  be the equivalence class of { }, because, 0 ≤ , ≤ , +

, < + , ,  lim ⟶ , = lim , ⟶ , = 0 thus, 

lim ⟶ , = 0. The uniform continuity of  implies that, 
lim ⟶ , = lim ⟶ , = 0 hence, lim ⟶ =  ∈  and ,  is 
complete. 

Step 4. The uniqueness up to an isomorphism, of the completion , . Suppose that, 
there is another completion ,  of the metric ( , ). Because, ( )= , for every ∈ , 
there is a sequence { } in , which converges to , as ⊂ , then { } is a Cauchy in the 
complete , then ⟶ ̇ ∈ . The map ℎ: ,  ⟶ ,  defined by ℎ( ̇) = , for every 

̇ ∈  is an isomorphism. In fact, it is a surjection by construction and for any ( ̇ , ̇ ) ∈ × , 
ℎ( ̇ ), ℎ( ̇ ) = ( , ) = lim ⟶ ( , ), where { } and { } are two Cauchy in  and 

( , ) ⟶ ( ̇ , ̇ ) in × . As, : × ⟶ ℝ  satisfies ( , ) − ( ̇ , ̇ ) ≤
( , ) − ( , ̇ ) + ( , ̇ ) − ( ̇ , ̇ ) ≤ ( , ̇ ) + ( , ̇ ) then, 

lim ⟶ ( , ) = lim ⟶ ( , ) = ( ̇ , ̇ ). The map ℎ, is then an isometric, hence it 
is an isomorphism. 
     Using the notion of totally bounded metric space or precompact metric space and 
completeness, we will give another characterization of compacts metric space. 
Definition 14.8. A metric space ( , ) is said to be totally bounded if, for all > 0 there is a 
finite parts { , … , } in  such that, for every ∈ {1, … , } the diameter ( ) <  and 

=∪ . Equivalently, for all > 0, there is a finite points { , … , } in , such that 
=∪ ( , ). 

     It is obvious that, a totally bounded metric space is bounded and a subset in a totally 
bounded metric space is totally bounded. Let us summarize some elementary properties 
related to totally bounded metric space in the following. 
Proposition 14.8. A part  in a metric space is totally bounded⟺ ( ) is totally bounded. 
Proof. It is obvious that if ( ) is totally bounded, then  is totally bounded. Conversely, if 
for > 0 there is a finite parts { , … , } in  such that, for every ∈ {1, … , } the 
diameter ( ) <  and =∪ , then ( ) = (∪ )=∪ ( ), as for every ∈
{1, … , } the diameter ( ) = ( ) < , then ( ) is totally bounded. 
With the same argument as in the proof of the lemma 13.5 we have. 
Proposition 14.9. The totally bounded metric space is separable. 
Lemma 14.7. A compact metric space is totally bounded. 
Proof. Suppose that the compact metric space( , )  in not totally bounded. Then, there is 

> 0 such that, not finite number of bulls with radius  covers . Hence for ∈ , 
( , ) ⊅ , so it exists ∈  such that ( , ) >  , because ( , ) ∪ ( , ) ⊅  it 

exists ∈  such that ( , ) >   and ( , ) >  ,…, by induction, for every ∈ ∗ 
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there is a sequence { } ⊂  such that , >   for all , ∈ ∗ ( ≠ ). From the 
compactness of , the sequence { } has a convergence subsequence hence, it has a Cauchy 
subsequence { } then, for > 0 there is ∈ ∗ such that for > > , < , <
, contradiction. 

Lemma 14.8. For any sequence { } in a totally bounded metric space , it exists at last one 
ball of  containing an infinite subsequence of the sequence. 
Proof. Since for all > 0, there is a finite points { , … , } in , such that =∪ ( , ). 
If ( , ) for all ∈ {1, … , } containing a finite elements of the sequence { }, there is a 
subsequence ( )  of the sequence { } such that ( ) ⊄ ( , ) for all ∈ {1, … , }, it 
follows that ( ) ⊄∪ ( , ) =  contradiction with ( ) ⊂ { } ⊂E. 
     The following theorem gives, an important characterization of the totally bounded metric 
space.  
Theorem 14.9. A metric space  is compact⟺  iscomplete and totally bounded. 
Proof. By the lemma 14.5 a metric compact space  is complete and by the lemma 14.8  is 
totally bounded. Conversely, it remains to prove that every sequence in  has a convergence 
subsequence, from the corollary 13.5. Let{ } be a sequence in  which is totally bounded, 
then for = 1, there exists , … ,  in  such that =∪ ( , 1). From the lemma 14.8, 
it exists at least ∈ {1, … , } such that the ball , 1  containing an infinite 
subsequence { } of the sequence { }. Take the balls such that , 1 ∩ , ≠ ∅ 

where ∈ {1, … , }, as =∪ , , by the same argument for the sequence { }, it 

exists at least ∈ {1, … , } such that the ball ,  containing an infinite subsequence 
{ } of the sequence { }. Because , ∈ , 1  then ( , ) ≤ , +

, < 1 + 1 = 2 = , 1 , where , 1  is the diameter of the ball 

, 1 . By induction, if we take the balls, such that , ∩ , ≠ ∅ where 

∈ {1, … , }, as =∪ , . It exists at least ∈ {1, … , } and an 

infinite subsequence { } of the sequence { } containing in the ball , . As for 

all ∈ ℕ∗, ,  ∈ ,  then, , ≤ , + , < ≤

1 + 1 = 2 = , , where ,  is the diameter of the ball , . We 

will demonstrate that, the sequence { } is a Cauchy. Since ∈  for all , ∈ ℕ∗  with 
> , then  and  are in the ball of radius , so  , < . By Archimedean axiom, 

for any > 0  there is ∈ ℕ∗ such that < , hence for , ∈ ℕ∗  with > >  we have 

 , < < < . Therefore, the subsequence { } of the sequence { } is a Cauchy in 
the complete metric space . Hence { } converges in , it follows that  is compact. 
 

15-Convergences in functional spaces, 
Ascoli and Stone-Weierstrass theorems 

 
15-1. Simple and uniform convergence 

Let E be a nonempty set, F a topological space, ℱ( , ) the vector space of all maps, 
defined from E into F. To make the functional space ℱ( , ) important, we are led to 
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introduce on this space, the so called point open topology i.e. the topology whose, the family 
{ ( , );  ∈ ,  is an open in } and ( , ) = { ∈ ℱ( , );  ( ) ∈ } is a subbasis. 
We then define in ℱ( , ) the simple convergence or pointwise convergence. 
Definition 15.1. Let { , ;  ∈ ℕ} be a family of maps in ℱ( , ). We say that, the sequence 
{ } simply converges to  if, for every ∈  the sequence { ( )} converges to ( ) in . 
In other words, the map  is a simple limit or pointwise limit of the sequence { } if, for every 

∈  and for every ∈ ( ) , there is ∈ ℕ∗ (  depends to  and ) such that, for 
> , ( ) ∈ . We write 

.
 to express that,  is a simple limit of the sequence { }. 

In the case of the metric ( , ), 
.

⟺ [lim ⟶ ( ( ), ( )) = 0, for every ∈
⟺∀ ∈  and ∀ >0, there is 0∈ℕ∗ 0 depends of  and  ,  such that, for any > 0,  
′ , <    

Example 15.1. 
) The sequence : ℝ ⟶ ℝ , defined by ( ) =   simply converges to ( ) =

0, if ∈ ℝ∗ ; 
1,      if = 0 . 

) The sequence : [0,1] ⟶ ℝ , defined by ( ) =  simply converges to ( ) =
1, if ∈ ]0,1]; 
0,      if = 0 .  

) The sequence : ℝ ⟶ ℝ, defined by ( ) =  simply converges to ( ) =
0, if ∈ ]0,1]; 
1,      if = 0 .  

     ) The sequence : ℝ ⟶ ℝ∗ , defined by a) For any ∈ ℕ∗, the sequence : [0,1] ⟶
ℝ, de ined by =

( )
 simply converges to ( ) = 0, for every ∈ ℝ. 

Remark 15.1. We can also define, the simple convergence of a net ( ) ∈ , following a basis 
ℬ of the filter ℱ on  to a function  in ℱ( , ) i.e. for every ∈ , ( ) ⟶ ( ) 
following ℬ. 

In the sequel, we assume that ( , ) is a metric space and for all ∈ ℱ( , ) the diameter 
of  ( ) is finished i.e. ( ) = sup , ∈ ( ) ( , ) < +∞. Then, the map 

: ℱ( , ) × ℱ( , ) ⟶ ℝ , defined by: ( , ) = sup ∈ ( ( ) , ( ), for every 
, ∈ ℱ( , )  is a metric. The topology on ℱ( , ), induced by , is said to be the 

uniform topology. We will define in the metric (ℱ( , ), ), another important type of 
convergence, which is called the uniform convergence and we will give, the relationship 
between the pointwise convergence and uniform convergence and the properties of their limit 
when it exist.  
Definition 15.2. Let { , ;  ∈ ℕ} be a family of maps in ℱ( , ). We say that, the sequence 
{ } uniformly converges to  or, the map  is a uniform limit of the sequence { } iffy, 
lim ⟶ ( , ) = 0  In other words, iffy, for every > 0, there is ∈ ℕ∗ (  depends en 

), such that, for any > , [ ( , ) < ⟺ sup ∈ ( ( ) , ( ) < ] ⟺
( ), ( ) < , ∀ ∈ . We write 

.
, to express that,  is a uniform limit, of the 

sequence { }. 
Example 15.2. 

) For any ∈ ℕ∗, the sequence : [0,1] ⟶ ℝ, defined by ( ) =  simply converges 

to ( ) = 0, if ∈ [0,1[; 
1,      if = 1 .  
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But,  is not uniformly convergent to . In fact, ( , ) = sup ∈[ , ]| ( ) −
=sup ∈0,1 =1. Then, lim ⟶∞ ∞ , ≠0. 
b) For any ∈ ℕ∗, the sequence : [0,1] ⟶ ℝ , defined by: ( ) = 1 + , simply 

converges to ( ) = 1 (max ∈[ , ]| ( ) − ( )| = max ∈[ , ] = ⟶ 0). 
c) For any ∈ ℕ∗, the sequence : [0,1] ⟶ ℝ , defined by: 

( ) =
(1 − ), if ∈ 0, ;           

0, if ∈ , 1 .                                 
 

simply converges to ( ) = 0, for every ∈ [0,1]. But, ( ) is not uniformly convergent to 
0. Because, max ∈[ , ]| ( )| = max ∈ , (1 − ) = ⟶ +∞. 

d) For any ∈ ℕ∗, the sequence : [0,1] ⟶ ℝ , defined by: 

( ) =
, if ∈ 0, ;           

1 + , if ∈ , 1 .
 

converges uniformly to ( ) =
0, if ∈ 0, ;  

1,      ∈ , 1 .
 

(max ∈[ , ]| ( ) − ( )| = + max ∈ , = + ⟶ 0). 

As seen in the example 15.2, ) and b), the uniform convergence implies the simply 
convergence, and the converse is not true.  
Theorem 15.1. If  is complete, then (ℱ( , ), ) is complete. 
Proof. Let { } be a Cauchy in (ℱ( , ), ), then for > 0 be, there is ∈ ℕ∗ such that 
for , > , ( ), ( ) <  for any ∈ . Then, for every ∈  the sequence 
{ ( )} is Cauchy in the complete , so for every ∈  ( ) ⟶ ( ) ∈ . As, for >  
and ⟶ ∞ ( ), ( ) < , for any ∈ , then , ⟶ 0. So (ℱ( , ), ) is 
complete. 

The fact that, we are going to introduce the continuity of the elements of ℱ( , ), we must 
assume that  is a topological space. 
Proposition 15.1. Let { , ;  ∈ ℕ} be a family of maps in ℱ( , ). If, the sequence { } 
uniformly converges to  and for every ∈ ℕ  is continuous on E. Then,  is continuous on 
E. 
Proof. Since 

.
, for > 0 there is ∈ ℕ∗such that ( ), ( ) ≤  for every 

∈ . As  is continuous in , there is a neighborhood ∈ ( ), such that 
( ), ( ) ≤ , ∀ ∈ . Then, for any > 0 there is ∈ ( ) such that, 

( ), ( ) ≤ ( ), ( ) + ( ), ( ) + ( ), ( ) ≤ + +
=  , for any ∈ . Hence,  is continuous in the arbitrary element  of E, thus  is 

continuous on E. 
Corollary 15.1. Let { } be a sequence, of the continuous maps from the metric ( , ) into . 
If, the restriction of { } to any compact ⊂  uniformly converges to . Then,  is 
continuous on E. 
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Proof. Let  be the uniform limit of the restriction of { }  into the compact . From the 
proposition 15.1,  is continuous on the arbitrary , so by the lemma 13.4  is continuous on 

. 
Let us denote by ( , ), the subspace of ℱ( , ),  formed by the continuous maps from  

into . We then have. 
Corollary 15.2. ( , ) is closed. 
Proof. If, ∈ ( , ) , there is a sequence { } in ( , ) uniformly converging to . As 
by proposition 15.1,  is continuous on , then ∈ ( , ). Thus ( , ) is closed. 

In order to give a Dini's theorem, regarding the passage from simple convergence to 
uniform convergence, we need the following lemma. 
Theorem 15.2. Let  be a compact space. If, the family { , ;  ∈ ℕ} in ( , ) satisfies: 
for every ∈ , the sequence ( ), ( )  is decreasing and converges to 0. Then, 

( , ) ⟶ 0. 
Proof. As ∈ ( , ) and ( ), ( ) ⟶ 0. For > 0, there is ∈ ℕ∗ such that, for 
each > , ( ) ∈ ( ( ), ). So for all >  = ∈ , ( ), ( ) ≥  is 
closed. Because ( ), ( ) ≤ ( ), ( ) , for every ∈ ℕ, then the closed 
sequence { , > } is decreasing. As the space E is compact, by corollary 10.1, 
∩ = ∅ or =∪ ( ) , it follows that, for ∈  there is > , such that 

∈  then ( ), ( ) < , so for > , 

( ), ( ) < ( ), ( ) < . Thus lim ⟶ ( , ) = 0. 
Corollary 15.3. (Dini s theorem). If the family { , ;  ∈ ℕ} in ( , ℝ), where  is a 
compact space satisfies: the sequence { } is monotone and 

.
. Then 

.
. 

Proof. As ( ), ( ) = | ( ) − ( )| for every ∈ , if { } is decreasing ( ) ≤
( ) ≤ ( ) for every ∈  and if, { } is increasing ( ) ≤ ( ) ≤ ( ), for every 

∈ . Then, for every ∈ , ( ), ( )  is decreasing and 0 ≤ ( ), ( ) ≤ 0, 
therefore ( ), ( ) ⟶ 0. By the theorem 15.2 

.
. 

 
15.2-Ascoli and Stone-Weierstrass theorems 

In Section 15.1, we have seen that, the space ( , ) is closed in (ℱ( , ), ) and, if  is 
complete, (ℱ( , ), ) is complete, therefore ( , ) is complete. It is also important, to 
find compacts spaces in (ℱ( , ), ). Such a space is closely linked to the concept of 
equicontinuity. 
Definition 15.3. let ℱ( , ) be, where  is a topological space. We say that, the subset ℋ of 
ℱ( , ) is equicontinuous in ∈ , if for every > 0 there is a neighborhood ∈ ( ), 
such that the diameter ( ) < , for every ∈ ℋ. ℋ is said to be equicontinuous on , if 
ℋ is equicontinuous in any point of E.  
Definition 15.4. let ( , ) and ( , ) are metric spaces. We say that the subset ℋ of ℱ( , ) 
is uniformly equicontinuous on , if for every > 0 there is > 0 such that for every 

, ∈ , satisfying ( , ) < , ( ( ), ( )) <   for every ∈ . 
It is clear that: 
     ) The subset ℋ of ℱ( , ) is uniformly equicontinuous on , iffy all the elements of ℋ 
has the same modulus of continuity.  
     ) In the definition 15.3, the neighborhood  depends on ℋ,  and  but not on . 
     ) The equicontinuous implies the uniform continuity.  
     ) If ℋ is finite, then ℋ is equicontinuous. 
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     ) If ℋ = { } and 
.

, then ℋ is equicontinuous. 
Proposition 15.1. Let  be a space. If, the sequence { } in ℱ( , ), is equicontinuous in 

∈ , and 
.

∈ ℱ( , ). Then,  is continuous in . 
Proof. Let > 0 be, since for all ∈  ( ) ⟶ ( ), there is ∈ ℕ∗ such that 

( ), ( ) ≤ . { } being equicontinuous in ∈ , there is a neighborhood ∈

( ), such that ( ), ( ) ≤ , for all ∈ , therefore ( ), ( ) ≤

( ), ( ) + ( ), ( ) + ( ), ( ) ≤ + + = , for all ∈
. 

Proposition 15.2. Let  be a space. If, the subset ℋ in ℱ( , ) is equicontinuous, then (ℋ) 
is equicontinuous. 
Proof. Because for ∈ (ℋ), there is a sequence { } in ℋ converging to  in 
(ℱ( , ), ). Then, for > 0 there is ∈ ℕ∗ such that, ( ), ( ) ≤  for every 

∈ . Let ∈ , because ℋ is equicontinuous in , there is a neighborhood ∈ ( ), 
such that, ( ), ( ) ≤ , for every ∈ , thus 

( ), ( ) ≤ ( ), ( ) + ( ), ( ) + ( ), ( ) ≤
 , for every ∈ , and all ∈ (ℋ). Thus (ℋ) is equicontinuous. 
Proposition 15.3. If, ( , ) is a metric compact space. Any equicontinuous subset ℋ in 
ℱ( , ) is uniformly equicontinuous. 
Proof. Let > 0 be, by the equicontinuous of ℋ, for every ∈  there is an open  in  
such that ∈  and ( ) < , for every ∈ . Because =∪ ∈ , and  is a 
compact metric space all the requirements of the fundamental lemma 13.2 are checked. Then, 
there is > 0 such that for all ∈ , ( , ) is containing in at last one of the , therefore 

( , ) < , it follows that, as soon as ( , ) < , where , ∈ , we have 
( ( ), ( )) <  , for every ∈ ℋ. Thus, ℋ is uniformly equicontinuous. 

Theorem 15.3. (First Ascoli’s theorem). Let  be a space, ( , ) a compact metric space, 
{ } an equicontinuous sequence in ℱ( , ) and a part ⊂  whith ( ) = . If, 

.
 on , then 

     ) it exists a continuous map  from E into F, such that 
.

 on . 
    ) 

.
 on any compact  of . 

Proof. ) Since { } is equicontinuous in ℱ( , ), for ∈  and > 0, there is a 
neighborhood ∈ ( ), such that for ∈ , ( ), ( ) <  for all ∈ ℕ. Because 

( ) = , then ∩ ≠ ∅  and ( ) ⟶ ( ) for ∈ ∩ , so { ( )} is a Cauchy in , 
there is ∈ ℕ∗, such that for , > , ( ), ( ) < , therefore ( ), ( ) ≤

( ), ( ) + ( ), ( ) + ( ), ( ) < + + = . Hence, for all ∈ 
the sequence { ( )} is a Cauchy in the complete , by the proposition 15.1, it exists a 
continuous map : ⟶  which is the simply limit of { ( )}. ) Let ∈ , since the maps 

,  are continuous in , for > 0 there is an open  in  containing  such that 
( ), ( ) <  ∀ ∈ , ∀ ∈ ℕ, and there is an open  in  containing  such that 

( ), ( ) < , ∀ ∈ . Then for > 0, there is an open = ∩  in  

containing  such that ∀ ∈ , ( ), ( ) + ( ), ( ) < . Because =
∪ ∈ , there is a finite elements { , … , } in  such that =∪ . Since for 
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∈ {1, … , }, ( ) simply converges to ( ), there is ∈ ℕ∗ such that for > , 
( ), ( ) < , hence for > = max , ( ), ( ) < , therefore for 

all ∈  i.e.  is containing in some open  we have 

( ), ( ) ≤ ( ), + , + , ( ) < + + = . 

Thus 
.

 on . 
Corollary 15.4. If, ( , ) is a compact space, ( , ) is a metric one, { } an equicontinuous 
sequence in ℱ( , ) and 

.
 on . Then 

.
 on . 

Proof. It suffices to take, =  and to repeat, the same proof as that of 
.

 on  in the 
theorem 15.3. 
We now give, the largely used and very important form of Ascoli’s theorem. 
Theorem 15. 4. (Second Ascoli’s theorem). Let  be a compact space, ( , ) a complete 
metric space,  a part of ( ( , ), ) and, ℋ( ) = { ( );  ∈ ℋ}, where ∈ . Then, 

ℋ is relatively compact ⟺ )
)

 ℋ is equicontinuous;                                        
ℋ( ) is relatively compact, for all ∈ . . 

Proof. ) As (ℋ) is compact, from the lemma 14.8 it is totally bounded. Then, for > 0, 
there is a finite elements { , … , } in ℋ such that, ℋ ⊂ (ℋ) =∪ , , because 
for ∈ {1, … , },  is continuous in any ∈ , there is an open  in  containing , such 
that ( ), ( ) <   for ∈ . Since for ∈ ℋ there is ∈ {1, … , } such that 

∈ ,  then, sup ∈ ( ), ( ) <   hence for ∈ =∩  which is an 

open in  containing  ( ), ( ) ≤ ( ), ( ) + ( ), ( ) +

( ), ( ) < + + = . Thus ℋ is equicontinuous. ) Define, the map 
: ( , ) ⟶  by, ( ) = ( )  for a fixed  in E. As, ( ), ( ) = ( ), ( ) ≤

( , ) for all , ∈ ( , ), then  is 1-Lipschitz, hence  is continuous on ( , ). By 
proposition 10.4 (ℋ)  is compact and by the theorem 7.2, 4) (ℋ) ⊂ (ℋ) ⊂

(ℋ) . As (ℋ)  is closed by the proposition 10.3. Thus (ℋ) = (ℋ) , 
hence (ℋ) is relatively compact in , as for ∈  ℋ( ) ⊂ (ℋ), then ℋ( ) ⊂

(ℋ) , as a closed in the compact ℋ( )  is compact. Conversely, by the proposition 
14.8 and the theorem 14.9, it suffices to prove that (ℋ) is complete and totally bounded. As 

 is complete, by the theorem 15.1 ℱ( , ) is complete and by the corollary 15.2, ( , ) is 
closed in ℱ( , ), hence ( , ) is complete. It is clear that (ℋ) is complete. To prove that 
ℋ is totally bounded. Let > 0 and ∈ , by the equicontinouity of ℋ, there is an open  
in  which contains  such that for all ∈ , ( ), ( ) <   for all ∈ ℋ. Because 

=∪ ∈   and  is compact, there is a finite elements { , … , } in  such that =
∪ . Since for all ∈ = {1, … , }, ℋ( ) = { ( ), ∈ ℋ} is relatively compact, 
then ℒ =∪ ℋ( ) is relatively compact, there is a finite elements { , … , } in F such that 
ℒ ⊂∪ , , then there is ( ) ∈ = {1, … , } such that ( ) ∈ ( ), . Denote Φ 

the finite collection of all maps : ∈ ↦ ( ) ∈ . Let ℰ = ∈ ℋ, ( ) ∈ ( ), , 
then ℋ=∪ ∈ ℰ . So, for any > 0 for any ∈  which belongs to some  and for any 

, ∈ ℰ , ( ), ( ) ≤ ( ), ( ) + ( ), ( ) + ( ), ( ) +
( ), ( ) < + + + =  for all ∈ . It follows that for every ∈ Φ the 
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diameter ℰ < , therefore ℋ is totally bounded, by proposition 15.8 (ℋ) is totally 
bounded. Since (ℋ) is totally bounded and complete it is compact. 
Remark 15.2. In the theorem 15.4 
     ) If ( , ) is compact, then it is complete. The condition ℋ( ) is relatively compact for 
all ∈  is obviously verified. Then, ℋ is equicontinuous iffy ℋ is relatively compact.  
     ) If  is a metric compact space, we us the separability of  and a modulus of continuity 
to proof the implication" ⟹ "(see G.Choquet, theorem 23.5, p.97). 
     It is clear that. 
     ). It ( , ) is a metric, we obtain the same resultat by utilization of the Tychonoff 
theorem. 
Corollary 15.5. Under the conditions of the theorem 15.4. If, the sequence { } in 
( ( , ), ) is equicontinuous, and the sequence { ( )} for all ∈  is relatively compact 
in F. Then { } has a subsequence which uniformly converges. 
Remark 15.3.  
     ) The theorem 15.4, is not valid if E is locally compact. In fact, the sequence { } in 

(ℝ, [0,1]) defined by ( ) =
( )

 is equicontinuous, but it is not relatively compact in 
(ℝ, [0,1]) (  is not compact). 

     ) Let : [0,1] ⟶ [0,1] be the identity function. For all ∈ ℕ, the sequence{ = +
 is equicontinuous in 0,1,ℝ, since for all ∈ℕ and for all , ∈0,1, − = −  but it is 

not relatively compact in ([0,1], ℝ) (ℋ(0) = ℕ = (ℕ) which is not compact). 

     ) The sequence { } in ([0,1], [0,1]) where ( ) = ( ), is not relatively compact 
in ([0,1], [0,1]) (ℋ = { } is not equicontinuous). 
     ) Let ∈ [2,3] and let for all ∈ [0,1] ( ) = + . Then, the family ℋ =
{ , ∈ [2,3]} is relatively compact. 
     In the end of this section, we will present one of the versions of the Stone-Weierstrass 
theorem, whose the Weierstrass theorem concerning the uniform approximation, of a 
continuous function on a compact space by a polynomial, becomes a special case. Before the 
proof of this theorem, let us introduce and prove some concepts and elementary results related 
at it demonstration. In the sequel,  is a compact space,  is the nonempty part of 
( ( , ), ), where = ℂ or ℝ and for , ∈  ( , ), 
 ( , ) = max ∈ ( ( ), ( )) with, ( ( ), ( )) = | ( ) − ( )|, for all ∈ , 
(the max and min exists by the Hein’s theorem 10.3). 
Definition 15.4. The part  is said to be: 
    ) A -subalgebra, if for , ∈ , + ∈ , the product ∈  and for ∈ , 

∈ . 
    ) Separates points if, for all , ∈  with ≠  there is ∈  such that ( ) ≠ ( ). 
    ) A lattice, if for , ∈  we have ∨ , ∧ ∈ , where 
( ∨ )( ) = ( ), ( )  and ( ∧ )( ) = ( ), ( ) , for all ∈ .  
When, the elements of the subalgebra  are the complex valued functions, the conjugate  of 

∈ , is defined by, for all ∈ , ( ) = ( ), and 
    )  is said to be selfadjoint if, for all ∈ , ∈ . 
Example 15.3. The space of real coefficients polynomials [ ], where = [ , ] ⊂ ℝ, is a 
subalgebra and separates points. It is clear that [ ] is a subalgebra, and for all , ∈ [ , ], 

≠ , the polynomial ∈ [ ], defined by ( ) =  for all ∈ , satisfies ( ) ≠ ( ). 
Lemma 15.1. If, the part  is a separated lattice ℝ-subalgebra, which containing all constant 
functions. Then  
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     ) ( ) is a ℝ-subalgebra. 
     b) If ∈ ( ), then | | ∈ ( ). 
     ) ( ) is a lattice. 
     ) ( ) separates points strongly i.e. if , ∈ , ≠  and , ∈ ℝ, there exists 

∈ ( ) such that ( ) =   and ( ) = . 
Proof. ) If , ∈  and ∈ ℝ, there are sequences { }, { } in , such that 

.
 and 

.
, then +

.
+g, 

.
. Since, the sequences { + } and { } are 

containing in , then +g, ∈ ( ). It is clear, that all constant functions are in ( ), 
hence ( ) is a subalgebra. b) Setting for no zero f ∈ ( ), = sup ∈ | |( ), then 
0 < | | ≤ . We want to prove, the uniform convergence towards |f| of the following 
sequence: 

= 0,                                                                   

= +
1

2
( − ), for all n ∈ ℕ∗.

 

It is obvious that, { } ⊂ cl( ), 0 ≤ ≤ |f| and ≤ , for all ∈ ℕ. Also, ≤ |f|, 
for all ∈ ℕ, in fact, − |f|=( − |f|)+ ( − ) = [−2 (|f| − ) +
f− f+ =12 f− f+ −2 , because f− ≥0 and f+ −2 ≤2f− <0, therefore 

≤ |f|, for all ∈ ℕ. Furthermore, for all ∈ , the real sequence { ( )} is increasing 
and bounded above by | ( )| = | |( ), then { ( )} converges simply towards a function 
g: ∈ ⟼ ( ) ∈ ℝ . By the definition of the sequence { }, we have 0 = |f| − =
(|f| − )(|f| + ), because |f| + > 0, then |f| − = 0 hence |f| = . All the condition of 
the corollary 15.3. (Dini s theorem) are satisfied, hence 

.
|f| ∈ ( ). ) Just notice 

that: ( , ) = | | | | and ( , ) = | | | |. ) If , ∈ , ≠  there is 

ℎ ∈  such that ℎ( ) ≠ ℎ( ). It is obvious that, the function =  +
( ) ( )

ℎ −
ℎ 0∈ ⊂  and satisfies 0=  and 0= . 
Remark 15.4.  
     ) In the unital -subalgebra i.e. 1 ∈ , all constant functions are elements of . 
     ) The lemma 15.1, ) is true is ℂ-subalgebra with the supplementary condition  is 
fanishes at no point. Indeed, there exist , ℎ, ∈  such that ( ) ≠ ( ), ℎ( ) ≠ 0 and 

( ) ≠ 0. It is obvious that, the function =  ( )
( ) ( ) ( )

+ ( )
( ) ( ) ( )

∈

⊂ ( ) and satisfies ( ) =   and ( ) = . 
Theorem 15.5 (ℝ-Stone-weierstrass theorem). If  is a separates points ℝ-subalgebra, which 
containing all constant elements. Then ( ) =  ( , ℝ). 
Proof. Let , ∈  be with ≠ , by the lemma 15.2 ), for all ∈ ( , ℝ) there exists 
ℎ , ∈ ( ) such that ℎ , ( ) = ( ) and ℎ , ( ) = ( ) < ( ) + , for all > 0. As ℎ ,  
and  are continuous, then ℎ , − (]−∞, [) = ∈ , ℎ , ( ) < ( ) + =  is an 
open in . Because the collection { , ∈ } is an open cover of the compact , it exists a 
finite points { , … , } in  such that =∪ . So for all ∈  there is ∈ {1, … , } 
such that ∈ , thus ℎ , ( ) < ( ) + . The function = min ℎ , , which by the 
lemma 15.2, ) is an element of ( ) satisfies ( ) = ( ), ( ) < ( ) + , for all 

∈ . By the continuity of  and , ( − ) (]− , +∞[) = { ∈ , ( ) − < ( )} =
 is an open in  and the collection {  , s ∈ } is an open cover of the compact . It exists a 

finite points { , … , } in  such that =∪ . Thus, for all ∈  there is ∈
{1, … , } such that ∈  and ( ) − < ( ). By the lemma 15.2 ), the function 
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= max  is an element of ( ) and satisfies ( ) −  < ( ) < ( ) + , for all 
∈ . Therefore, for all ∈ ( , ℝ) there is ∈ ( ), such that ( , ) <  for all 
> 0. It follows that, when ⟶ 0, = ∈ ( ), hence ( ) = ( , ℝ). 

Example 15.4. The set  of the functions defined from ℝ into ℝ by ( ) = ∑  where 
, … , ∈ ℝ, is everywhere dense in ([ , ], ℝ). Clearly, if λ ∈ ℝ, λ + ∈   and 

∈   by the identity = , for , ∈ ℝ. As the function  is one to one and strictly 
positive then,  separates points. By Stone-Weierstrass theorem ( ) = ([ , ], ℝ). 
Let  be a compact of ℝ  and [ ] the unital ℝ-subalgebra, of all polynomials from  into 
ℝ, in the coordinate , … , . As a direct consequence of the theorem 15.5, we have. 
Corollary 15.6. ( [ ]) = ( , ℝ). 
The Weierstrass approximation theorem, is obtained from the corollary 15.6 by taking = 1. 
So, 
Corollary 15.7 (ℝ-Weierstrass theorem). [ , ] = ([ , ], ℝ). 
     Let us give some simple versions of Weierstrass approximation theorem. 
Corollary 15.8. The metric space ( ([ , ], ℝ), ) is separable. 
Proof. It remains, to use corollary 15.7 and (ℚ) = ℝ. 
Corollary 15.9. For every ∈ [− , ] = , there is a real sequence { } in [ ], uniformly 
converging towards | | and (0) = 0. 
Proof. As the function ( ) = | | is an element of ( ([− , ], ℝ), ), by the corollary 15.8 
there is a real sequence { } in [ ] which satisfies, for any > 0 there is ∈ ℕ∗ such that, 
for > , ( ) − | | <  for all ∈ [− , ]. Let ( ) = ( ) − (0), obviously 

(0) = 0  and for all ∈ [− , ], ( ) − | | = ( ) − (0) − | | ≤ ( ) − | | +
| (0)| < + =  , as soon as > . Thus { } is the desired sequence. 
     Denote by ℂ the complex subalgebra i.e. ℂ ⊂ ( , ℂ). 
Theorem 15.6 (ℂ-Stone-weierstrass theorem). If ℂ is a selfadjoint separates points ℂ-
subalgebra of ( , ℂ), which containing all constant elements. Then, ( ℂ) =  ( , ℂ). 
Proof. Let  be the unital subalgebra of ℂ, containing all real valued functions. If ∈ ℂ, 
then ( ) = + , ( ) = − ∈ . As, for , ∈  such that ≠ , there is 

∈ ℂ such that ( )  ≠ ( ) or ( )( ) + ( )( ) ≠ ( )( ) + ( )( ), then 
either ( )( ) ≠  ( )( ) or ( )( ) ≠ ( )( ), so  is separates points. By the ℝ-
Stone-Weierstrass theorem, ( )= ( , ℝ). As ( , ℂ) = ( , ℝ)+i ( , ℝ) and as 

( ℂ) = ( ) + ( )= ( , ℂ). 
     Another version of Weierstrass theorem, regarding the approximation of the periodic 
continuous function, by the trigonometric polynomials is still established. Recall that for any 

∈ ℕ, the complex trigonometric polynomial of the order ≤  is a continuous function  
from ℝ into ℂ defined by: for all ∈ ℝ, ( ) = ∑  where = −1, ∈  ℂ and 

= ( ) + ( ). Denote [ℝ] the set of all trigonometric polynomial and 
(ℝ, ℂ), the unital ℂ-subalgebra of 2 -periodic continuous functions from ℝ to ℂ, i. e.  

∈ (ℝ, ℂ) iff ∈ (ℝ, ℂ) and ( + 2 )=f(x), for all ∈ ℝ and ∈ ℤ.  
Corollary 15.10. ( [ℝ])= (ℝ, ℂ). 
Proof. [ℝ] is a unit subalgebra. Indeed, if , ∈ [ℝ] and ∈ ℂ then + ∈

[ℝ], and for = 1, = = 0, for every ∈ {1, … , } the unit polynomial 1 ∈ [ℝ], 
∈ [ℝ]. by trigonometric identity ( ) = , separates points because the 

function ∈ ℝ ⟼ e ∈ ℂ satisfies e ≠ e  for all ≠ . Let  (0,1) = = {( , ) ∈ ℝ ,
+ = 1} the unit compact sphere in ℝ ; define the surjection map  from ℝ into  by, 

( ) = ( , ) for every ∈ ℝ. As the map Φ: ∈  ( , ℝ) ↦ Φ( ) = ∘ ∈
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(ℝ, ℝ), satisfies for all , ∈  ( , ℝ) Φ( ), Φ( ) = ∈ℝ|( ∘ )( ) −
( ∘ )( )| = ∈ℝ ( ) − ( ) = ∈ | ( ) − ( )|= (f, g), then Φ is an 
isometric. As, for any ℎ ∈ (ℝ, ℝ), there is : S ⟶ ℝ such that ℎ = ∘ = Φ( ), then 
Φ is onto. Therefore ( , ℝ) and (ℝ, ℝ) are homeomorphic then ( , ℂ) =

( , ℝ)+i ( , ℝ) and (ℝ, ℂ) = (ℝ, ℝ) + (ℝ, ℝ) are homeomorphic. As 
by ℂ-stone-Weierstrass theorem ( , ℂ) = ( [ℝ]) then ( [ℝ]) = (ℝ, ℂ). 
Example 15 5. By, the previous trigonometric identity. The set of real trigonometric 
polynomials , defined by: ( ) = +∑ cos( ), for all ∈ , is an subalgebra, 
which does not separates point in – , , because for all ∈ , ( ) = (− ), for all . But, 
it separates point in [0, ], as cos( ) is one to one in this interval. 
Corollary 15.11. Let  and  two compact Hausdorff spaces, and let  be the collection of 
all continuous functions Φ: × ⟶  , defined by for any (x, y) ∈ × , Φ(x, y) =
∑ ( ) ( ) where ∈ ℕ∗, ∈ ( , ) and ∈ ( , ) are continuous. Then 

( )= ( × , ). 
Proof. It is clear that  is a unital selfadjoint -subalgebra of ( × , ). Let (x, y), (x , y ) 
are two elements of ×  such that (x, y) ≠ (x , y ) suppose that x ≠ x  by the lemma 10.4 E 
is normal, as the singletons { } and {x } are disjoint closed sets in the normal space, by the 
theorem 8.1 (Urysohn Lemma) there is a continuous function  defined from  into [0,1] 
such that ( ) = 0 and (x ) = 1. For any (s, t) ∈ , the continuous function (s, t) = ( ) 
is such that 0 = (x, y) ≠ (x , y )=1, then  separates points, all the requirements of the 
Stone-Weierstrass theorem are satisfied then ( )= ( × , ). 

 
16-Normed Vector Spaces 

 
16.1-Definitions and properties 
     Normed vector spaces are a very important class of metric spaces. They are introduced 
after Hilbert spaces and much studied by Banach. They constitute a powerful tool in 
mathematical analysis whose study is relatively simple. In the sequel  is a -vector space. 
Definition 16.1. The function ‖ ‖: ⟶ ℝ  is said to be a norm on . If, for all , ∈  
and all ∈  
     -‖ ‖ = 0 ⟺ = 0 (separation property). 
     -‖ ‖ = | |‖ ‖ (homogeneity property). 
     -‖ + ‖ ≤ ‖ ‖ + ‖ ‖ (triangle inequality). 
The couple ( , ‖ ‖) is called the -normed vector space, we write -nvs  for a such space. 
Example 16.1. 
     ) The function | |: ∈ ℂ ⟼ |z| ∈ ℝ  is a norm on ℝ-vs ℂ. 
     ).In the Euclidian space ℝ , for every = ( , … , , … , ) ∈ ℝ  the functions ‖ ‖ =
∑ | |, ‖ ‖ = (∑ | | )  (Euclidean norm) and ‖ ‖ = max | | (infinite norm) 
define a norms on ℝ . 
     ) In the space ℝ [x] of the polynomials of degree ∈ ℕ, ( ) = ∑ , for every 

∈ ℝ [x], the functions ‖ ‖ = ∑ | |, ‖ ‖ = (∑ | | )  and ‖ ‖ = max | | 
define a norms on ℝ-vs ℝ [x]. 
     ) In the space ℳ (ℝ) of the square matrices =

,
 with coefficients in ℝ. For 

every ∈ ℳ (ℝ), the functions ‖ ‖ = ∑ ∑ , ‖ ‖ = ∑ ∑  and ‖ ‖ =
max ,  define a norms on ℝ-vs ℳ (ℝ). 
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     ) In the space (ℕ, ℝ) = { = { }, ∑ | | < ∞}.  For every ∈ (ℕ, ℝ), the 
function ‖ ‖ = ∑ | | define a norm on ℝ-vs (ℕ, ℝ). 
     ) In the space ([ , ], ℝ), for all ∈ ([ , ], ℝ) the functions ‖ ‖ = ∫ | ( )| , 

‖ ‖ = ∫ | ( )|  (quadratic norm) and ‖ ‖ =max ∈[ , ]| ( )| (infinite norm), 
define the norms on ℝ-vs ([ , ], ℝ). 
Proposition 16.1. The -nvs ( , ‖ ‖) is a metrizable space, where the metric  associated 
to the norm ‖ ‖ is defined by: ( , ) = ‖ − ‖ for all , ∈ . 
Proof. It is clear that for all , , ∈ , ( , ) ∈ ℝ ; ( , ) = 0 ⟺ =  and ( , ) =

( , ), while ( , ) = ‖( − ) + ( − )‖ ≤ ‖ − ‖ + ‖ − ‖= ( , ) + ( , ). 
Then  is a metric on . 
Remark 16.1. 
     ). From the proposition 16.1, it follows that a -nvs ( , ‖ ‖) is a topological space 
where the topology is induced by the metric  associated to the norm ‖ ‖. 
     ) All the properties obtained in the metric space remain true in the -nvs  whith 
modification in the form. For example: ( , ) = { ∈ , ‖ − ‖ < }; ( , ) =
{ ∈ , ‖ − ‖ ≤ } and ( , ) = { ∈ , ‖ − ‖ = }. 
     ) As | ( , 0) − ( , 0)| ≤d(x,y) for all , ∈ , then |‖ ‖ − ‖ ‖| ≤ ‖ − ‖ for all 

, ∈ , it follows that the norm is 1-Lipschitz, therefore it is uniformly continuous and 
hence it is continuous on . 
     ) The metric enjoyed by the norm satisfies: d( x, y)= | |d(x,y) and d(x+z,y+z)= d(x,y) 
for all , , ∈  and all ∈ . 
Proposition 16.2. In the -nvs ( , ‖ ‖) we have. 
     ). ( , ) = ( , ). 
     ).int( ( , )) = ( , ). 
     ) ( , ) = ( , ) = ( , ) . 
Proof. ). As ( , ) ⊂ ( , ) and ( , ) is closed, then ( , ) ⊂ ( , ). To 
demonstrate the reverse inclusion, let ∈ ( , ) and let > 0 be, show that ( , ) ∩
 ( , ) ≠ ∅. If, <   then ‖ − ‖ ≤  <   so ∈ ( , ) and ( , ) ∩  ( , ) ≠ ∅. If 
0 < ≤   the element = − ( − ) is such that − = − + ( − ) then 

‖ − ‖= 1 − ‖ − ‖ ≤ 1 − = − <  so ∈  ( , ) and − = − ( −
 then − = 2 − ≤ 2 < , so ∈ , , hence , ∩ , ≠∅. ) As , ⊂ ,  and 
( , ) = ( , )  then ( , ) ⊂ ( , ) . If now ∈ ( , )  which is an open 

neighborhood of , it exists > 0 such that ( , ) ⊂ ( , ) ⊂ ( , ), if =  then 
‖ − ‖ = 0 <  so ∈ ( , ). If ≠ , the element = +

‖ ‖
( − ) is such that 

‖ − ‖ = , then ∈ ( , ) ⊂ ( , ). As − =
‖ ‖

( − ) then ‖ − ‖ <

‖ − ‖ ≤r hence ∈ ( , ). 

) ( , ) = ( , ) ∩ ( ( , ) )= ( , ) ∩ ( , ) = ( , ) ∩
( , ) = ( , ) and 

( , ) = ( , ) ∩ ( , ) = ( , ) ∩ ( , ) = ( , ) ∩
( , ) = ( , ). 
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Remark 16.2. The proposition 16.2 is not valid in any metric space. For example in the 
discrete metric space : ( , 1) =  and ( , 1) = ( , ) = { }. 
Proposition 16.3. In the -nvs , two norms ‖ ‖  and ‖ ‖  are said to be equivalent and 
we write ‖ ‖ ~‖ ‖ , if there are , ∈ ℝ∗  such that ‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖ , for all 

∈ . 
Example 16.2. The norms in the example 16.1 ) are equivalent. For example, we have 
‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖ ; 

√
‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖  and 

√
‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖  for every 

∈ . 
     We have seen in the corollary 13.3 that, the equivalent distances are t-equivalent. But the 
converse is not true by the example 13.2. We will check that in a -nvs  the t-equivalent 
property implies the equivalent norms. 
Proposition 16.4. Let  and  are tow topologies, enjoyed by tow norms ‖ ‖  and ‖ ‖  
on -nvs . If =  then ‖ ‖ ~‖ ‖ . 
Proof. As = , then the identity map : ( , ) ⟶ ( , ) is a homeomorphism, the 
continuity of  and  in 0 leads to the result. Indeed, for = 1, it exists > 0 such for 
0 < ‖ ‖ ≤  we have ‖ ‖ ≤ 1, as  

‖ ‖
=  then 

‖ ‖
≤ 1 equivalently 

‖ ‖ ≤ ‖ ‖ . In the other hand it exists > 0, such that 0 < ‖ ‖ ≤  implies ‖ ‖ ≤ 1, 
as  

‖ ‖
=  then  

‖ ‖
≤ 1 equivalently ‖ ‖ ≤ ‖ ‖ = ‖ ‖ . Therefore 

‖ ‖ ~‖ ‖ . 
Proposition 16.5. Let { } and { }  are two sequences in the -nvs  and let { } be a 
sequence in . If 
     ) ⟶  and ⟶ , then ‖ ‖ ⟶ ‖ ‖ and + ⟶ + . 
     ). ⟶  and ⟶ , then ⟶ . 
Proof. ). From, 0 ≤ |‖ ‖ − ‖ ‖| ≤ ‖ − ‖ and ‖( − ) + ( − )‖ ≤ ‖ − ‖ +
‖ − ‖, we have the results. ). From 0 ≤ ‖ − ‖ ≤ | |‖ − ‖ + ‖ ‖‖ ⟶ ‖ 
we have the result. 
Corollary 16.1. If,  is a -subvector space of -nvs . The ( ) is a -subvector space of 

. 
Proof. Let , ∈ ( ) and ∈ , there are sequences { } and { } in  such that ⟶  
and ⟶ , as the sequence { + } is containing in  and + ⟶ +y thus 

+y∈ ( ). 
     Let {( , ‖ ‖ ), 1 ≤ ≤ } be a finite collection of -nvs  and = ∏  then for all 

= ( , … , , … , ) ∈ , the functions ‖ ‖ = ∑ ‖ ‖ , ‖ ‖ = ∑ ‖ ‖  and ‖ ‖ =
max ‖ ‖  define a norms on the  and  is called a finite product -nvs. 
Corollary 16.2. Let a -nvs . For every , ∈  and every ∈ , the map : × ⟶  
defined by ( , ) = +  and the map : × ⟶  defined by ( , ) =  are 
continuous. 
Proof. Let {( , )} be a sequence in ×  which converges to ( , ) ∈ × , then 

( , ) = + ⟶ + = ( , ) so  is continuous in arbitrary ( , ) ∈ × , thus 
it continuous on ∈ × . By the same, for ( , ) converging to ( , ) in × , 

( , ) = ⟶  = ( , ) so  is continuous in arbitrary ( , ) ∈ × , thus it is 
continuous on × . 
Definition 16.2. The -nvs ( , ‖ ‖) is said to be a Banach space, if it is complete for the 
metric associated to the norm ‖ ‖. 
Example 16.3. 
     ) (ℝ, | |), (ℂ, | |) and (ℝ , ‖ ‖ ) are Banach spaces. 
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     ) The space ( ([ , ], ℝ), ‖ ‖ ) is a Banach space. 
Remark 16.3. The continuity of the maps defined in the corollary 16.2.immediately gives: 
     ) If  is an open in the -nvs , then ∀ ∈ ∗,  is an open in . 
     ) If  and  are two open in the -nvs , then +  is an open in . 
     ) If K is the nonvoide compact in the -nvs , then ∀ ∈ ,  is a compact in . 
     ) The sum of two compacts is a compact. 
     ) If  is a closed in the -nvs , then ∀ ∈ ,  is a closed in . 
     ) The sum of two closed in the -nvs  is not always closed. Indeed, The sets =
{( , ) ∈ ℝ such that = 1} and = {( , 0) such that ∈ ℝ} are two closed in ℝ . But 

+ = ℝ  is an open in ℝ . 
Lemma 16.1. Let  and  are two subsets of . If,  is closed and  is compact then for all 

∈ ℝ, +  is closed. 
Proof. Let ∈ ( + ) be, it exists a sequence { } in  which converges to ∈  by the 
closure of , and it exists a sequence { } in , which converges to b∈  by the compactness 
of . Hence then sequence { + } of +  converges to + = ∈ + , so 

+  is closed. 
 
16.2-Finite dimensional normed vector space 
Proposition 16.6. Any norm  on  is -Lipschitz. 
Proof. As in the canonical basis ( , … , , … , ) of  any x ∈  has a components 
( , … , , … , ) ∈  and x = ∑ , then ( ) = (∑ ) ≤ ∑ ( ) =
∑ | | ( ). Let = max ( ) then ( ) ≤ ∑ | | = ‖ ‖ . Hence for all x, y ∈

, − ≤ − 1 so  is -Lipschitz. 
Proposition 16.7. All the norms in  are equivalent. 
Proof. Let  be any norm in . It suffices to proof that  and ‖ ‖  are equivalent. Because 
it exists > 0 such that ( ) ≤ ‖ ‖  for all ∈  by the proof of proposition 16.6 and 

(0,1) = { ∈ , ‖ ‖ = 1} is bounded and closed in , then (0,1) is compact in . 
Because  is continuous on (0,1) thus N is bounded on (0,1). Let = min ∈ ( , ) ( ) 
be, so ≤ ( ) for all ∈ (0,1), because 

‖ ‖
∈ (0,1) thus ≤ (

‖ ‖
) for all ∈  

( ≠ 0) hence ‖ ‖ ≤ ( ) ≤ ‖ ‖  for all ∈ . Therefore  and ‖ ‖  are 
equivalent. 
     Let us now give the fundamental result, which makes it possible to preserve the 
topological properties of  on any finite dimension -nvs, i.e. we will establish a (algebraic 
and topological) homeomorphism between  and a -dimension -nvs ( , ), where  is a 
norm on .  
Theorem 16.1. Any -dimension -nvs ( , ) is uniformly homeomorphic to . 
Proof. Let { , … , , … , } be a canonical basis of  and let ( , … , , … , ) ∈  be the 
components of ∈ , then = ∑ . We will demonstrate that the map : ⟶  
defined  
by ( ) = ( , … , , … , ) is an uniform homeomorphism. By induction: 
Step 1. Suppose that  = 1, then : ⟶ , is such that for ∈ ,  ( ) = ( ) =  
where { } is a basis of  and ∈  the component of . It is clear that  is linear, bijective 
and for all , ∈ , ( − ) = ( − ) =| − | ( ) as ( ) ≠ 0, then | ( ) −

= − ′=1 ( ) − , thus  is -Lipschitz with =1 ( ), so it is continuous on . The 
inverse : ⟶ E defined by ( ) = =  satisfies for every , ∈ , ( ) −

−1 ′= − ′ = − ′ ( ) then −1 is -Lipschitz with = ( ), hence it is continuous. 
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Step 2. Suppose that  is homeomorphic to the − 1-dimension -nvs ( , ). We will 
proof that  is homeomorphic to the -dimension -nvs ( , ). We need the following 

), ), ) assertions: 
     ) For all 1 ≤ ≤ , = ({0}) is a closed in , where : ⟶  is defined by 

(∑ )= . As = { = ∑ , = 0}= ∈ , = ∑  then  is a 
− 1-dimension -nvs by the assumption it is homeomorphic to  which is a Banach 

space by the corollary 14.6, hence  is also a Banach space in the -nvs ( , ), then  is 
closed by lemma 14.1. 
     ) Show that, it exists ∉  such that (b)=1. As = − 1, then  is strictly 
containing in , so it exists ∈  and ∉  thus (a) ≠ 0. It is obvious that =

( )
 

satisfies ( ) =
( )

=1, then ∉ . 
     ) Show that +  is closed and it exists > 0 such that (0, ) ∩  + = ∅. 
Obviously the map ℎ: ⟶ + , defined by ℎ( ) = +  is a homeomorphism, because 

 is a closed then ℎ( )= +  is a closed. In the other hand − ∉  implies that 0 ∉ +
= ( + ) which implies that it exists > 0 such that (0, ) ∩  + = ∅ (by 

definition of the closure). 
     ) We will proof that ∀ ∈ (0, ), | ( )|<1. Let ∈ (0, ) as (0, ) ∩  + = ∅  
then ∉  +  or − ∉  then ( − ) ≠ 0 or ( ) ≠ ( )=1, if we assume that 

( ) > 1 then 
( )

=
( )

( ) < ( ) < , hence 
( )

∈ (0, ) so 
( )

= 1 
contradiction. Thus ∀ ∈ (0, ), | ( )|<1. 
     ) We will prove that  is uniformly continuous. Let > 0 be, we search > 0 such that 
if 0 < ( − ) <  for all , ∈ , then | ( ) − ( )| = | ( − )| <  (  is linear). It 
suffices  to take 0 < ≤ , indeed ( − ) < ≤  implies that ∈ (0, ) then 

< 1 or | ( − )| < .  
Step 3. In this last step, we return to the proof of the uniform continuity of  and  with 
for all ∈ , = ∑ , ( ) = ( , … , , … , ) = ( ( ), … , ( ), … , ( )). It is clear 
that  is a linear isomorphism. Let us proof that  is uniformly continuous. Let > 0 be, 
because for all 1 ≤ ≤ ,  is uniformly continuous, it exists >0 such that, if 0 <

( − ) <  for all , ∈ , then | ( ) − ( )| = | ( − )| < . Thus for =
max  we have 0 < ( − ) <  for all , ∈  which implies that ‖ ( ) −

1=1n − < , therfore  is uniformly continuous. let us show at the end that 
: ⟶ E, = ( , … , , … , ) ⟼ ( ) = = ∑  is -Lipschitz. Let , ∈

, we have for every , ∈ , 
( ) − ( ) = (∑ − ∑ )= (∑ ( − )) ≤ ∑ N ( −

′=1nN − ′≤max1≤ ≤ N 1n − ′= − ′1then −1 is -Lipschitz with 
= max N( ), hence it is uniformly continuous.  

Lemma 16.2. Any -dimension subspace in the -nvs  is closed.  
Proof. Let  be a -dimension subspace in the -nvs . By the theorem 16.1,  is uniformly 
homeomorphic to , then  is complete in the metric , hence it is closed. 
Remark 16.4. From the theorem 16.1, all the properties obtained in  remain valid in the -
dimension pace -nvs . In particular: 
     ) The closed unit bull (0,1) is compact. 
     ) The open unit bull (0,1) is locally compact.  
As the two applications in the corollary 16.2 are homeomorphism, it follows that:  
Lemma 16.3.  
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     ) A -nvs  is locally compact⟺ (0,1) is compact. 
     ) A -nvs  is locally compact⟺ (0,1) is relatively compact. 
Proof. ) Since  is locally compact, then 0 has a compact neighborhood , therefore there is 

> 0 such that (0, ) ⊂ , so (0,1) ⊂ ( )= K, which is compact, it follows that the 
closure unit ball (0,1) is compact. Reciprocally, since for any ∈ , there is >0 such that 

( , ) ⊂ ( , ) = + (0,1) which is a compact neighborhood of  by the fact that, the 
singleton { } and (0,1) are compact and the remark 16.3 ) and ), then  is locally 
compact. ) is a direct consequence of ).and the proposition 16.2 ). 
Remark 16.5. As ( , ) = + (0,1) and ( , ) = + (0,1), the lemma 16.3 
remains valid for ( , ) and ( , ). 
Theorem 16.2 (Riez-Frédiric). A locally compact -nvs  is finite dimensional. 
Proof. Because  is locally compact, then (0,1) is compact. It exists a finite number 

, … , , … , ∈ (0,1) such that (0,1) =∪ , . As the -dimension subspace 
H = [ , … , , … , ] (H is enjoyed by , … , , … , ) is closed in , by the lemma 16.2. 
Then, ⊂  therefore = .  If not, if it exists ∈  and ∉ , then ( , ) = > 0, 
taking =  and using the infimum property, there is ∈  such that ≤ ( , ) =

‖ − ‖ < + = . Because 
‖ ‖

∈ (0,1), it exists ∈ {1, … , } such that 
‖ ‖

∈

,  i.e. −
‖ ‖

< . But, −
‖ ‖

=
‖ ‖

‖ ‖
=

‖ ‖
−

+ − .Because  and  are two elements of the subspace  of  and − ∈ℝ+∗, it 
follows that + ‖ − ‖ ∈ , hence ≤

‖ ‖
≤

‖ ‖
− + ‖ − ‖ < . 

Contradiction. 

 
16.3-Linear maps on -nvs 
     Linear maps have some particular and interesting properties. In the sequel,  is a linear 
map from the -nvs ( , ‖ ‖ ) into the -nvs ( , ‖ ‖ ). Starting with 
Corollary 16.3. If the -nvs  is -dimension. Then  is -Lipschitz. 
Proof. Let ( ) ,…,  be a basis  and let ( ) ,…,  be the components of ∈ , then 
‖ ( )‖ = ‖ (∑ )‖ = ‖∑ f( )‖ ≤ ∑ | | ‖f( )‖ ≤ (max ‖f( )‖ )‖ ‖ . 
We conclude as in the proof of the proposition 16.6 that  is -Lipschitz, where =
max ‖f( )‖ . 
Definition 16.3. The map  is said to be bounded, if there is > 0 such that 
‖ ( )‖ ≤k‖ ‖ , for all ∈ . 
Theorem 16.2. The following properties are equivalent: 
     )  is continuous on . 
     )  is continuous en 0. 
     )  is -Lipschitz. 
     )   is bounded on . 
     )  is bounded on (0,1). 
     )  is bounded on (0,1). 
Proof. ) ⟹ ). As  is continuous on , then it is continuous in 0. ) ⟹ ) Because  is 
continuous in 0, for all > it exists > 0 such that for all ∈ ,  satisfying 0 < ‖ ‖ ≤  
we have ‖ ( )‖ ≤ . Thus for all , ∈ ,

‖ ‖
≤ , witch implies that 

‖ ( ) − ( )‖ ≤ ‖ − ‖  for all , ∈ , where = >0. Hence  is -Lipschitz. 
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) ⟹ ) As it exists >0 such that ‖ ( − )‖ ≤ ‖ − ‖  for all , ∈  and (0) = 0, 
then it exists >0 such that ‖ ( )‖ ≤ ‖ ‖  for all ∈ , so  is bounded. ) ⟹ ) 
Because it exists >0 such that ‖ ( )‖ ≤ ‖ ‖  for all ∈ , then it exists >0 such that 
‖ ( )‖ ≤ ‖ ‖  for all ∈ (0,1). ) ⟹ ) Because it exists >0 such that ‖ ( )‖ ≤

‖ ‖  for all ∈ (0,1), and (0,1) ⊂ (0,1). Then, it exists >0 such that ‖ ( )‖ ≤
‖ ‖  for all ∈ (0,1). ) ⟹ ) Since it exists >0, such that ‖ ( )‖ ≤ ‖ ‖  for all 
∈ (0,1) then ‖ ( )‖ ≤  for all ∈ (0,1). So for all , ∈  ( ≠ ) 

‖ ‖
≤ , witch implies that ‖ ( ) − ( )‖ ≤ ‖ − ‖  for all , ∈ . Hence 

 is -Lipschitz, therefore it is continuous on . 
     Denote by: ( , ) the -vector space of all continuous linear maps from  into ; 

( ) = ( , E) and ∗ =  ( , ), which is called the dual of , the elements of ∗ are said 
to be the bounded linear functionals or the continuous linear functionals. 
Definition 16.4. We call the norm of ∈ ( , ), any number , ,  or  in the following 
lemma. 
Lemma 16.4. The following numbers are equal. 
     = sup( ∈ , )

‖ ( )‖
‖ ‖

, = sup ∈ ( , )‖ ( )‖ , = sup ∈ ( , )‖ ( )‖  and =
{ > 0, ℎ ℎ  ‖ ( )‖ ≤  ‖ ‖  for all ∈  }. 

Proof. ≤ . As ‖ ( )‖ ≤   for all ∈ (0,1), then 
‖ ‖

= ‖ ( )‖
‖ ‖

≤   for all 

∈ , ( ≠ 0) it follows that = sup{ ∈ , }
‖ ( )‖

‖ ‖
≤  . Since (0,1) ⊂ (0,1) then 

sup ∈ ( , )‖ ( )‖ ≤ sup ∈ ( , )‖ ( )‖ , so ≤ . Since 
=  { > 0, ℎ ℎ  ‖ ( )‖ ≤ ‖ ‖  for all ∈  }, then for any > 0 it exists 
> 0, ℎ ℎ  ‖ ( )‖ ≤ ‖ ‖ for all ∈  and <  +  so 

= sup ∈ ( , )‖ ( )‖ ≤ <  +  when ⟶ 0, we have ≤ . Finally as ‖ ( )‖
‖ ‖

≤  
for all ∈  ( ≠ 0) then ‖ ( )‖ ≤ ‖ ‖  for all ∈  then ≤ . Therefore ≤ ≤

≤ ≤ . 
Before proving that, one of the previous four numbers is a norm. Note that it is easy to check 
that for all ∈ ( , ), = 0 on ⟺ = 0 on (0,1). Let us show that ) is a norm i.e. 
the map ‖ ‖ ( , ): ( , ) ⟶ ℝ  defined by for all ∈ ( , ), 
‖ ‖ ( , )=sup ∈ ( , )‖ ( )‖  satisfies the conditions ,  and  in the definition 16.1. 
For all , ∈ ( , ), for all ∈  and for all ∈ (0,1), we have: 
     -0 ≤ ‖ ( )‖ ≤ ‖ ‖ ( , )=0⟺ ‖ ( )‖ = 0 ⟺ ( ) = 0 ⟺ = 0 on (0,1) ⟺

= 0 on . 
     -‖ ‖ ( , )=sup ∈ ( , )‖( )( )‖ =sup ∈ ( , )‖ ( )‖ = sup ∈ ( , )| |‖ ( )‖ =
| |sup ∈ ( , )‖ ( )‖ =| |‖ ‖ ( , ). 
     -‖ + ‖ ( , )=sup ∈ ( , )‖( + )( )‖ =sup ∈ ( , )‖ ( ) + ( )‖  
≤ sup

∈ ( , )
(‖ ( )‖ + ‖ ( )‖ ) ≤ sup

∈ ( , )
‖ ( )‖ + sup

∈ ( , )
‖ ( )‖

= ‖ ‖ ( , ) + ‖ ‖ ( , ). 
Hence, the map ‖ ‖ ( , ) is a norm on ( , ). 
Because for any , ∈ ( , ) and for any ∈ , there are  and  in ℝ∗  such that 
‖( + )( )‖ ≤ | |‖ ( )‖ + ‖ ( )‖ ≤ (| | + )‖ ‖  for all ∈ E, then + ∈

( , ).  ( , ) is a -nvs. If,  is complete then ( , ) is complete by the theorem 15.1. 
Therefore ∗ is complete.  
Example 16.5.  
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     ) Let = ([0,1], ℝ) be, the map : ( , ‖ ‖ ) ⟶ ( , ‖ ‖ ) defined by ( )( ) =
( ) − (0), for all ∈ [0,1] is continuous. Indeed, the linearity is obvious and because for 

any ∈ , ‖ ‖ =sup ∈[ , ]| ( ) − (0)| ≤ | (0)| + sup ∈[ , ]| ( )| = | (0)|+‖ ‖ ≤
2‖ ‖ , then  is bounded, hence it is continuous. But : ( , ‖ ‖ ) ⟶ ( , ‖ ‖ ) is not 
bounded. If not, it exists > 0 such that ‖ ‖ ≤ ‖ ‖  for all ∈ . Thus, for the 
sequence (x)=( + 1)(1 − )  in , we have ‖ ‖ = ∫ | ( )| = ∫ | ( ) −

0 = +1011−1− =  for all ∈ℕ∗ and 1=01 ( ) = +1011− =1. 
Hence, ≤  for all ∈ ℕ∗, contradiction with the fact that, ℕ is not bounded above. It 
follows that  is not continuous, by the theorem 16.2 ). 

     ) Let = ([0,1], ℝ) be, the map : ( , ‖ ‖ ) ⟶ (ℝ, | |) defined by ( ) =
∫ ( )  for any ∈  is continuous, and ‖ ‖ ∗ = ∫ . It is clear that  is 

linear and for any ∈ , | ( )| ≤ ∫ | ( )| | | ≤ ∫ ‖ ‖ = ‖ ‖  where 

0<k=∫ , then  is bounded, hence it is continuous. Furthermore, ‖ ‖ ∗ ≤

∫   by the definition 16.4 ). But ‖ ‖ ∗ ≥ | ( )| for all ∈ E, then for = 1 in 

E, ‖ ‖ ∗ ≥ ∫ . Hence ‖ ‖ ∗ = ∫ . 
Corollary 16.4. If ∈ ( , ) and ∈ ( , ) where ( , ‖ ‖ ) is a -nvs. Then ∘ ∈

( , ) and ‖ ∘ ‖ ( , ) ≤ ‖ ‖ ( , )‖ ‖ ( , ). 
Proof. Let , ∈  and ∈  because ( ∘ )( + )=g ( + ) = g ( ) +
g ( ) = g ( ) + g ( ) = g ( ) + g ( ) = ( ∘ )( ) + ( ∘ )( ), then 

∘  is linear. And as 
‖( ∘ )( )‖ = ( ) ≤ ‖ ‖ ( , )‖ ( )‖ ≤ ‖ ‖ ( , )‖ ‖ ( , )‖ ‖ , for all ∈  
then ∘  is bounded, ∘ ∈ ( , ) and ‖ ∘ ‖ ( , ) = sup

∈ ( , )
‖( ∘ )( )‖ ≤

‖ ‖ ( , )‖ ‖ ( , ). 
By the corollary 16.4, it follows that, if ∈  ( ) then, ∈ ( ) and ‖ ‖ ( ) ≤

‖ ‖ ( )  for every ∈ ℕ∗.  
     In mathematics, a hyperplane  is a linear subspace of the −  , such that the basis of 
its complementary has cardinality one. In the case when  is an -dimensional vector space 
( ∈ ℕ∗), then  is an ( − 1)-dimensional subspace. Examples of hyperplanes: the space 
{0} in 1-dimension space, any straight line through the origin in 2-dimensions, any plane 
containing the origin in 3-dimensions. In higher dimensions, it is useful to think of a 
hyperplane as member of an affine family of ( − 1)-dimensional subspaces (affine spaces 
look and behavior very similar to linear spaces but they are not required to contain the origin), 
such that the entire space is partitioned into these affine subspaces. This family will be 
stacked along the unique vector (up to sign) that is perpendicular to the original hyperplane. 
This "visualization" allows one to easily understand that a hyperplane always divides the 
parent vector space into two regions. In general -nvs  the definition is given by. 
Definition 16.5. A subset  of a -nvs  is said to be an affine hyperplane, if it exists a 
linear form ≢ 0 (  non identiquely equal to 0 on ) and a constant ∈ ℝ such that 

= { ∈ , ( ) = }. We say that  is the hyperplane of the equation [ = ]. 
Remark 16.6. 
     ) = , when = 0. 
     ) ≠ ∅. Indeed, if = ∅ then, for all ∈ , ( ) =  so (0) = 0 =  hence for all 

∈ , ( ) = 0 i.e. ≡ 0 on , contradiction. 
     ) The map  is not necessary continuous. 
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     )  is not necessary containing 0. 
     ) For the given = ( , … , , … , ) ∈ ℝ  ( ≠ 0) and ∈ ℝ and for any =
( , … , , … , ) ∈ ℝ , the hyperplane  in ℝ  takes the form = { ∈ ℝ , ∑ = }. 
Specifically, when = 2 and ≠ 0, = { ∈ ℝ , ∑ = } = { ∈ ℝ , + =

= ∈ℝ2, 2= 1+ . 
Lemma 16.3. The hyperplane  of the equation [ = ] is closed⟺  is continuous. 
Proof. By the continuity of  and the closure of the segleton { } in ℝ and as = ({ }), 
then  is closed. Conversely, let ∈  which is open, then it exists > 0 such ( , ) ⊂

. We can assert that : ) if ( ) < , then ( ) <  for all ∈ ( , ) and ) if 
( ) > , then ( ) >  for all ∈ ( , ). Let us check ) (the verification of ) is done 

in the same way). Suppose, it exists ∈ ( , ) such that ( ) > > ( ). ( , ) 
being convex and = ( )

( ) ( )
∈ ]0,1[ then, ( ) = 0 where = + (1 − ) ∈

( , ), so ( ) = 0 then ∈ =  contradiction. Because , ⊂ ( , ) then 

( ) <  for all ∈ , , as , = + (0,1) then + <  for all 
∈ (0,1), hence ( ) +  ( ) <  for all ∈ (0,1). By the linearity of  and − ∈

(0,1) we have − − ( ) < ( ) < − ( )  for all ∈ (0,1), so 
‖ ‖

<

− ( )  for all ∈ (0,1) ( ≠ 0), therefore | ( )| ≤ − ( ) ‖ ‖ for all 
∈ (0,1), hence  is continuous by the theorem 16.2 ). 

Corollary 16.5.  is a ℝ-vector subspace of  whith codimension one.  
Proof. It is clear that  is a ℝ-vector subspace of . As ≢ 0 it exists ∈  such that 

( ) ≠ 0. It is clear that, − ( )
( )

=0 for every ∈ , so ∈ + ( )
( )

 and 

= + ( )
( )

= +ℝ  where ℝ  is ℝ-vector subspace of  enjoyed by  
( ℝ = 1). If now ∈ ∩ ℝ , it exists  in ℝ such that =  and ( ) =

( ) = 0 then = 0 therefore = 0 and =  ⨁ℝ  i.e. ℝ  is a supplementary 
algebraic of . Thus codimension of  is one.  
Corollary 16.6.  is closed or everywhere dense in the ℝ-nvs . 
Proof. If  is continuous then  is closed. If  is not continuous,  is a ℝ-subvector 
space of a ℝ-nvs  and ⊈ ( ) which is also a ℝ-subvector space of a ℝ-nvs . 
Then codimension of ( ) = 0 so ( ) = . 
 

17-Fundamental theorems of functional analysis 
 

17.1-Hahn Banach theorems 
Let  be a ℝ-nvs. The answer to the next question is yes: is there "enough" continuous linear 
functionals on  which separate the points of ?. (This result is a kind of analogue of the 
Urysohn's theorem 8.1, for continuous function over a normal topological space). We are 
going to prove an extension theorem for continuous linear functional defined on a proper 
linear subspace  of  i.e. ⊈  (this result is a kind of analogue of Tietze's-Urysohon 
extension theorem 8.2, for the continuous functions defined on a proper closed subset, of a 
normal topological space ). The important fact here is that the continuous linear extension 
preserves the norm see corollary 17.1. Note also that here (unlike Tietze's-Urysohon extension 
theorem) the subspace  does not need to be closed. Indeed, from the corollary 17.4, a 
continuous linear functional can always be extended continuously from  to ( ). So, it 



Elements of Mathematical Analysis 2021 
 

Prof. K.Messaoudi, Faculté de MI, Dépt de Maths, Univ-Benboulaid-Batna- Page 100 
 

makes no difference whether  is closed or not. To simplify, we will only prove the Hahn-
Banach theorems in the real case. 
     Substantially, there are three fundamental forms of Hahn Banach's theorems: algebraic 
form, topological form and geometric form or separation form. To establish the algebraic 
form we need in addition to the Zorn's lemma a map  defined on the ℝ-vs  into ℝ 
satisfying for all , ∈  and for all ∈ ℝ∗ ,  

( ) = ( ) (  is positively homogeneous);                                            (1) 
( + ) ≤ ( ) + ( ) (  is subadditive).                                                   (2) 

Theorem 17.1 (Algebrical form of Hahn Banach theorem). If  is a linear function from a 
proper linear subset  of  into ℝ satisfying: ( ) ≤ ( ) for all ∈ . (3) 
Then, there is a linear function  from  into ℝ satisfying: 

( ) = ( ) for all ∈  and ( ) ≤ ( ) for all ∈ .                           (4) 
Proof. By stapes: 
Stape 1. Let  + ℝ  be the linear subset of , where ∈ . We will proof that, it exists a 
linear function ℎ, from + ℝ  into ℝ which satisfies (4) on . By the linearity of  and 
(2),(3), ( ) − ( ) = ( − ) ≤ ( − ) ≤ ( + ) + (− − ) for every 
x, y ∈ . Hence – ( ) − (− − ) ≤ ( + ) − ( ), for every x, y ∈                    (5). 
For a fixed  in (5), the set = – ( ) − (− − ), y ∈  is bounded above, and for a 
fixed  in (5), the set = { ( + ) − ( ), x ∈ } is bounded bellow. Therefore, it exists 

∈ ℝ such that: for all z ∈  
– ( ) − (− − ) ≤ sup ∈ ≤ ≤ inf ∈ ≤ ( + ) − ( )         (6). 
The function ℎ from + ℝ  into ℝ, defined by: for all ∈  and for all ∈ ℝ, ℎ( +

0= ( )+ , satisfies for =0, ℎ = ( ).on , and for any ∈ℝ, , ∈  and , ∈ℝ, 
ℎ[ ( + ) + + ]= ℎ[ + + ( + ) ]= ( + ) + ( + ) =  ( ( ) +

+ +s = ℎ + 0+ℎ + 0, then ℎ is linear. It remains to verify that for all ∈  and 
∈ ℝ∗, ℎ( + ) ≤ ( + ). Let ∈  and ∈ ℝ∗ are, if > 0, by the right side of (6) 

and (1) we have ≤ + − ≤ ( + ) − ( ), equivalently ( ) +
≤ ( + ) thus  ℎ( + ) ≤ ( + ) for all ∈  and all > 0. If < 0 then 

− − − − ≤  by the left side of (6) and (1), we have ≤ −t −

t − − = − ( ) + ( + ), hence ( ) + ≤ ( + ). Thus, ℎ( + ) ≤
( + ) for all ∈  and all ∈ ℝ∗. 

Stape 2. In this step, we use Zorn's lemma (just before the lemma 10.6) and the step 1: Let ℋ 
be the set of all functions ℎ defined from  into ℝ, where  is a subspace of  containing 

, with ℎ =  on  and ≤  on . As ℋ ≠ ∅ since ∈ ℋ, we define the relation ≤ on ℋ 
by: for any ℎ , ℎ ∈ ℋ, (ℎ ≤ ℎ ) ⟺ ( ⊂  and ℎ = ℎ  on ). Let ℐ = {ℎ , ∈ ∆} 
be any totally ordered collection in ℋ. Check that (ℐ, ≤) is bounded above. Let =
∪ ∈∆  be, it is clear that  is a subspace of , consider the function ℎ from  into ℝ 
defined by ℎ = ℎ  on  for all ∈ ∆. It is clear that ℎ ∈ ℋ and ℎ ≤ ℎ for all ∈ ∆, thus 
ℎ is an upper bound of ℐ. By the Zorn's lemma, ℋ has a maximal element . Let us show that 

⊂ . Assume that, there is ∈  and ∉ , by the stape 1, it exists a function ℎ from 
+  ℝ  into ℝ such that ℎ =  on , ℎ ≤  on +  ℝ . Therefore ℎ ∈ ℋ and ≤ ℎ, 

because  is maximal, then = ℎ on +  ℝ , contradiction with ℎ = +  on +  ℝ  
for any ∈ ℝ∗. 
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     As a first consequence of the theorem 17.1, we will state the topological form of Hahn 
Banach theorems. For all ∈  and for all ∈ ∗, < , > ∗, , denotes ( ) and it is said to 
be the inner product in the duality ∗, . 
Corollary 17.1 (Topological form of Hahn Banach theorem). Let  be a proper linear 
subspace of . For any ∈ ∗, it exists ∈ ∗such that =  on  and ‖ ‖ ∗ = ‖ ‖ ∗. 
Proof. As ∈ ∗, by the lemma 16.4 ) < , > ∗, ≤ ‖ ‖ ∗‖ ‖ = ( ) for all ∈ . 
Clearly the function  satisfies (1) and (2). By the theorem 17.1, there is a linear function  
from  into ℝ such that ( ) ≤ ( ) = ‖ ‖ ∗‖ ‖  for all ∈ , then (− ) ≤
‖ ‖ ∗‖− ‖  so −‖ ‖ ∗‖ ‖ ≤ ( ) ≤ ‖ ‖ ∗‖ ‖  for all ∈ , hence | ( )| ≤
‖ ‖ ∗‖ ‖  for all ∈  i.e.  is bounded on  and ‖ ‖ ∗ ≤ ‖ ‖ ∗ (7), by lemma 16.4 ), 
here ‖ ‖ ∗ = sup{ ∈ ,‖ ‖ } < , > ∗, . Therefore,  is continuous on  by the theorem 
16.2 ), so ∈ ∗. In the other hand, | ( )| ≤ ‖ ‖ ∗‖ ‖  for all ∈ , then | ( )| ≤
‖ ‖ ∗‖ ‖  for all ∈ , so ‖ ‖ ∗ ≤ ‖ ‖ ∗ (8) by the lemma 16.4 ). From (7) and (8) we 
have ‖ ‖ ∗ = ‖ ‖ ∗. 
Corollary 17.2. For any nonzero ∈ , it exists ∈ ∗ such that < , > ∗, = ‖ ‖  and 
‖ ‖ ∗=‖ ‖ . 
Proof. Let  be the function from = ℝ  into ℝ, defined by: for all ∈ ℝ; ( ) = ‖ ‖ ,. 
Because, for any , , ∈ ℝ, 

[ ( ) + ] = [( + )x] = ( + )‖ ‖ = ( ‖ ‖ )+ ‖ ‖ = ( ) + ( ) 
then,  is linear. As for any ∈ ℝ, | ( )| = | |‖ ‖ = ‖x‖ ‖tx‖ = k‖tx‖  for all ∈ ℝ, 
where k = ‖x‖ > 0. Then  is bounded on G, therefore ∈ ∗. By the corollary 17.1, it 
exists ∈ ∗ satisfying: ( ) = ( ) for any ∈ ℝ. Hence, for all ∈ ℝ, ( ) =

( ) = ‖ ‖ . Then, for the nonzero , < , > ∗, =‖ ‖ , thus 
‖ ‖ ∗ = sup{ ∈ , }

, ∗,
‖ ‖

=‖ ‖ . 
∗(0,1) denotes the closed unit ball in ∗. 

Corollary 17.3. For all ∈ , ‖ ‖ = max ∈ ∗( , ) < , > ∗, . 
Proof. As, for all ∈  and for all ∈ ∗, < , > ∗, ≤  ‖ ‖ ∗‖ ‖ , then 
sup ∈ ∗( , ) < , > ∗, ≤ ‖ ‖  for all ∈ . By the corollary 17.2, for nonzero ∈ , it 
exists ∈ ∗ such that < , > ∗, = ‖ ‖  and ‖ ‖ ∗=‖ ‖ . Setting ℎ =

‖ ‖
, then ℎ ∈ ∗, 

‖ℎ‖ ∗ = 1 and ‖ ‖ =< ℎ, > ∗, . So ℎ ∈ ∗(0,1) and ‖ ‖ ≤ sup ∈ ∗( , ) <
, > ∗, ≤  for all nonzero ∈ ,  thus =max ∈ ∗0,1< , > ∗,  for all ∈ . 

     In order to give the geometric forms of Hahn Banach's theorems, or convex separation 
theorems. We need some simple properties of convex sets. Recall that the set  in the ℝ-vs  
is said to be convex if + (1 − ) ∈ , for all ∈ [0,1] and for all , ∈ . By convention 
∅ is convex. 
Example . : It is easy to verify that: 
     ) The singletons, the balls and the ℝ-vector spaces of  are convex. 
     ) The any intersection of the convex sets is convex. 
     ) If { } is an increasing sequence of convex sets then ∪ ∈ℕ  is convex. 
     ) If  and  are convex, then + ′ and for all ∈ ℝ,  are convex. 
     ) If  is convex then ( ) is convex and + = 2 . 
     ) If  is a linear map from the ℝ-vs  into the ℝ-vs  and  is a convex in  then ( ) is 
a convex in . 
Definition 17.1. The hyperplane  of the equation [ = ] is said to be: 
     ) Separates the sets  and , if ( ) ≤  for all ∈  and ≤ ( ) for all ∈ . 
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     ) Strictly Separates the sets  and , if it exists > 0 such that ( ) ≤ −  for all 
∈  and + ≤ ( ) for all ∈ . 

Definition 17.2. The Minkowski function of the subset  of , is the function  from  into 
ℝ∗ ∪ {+∞} defined by for all ∈ , ( ) = { > 0, ∈ }. By convention 

∅ = +∞. 
Lemma 17.1. The Minkowski function , of the open convex subset of  containing 0, 
satisfies: 
     ) It exists > 0 such that, 0 ≤ ( ) ≤ ‖ ‖  for all ∈ . 
     ) = { ∈ , ( ) < 1}. 
     ) For all ∈ ℝ∗  and for all , ∈ , ( )= ( ) and ( + ) ≤ ( ) + ( ). 
Proof. ) As 0 is the lower bound of the set { > 0, ∈ } for all ∈ , then 0 ≤ ( ) 
for all ∈ . Because 0 ∈  and  is open, it exists > 0  such that 0, ⊂ (0, ) ⊂ . 

Let =  be, as, for all nonzero ∈ , 
‖ ‖

∈ (0, ) and 
‖ ‖

= ‖ ‖ ∈ , then 

0 ≤ ( ) ≤ ‖ ‖ = ‖ ‖  for all ∈ , where = . ) Let ∈  be, it exists > 0   

such that + (0,1) = ( , ) ⊂ ( , ) ⊂ , where = . Then, for all ∈ (0,1), 

+ ∈ , hence for z=
‖ ‖

∈ (0,1), 1 +
‖ ‖

∈  it follows that ( ) ≤
‖ ‖

< 1 

for all nonzero ∈ . If now ∈  satisfies ( ) < 1, there is ∈ ℝ∗  betwin ( ) and 1, 
thus ∈ , if not ≤ ( ) < < 1 contradiction, hence ( ) + (1 − )0 = ∈

, by the convexity of  and 0 ∈ . Therefore, = { ∈ , ( ) < 1}. ) Let > 0 be and 
∈ , then ( ) = { > 0, ∈ } = { > 0, ( ) ( ) ∈ }= ( ). In 

the other hand, for any > 0 and any , ∈ , 
( )

= ( )
( )

< 1 and 

( )
= ( )

( )
< 1, so 

( )
,

( )
∈ . But 0 < = ( )

( ) ( )
< 1, then 

( )
+ (1 − )

( )
=

( ) ( )
∈ , hence 

( ) ( )
=

( ) ( )
( + ) < 1, thus ( + ) < ( ) + ( ) + , and 

when ⟶ 0, ( + ) ≤ ( ) + ( ), for all , ∈ . 
Lemma 17.2. If,  is a nonempty open convex subset, of the ℝ-nvs  and ∈ . Then, it 
exists ∈ ∗ such that ( ) < ( ) for all ∈ , i.e. the hyperplane  of the equation 
[ = ( )] strictly separates the two convex  and { }. 
Proof. We assume that 0 ∈ , if not there is ∈  such that 0 ∈ − +  which is convex. 
The linear function  from = ℝ  into ℝ, defined by ( ) =   for all ∈ ℝ satisfies: for 

> 0 ∉ , then ( ) ≥ 1 it follows that ≤ ( ) or ( ) ≤ ( ) = ( ). 
For ( ) = ≤ 0 ≤ ( ). From the theorem 17.1, it exists a linear function  from  
into ℝ such that =  on  in particular ( ) = ( ) = 1 and ( ) ≤ ( ) ≤  ‖ ‖  
for all ∈ . Hence ∈ ∗ and ( ) < 1 = ( ). 
     Before giving the first geometric form of Hahn Banach's theorems, which is the 
generalization of the lemma 17.2. Note that if  is an open in  and ∈ , then for all 

∈ ℝ∗ , +  is open. In fact, if ∈ +  then ∈  so, it exists > 0 such that 

 , =  + ( 0, ) ⊂  equivalently − +  ( 0, ) ⊂  or +  ( 0, ) ⊂
+ , hence ( , ) ⊂ +  where = > 0, hence +  is open. 
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Theorem 17.2 (First geometric form of Hahn Banach's theorem). Let  and  are two 
nonempty convex subsets of . If  is open and ∩ = ∅. Then, it exists a closed 
hyperplane  of equation [ = ] which separates  and .  
Proof. The set = − =∪ ∈ ( − ) is an open convex subset of , with nonzero 
element. If not, it exist ∈  and ∈  such that, 0 = −  then =  contradiction with 

∩ = ∅. By the lemma 17.2, it exists ∈ ∗ such that ( ) < (0) = 0 for all ∈  i.e. 
the hyperplane  of the equation [ = 0] strictly separates  and {0}. Hence ( − ) < 0 
for all ∈  and for all ∈  equivalently ( ) < ( ) for all ∈  and for all ∈ . For a 
fixed  in  the set { ( ), ∈ } is bounded above and for a fixed  in  the set { ( ), ∈

 is bounded below, hence, it exists ∈ℝ such that sup ∈  ≤ ≤inf ∈ . By the lemma 
16 3, the closed hyperplane  of equation [ = ] separates  and . 
     We will now, state and demonstrate, the second geometric form of Hahn Banach's 
theorems. 
Theorem 17.3 (Second geometric form of Hahn Banach's theorem). Let  and  two 
nonempty convex subset of , where  is closed,  is compact and ∩ = ∅. Then, it exists 
a closed hyperplane  of equation [ = ], which strictly separates  and . 
Proof. Setting for a fixed ∈ ℕ∗, = + (0,1)= ∪ ∈ + (0,1)  and 

= + (0,1). Then,  is an open convex and  is convex. Moreover ∩
= ∅. Indeed if, for all n∈ ℕ∗, ∩ ≠ ∅, there are ∈ , ∈  and there are 

, ∈ (0,1) such that + = + , so − = ( − ) hence 0 ≤
‖ − ‖ = ‖ − ‖ ≤ (‖ ‖ + ‖ ‖) < . When ⟶ ∞, − ⟶ 0, as − ∈

−  and −  is closed by the lemma 16.1, then 0 ∈ −  which implies that ∩ ≠ ∅, 
contradiction. By the theorem 17.2, it exists a closed hyperplane  of equation [ = ] which 
separates and  i.e. ( + ) ≤  for all ∈  , and for all ∈ (0, ), and ≤

( + ), for all ∈  and for all ∈ 0, . Thus, ( + ) ≤  for all ∈  , and for 

all ∈ (0, ), and ≤ ( + ), for all ∈  and for all ∈ 0, . Therefore, 

+ = ( ) + ( ) ≤  for all ∈  , and for all ∈ (0,1), and ≤

+ = ( ) + ( ), for all ∈  and for all ∈ (0,1). By the lemma 16 4 ) 

( ) + ‖ ‖ ∗ ≤  for all ∈  , hence ( ) ≤ −  for all ∈  where =

‖ ‖ ∗ > 0 ( ≢ 0), and ≤ ( ) + (− ) = ( ) − ( ) for all ∈  and for 

all ∈ (0,1) or + ( ) ≤ ( ), for all ∈  and for all ∈ (0,1). Thus, + ≤
( ) for all ∈  . Therefore, a closed hyperplane  of equation [ = ] strictly separates  

and . 
Remark 17.1. 
     ) We obtain the theorem 17.2, if we assume B is open instead of A is open. 
     ) In the finite dimension space, we obtain the theorem 17.2, even if A is not open.  
Corollary 17.4. Let  be a linear subspace of a ℝ-nvs . If, ( ) = 0 on  for any ∈ ∗, 
implies ( ) = 0 on . Then ( ) = . Equivalently, if ( ) ≠ , it exists ∈ ∗ ( ≠ 0) 
such that ( ) = 0 on . 
Proof. Let ( ) =  be, by corollary 16.1  is a linear subspace of a ℝ-nvs . Assume that 

≠  and let ∈  be. It is clear that, = { } and =  satisfy the assumptions of the 
theorem 17 3. Then, there are ∈ ℝ and ∈ ∗ ( ≠ 0) such that, ( ) < <  ( ) for all 
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∈ ( ). Hence ( ) < < ( ) for all ∈ , as 0 ∈  then (0) = 0 <  and as − ∈  
then − ( ) <  hence – < ( ) <  or 0 ≤ | ( )| <  for all ∈ . As for all ∈ ℕ∗ 
and for all ∈ , ∈  then, 0 ≤ | ( )| <  for all ∈  and for all ∈ ℕ∗. So 0 ≤
| ( )| <  for all ∈  and for all ∈ ℕ∗. When ⟶ ∞, we have | ( )| = 0 ⟺ ( ) =
0 for all ∈ . 
 
17.2-Banach-Stienhaus theorem, open map theorem, the closed graph theorem 
     Let ( , ‖ ‖ ) and ( , ‖ ‖ ) are two -nvs and ‖ ‖ ( , ) = sup ∈ ( , )‖ ( )‖  the 
norm of any ∈ ( , ). Another fundamental theorem, of functional analysis is the Banach–
Steinhaus theorem, which is known as the uniform boundedness principle. It is based on the 
Baire lemma 14.6. Let { , ∈ ∆} be a collection of the elements of ( , ). We write: 
sup ∈∆‖ ( )‖ < +∞ for all ∈  (pointwice boundedness or strong boundedness), if it 
exists > 0 such that ‖ ( )‖ ≤ , for all ∈ ∆ and for all ∈ , and we write 
sup ∈∆‖ ‖ ( , ) < +∞ (uniform boundedness), if it exists > 0 such that ‖ ‖ ( , ) ≤

, for all ∈ ∆. 
Theorem 17.4. (Banach-Steinhaus theorem). If  is a Banach space,  is a normed space and 
{ , ∈ ∆} is a collection of the elements of ( , ) such that: sup ∈∆‖ ( )‖ < +∞ for 
all ∈ . Then, sup ∈∆‖ ‖ ( , ) < +∞. 
Proof. Let for all ∈ ∆, = { ∈ , ‖ ( )‖ ≤ } = (‖ ‖ ∘ ) (]−∞, ]) be, where 

∈ ℕ∗, the sequence of closed subsets of . By assumption, it exists > 0 such that 
‖ ( )‖ ≤  for all ∈ ∆ and for all ∈ , thus there is ∈ ℕ∗ such that ‖ ( )‖ ≤  
for all ∈ ∆ and for all ∈  by Archimedean axiom, then ∈  and =∪ ∈ℕ∗ . Using 
Baire’s lemma 14.6, it exists ∈ ℕ∗ such that ( ) ≠ ∅. Therefore, for ∈ , it 
exists > 0 such that ( , ) ⊂ ⊂ , hence ‖ ( + )‖ ≤  and 
‖ ( )‖ ≤  for all ∈ ∆ and for all ∈ (0,1). Because ‖ ( )‖ = ‖ ( )‖ =
‖ ( + − )‖ = ‖ ( + ) − ( )‖ ≤ ‖ ( + )‖ + ‖ ( )‖ ≤ 2  
for all ∈ ∆ and for all ∈ (0,1), then ‖ ( )‖ ≤  for all ∈ ∆ and for all ∈ (0,1), 

hence ‖ ‖ ( , ) ≤  for all ∈ ∆. So, it exists = >0 such that, sup ∈∆‖ ‖ ( , ) ≤
. 

     As a direct consequence of the theorem 17.4, we have: 
Corollary 17.5. Let  and  are Banach spaces, and let { } be a sequence in ( , ). If for 
any ∈ , the sequence { ( )} converges to the limit = ( ) ∈ .  Then: 
     ) sup ∈ℕ∗‖ ‖ ( , ) < +∞. 
     ) ∈ ( , ). 
     ) ‖ ‖ ( , ) ≤ liminf ⟶ ‖ ‖ ( , ). 
Proof. ) As the sequence { ( )} converges to the limit = ( ) ∈ , it is bounded. So, it 
exists > 0 such that ‖ ( )‖ ≤  for all ∈ ℕ∗ and for all ∈ , then 
sup ∈ℕ∗‖ ( )‖ ≤   for all ∈ . From the theorem 17.4, it exists >0 such that, 
sup ∈ℕ∗‖ ‖ ( , ) ≤ . ) Because, for all , ∈  and for all ∈ ℝ, ( + ) =

( ) + ( ) ⟶ ( + ) = ( ) + ( ) and it exists > 0 such that ‖ ( )‖ ≤
‖ ‖ , for all ∈  and for all ∈ ℕ∗, hence lim ⟶ ‖ ( )‖ = ‖ ( )‖ ≤ ‖ ‖  for 

all ∈ , so ∈ ( , ). ) As ‖ ‖ ( , ) ≤  for all ∈ ℕ∗, from the Weierstrass-
Bolzano theorem, liminf ⟶ ‖ ‖ ( , ) exists. Because ‖ ( )‖ ≤ ‖ ‖ ( , ) for all 

∈ (0,1) and for all ∈ ℕ∗, so lim ⟶ ‖ ( )‖ = ‖ ( )‖ ≤ liminf ⟶ ‖ ‖ ( , ) 
for all ∈ (0,1), thus ‖ ‖ ( , ) ≤ liminf ⟶ ‖ ‖ ( , ). 
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Corollary 17.6. If  is a Banach space and  is a subset of  such that for all ∈ ∗, ( ) is 
bounded. Then  is bounded. 
Proof. Let = ∗ and = ℝ are and let { , ∈ } be a collection of the elements of 

( , ) defined by: for all ∈  and for all ∈ , ( ) = ( ). As for all ∈ , ( ) is 
bounded, then sup ∈ | ( )|<+∞ for all ∈ , equivalently sup ∈ | ( )|<+∞ for all 

∈ , hence sup ∈ ‖ ‖ ( , )<+∞ by the theorem 17.4. It exists > 0 such that 
‖ ‖ ( , ) ≤  for all ∈  . Therefore, | ( )| ≤  for all ∈  and for all ∈ (0,1). 
Then sup ∈ ( , )| ( )|=sup ∈ ( , )| ( )| ≤ , for all ∈ . Because, 
sup ∈ ( , )| ( )| = ‖ ‖  for all ∈  by the corollary 17.3, hence  is bounded. 
     Another fundamental theorem, of functional analysis, is the open mapping theorem, also 
known as Banach-Schauder theorem, whose the proof is a direct consequence of the 
following two lemmas: 
Lemma 17.3. If  is a Banach space and if, the map  from  into  is surjective and linear. 
Then, there is > 0 such that (0,2 ) ⊂ (0,1) . 

Proof. Setting = (0,1) , for all ∈ ℕ∗. It is clear that, the elements of the 
sequence { } are closed in . Because ∀ ∈ , it exists ∈ ℕ∗ such that ‖ ‖ <  by 
Archimedean axiom, i.e. ∈ (0,1), then = ⋃ ∈ℕ∗ (0,1) and as  is surjective and 
linear ( ) = = ⋃ ∈ℕ∗ (0,1) ⊂ ⋃ ∈ℕ∗ (0,1) =⋃ ∈ℕ∗ , hence =
⋃ ∈ℕ∗ . As  is a Banach space, by the Baire’s lemma 14.6, it exists ∈ ℕ∗ such that 

( ) ≠ ∅, thus (0,1) ≠ ∅. Let ∈ (0,1)  be, there 

is > 0 such that ( , 4 ) ⊂ (0,1) ⊂ (0,1) , so ∈

(0,1) , it exists a sequence { } in (0,1) such that ( ) ⟶ . Because the 

sequence {− } is in (0,1) then (− ) = − ( ) ⟶ − ∈ (0,1) . By the 

example17.1 ), ), ) and ), (0,1)  is convex, − + ( , 4 ) = 2 (0,2 ) ⊂

(0,1) + (0,1) =2 (0,1) , hence (0,2 ) ⊂ (0,1) .  
Lemma 17.4. If  and  are Banach spaces, and if the map ∈ ( , ) is surjective. Then, 
there is > 0 such that (0, ) ⊂ (0,1) . 
Proof. As by the lemma 17.3, it exists > 0 such that (0,2 ) ⊂ (0,1) , then 

(0, ) ⊂ 0, . By the proposition 13.4 ) for any ∈ (0, ) and for 

> 0, it exists ∈  with ‖ ‖ <  such that ‖ − ( )‖ <  , then − ( ) ∈

(0, ) ⊂ 0, . Hence, for > 0, it exists ∈  with ‖ ‖ <  such 

that ‖ − ( + )‖ < . By iteration up to order n, for > 0, it exists ∈ , with 
‖ ‖ <  such that ‖ − ( + + ⋯ + )‖ < , for all ∈ ℕ∗. Setting = +

+ ⋯ + , for all ∈ ℕ∗ because ‖ − ‖ =‖ ‖ <  for all ∈ ℕ∗then 

0 ≤ ‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ + ⋯ + ‖ − ‖ < +

+…+ ( )= + + ⋯ + = 1 − ( ) <  for all , ∈ ℕ∗( > ), so 
the sequence { } is a Cauchy in the Banach , hence it converges to the series =
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∑ ∈ . By the continuity of  and the uniqueness of the limit ( ) ⟶ ( ) = . 
Because ‖ ‖ =‖∑ ‖ ≤ ∑ ‖ ‖ < ∑ = 1, it follows that ∈ (0,1), 
therefore ( ) = ∈ (0,1) . 
Theorem 17.5 (open map theorem). If  and  are Banach spaces and, if the map ∈

( , ) is surjective. Then  is open. 
Proof. Let  be an open in  and ∈ ( ), it exists ∈  such that = ( ). Thus, it 
exists > 0 where ( , ) = + (0,1) ⊂ , then ( , ) = + (0,1) ⊂

( ). From the lemma 17.4, it exists > 0 such that (0, ) ⊂ (0,1) , then 
(0, ) ⊂ (0,1) , hence ( , ) ⊂ ( ) and ( ) is open. Thus  is open. 

Corollary 17.6 (the inverse bounded theorem). If  and  are Banach spaces and if, the map 
∈ ( , ) is bijective. Then, the inverse map ∈ ( , ). 

Proof. By the lemma 17.4, it exists > 0 such that (0, ) ⊂ (0,1) , then 
(0, ) ⊂ (0,1), hence for all ∈  satisfying ‖ ( )‖ < , we have ‖ ‖ <1. As, 

for any nonzero ∈  
‖ ( )‖

= <r, then 
‖ ( )‖

<1, for any nonzero ∈ . 

Therefore, ‖ ‖ ≤ ‖ ( )‖  for all ∈ . As  is obviously linear and by assumption  
is bijective, for any ∈ , there is a unique ∈  such that, y = T(x) ⟺ ( ) = x, then 
‖ ( )‖ ≤ ‖ ‖  for all ∈ , ultimately ∈ ( , ). 
Corollary 17.7. If ( , ‖ ‖ ) and ( , ‖ ‖ ).are two Banach space and if, it exists > 0  
such that ‖ ‖ ≤ ‖ ‖  for all ∈ . Then ‖ ‖  and ‖ ‖  are equivalent. 
Proof. Consider the identity map  from = ( , ‖ ‖ ) into = ( , ‖ ‖ ). It is clear that 

 satisfies the conditions of the corollary 17.6. Then, ∈ ( , ), it exists > 0  such 
that ‖ ‖ ≤ ‖ ‖  for all ∈ , so ‖ ‖ ≤ ‖ ‖ ≤ ‖ ‖  for all ∈ , hence ‖ ‖  and 
‖ ‖  are equivalent. ={( , ) ∈ × ;  = ( )}, denotes the graph of the map : ⟶

. 
Theorem 17.6 (the closed graph theorem). Let ,  are Banach spaces, and the : ⟶  a 
linear map. Then,  is continuous iffy the graph of  is closed in the Banach × . 
Proof. Let ( , ) ∈ ( ) be, it exists ( , ) in  which converges to ( , ) ∈ × , as 

⟶  and  is continuous ( ) = ⟶ ( ), but ⟶  and the limit is unique in , 
then ( ) = , hence ( , ) ∈  and  is closed. Conversely, define the two norms ‖ ‖  
and ‖ ‖  on  by for all ∈ , ‖ ‖ = ‖ ‖  and ‖ ‖ = ‖ ‖ + ‖ ( )‖ . Show that 
( , ‖ ‖ ) is a Banach. Let { } be a Cauchy in ( , ‖ ‖ ) then { } is a Cauchy in ( , ‖ ‖ ) 
and { ( )} is a Cauchy in ( , ‖ ‖ ), there is ( , ) ∈ ×  such that ( , ( )) ⟶
( , ). Because  is closed in the × , then ( , ) ∈ , hence ( ) = . Since ‖ −

1= − 2+ − = − 2+ −  when ⟶+∞, ⟶  in , 1, hence , 1 is a 
Banach. In view of, ( , ‖ ‖ ) and ( , ‖ ‖ ) are banach and ‖ ‖ ≤ ‖ ‖  for all ∈ . By 
the corollary 17.7, it exists > 0 such that ‖ ‖ ≤ ‖ ‖  for all ∈ , therefore ‖ ( )‖ ≤

‖ ‖  for all ∈ , and  is continuous. 
 
17.3-Weak topologie in the general case 
In this section, we are given a set , a collection of topological spaces ( ) ∈∆ and a 
collection of maps ( ) ∈∆ such that each  maps  into  . We wish to define a topology 
on  that makes all the ’s continuous. And that this topology is the least fine, that is: with a 
minimum of open sets. Obviously, all the ( ), where  is an open set in  should be 
open in . Then, finite intersections of those should also be open. And then any union of 
finite intersections should be open. By this process, we have created as few open sets as 
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required. Denote by ( , ( ) ∈∆) the collection of the sets of  of the form 
⋃ ⋂ ( ) . Then, ( , ( ) ∈∆) is the desired topology. Indeed, it is clear that 
∅,  and any union belong to ( , ( ) ∈∆). It remains to check that the finite intersection is 
in ( , ( ) ∈∆). Let  and  are in ( , ( ) ∈∆), there exist two finite families,  in ∆ 
and  in ∇ such that: = ⋃ (⋂ ( )∈ )∈∆  and = ⋃ ⋂ ∈∈∇ , where ∆ 
and ∇ are a families of index, then ∩ =⋃ ⋂ ( )⋂ ⋂ ∈∈( , )∈∆×∇ =

⋃ ⋂ ( )⋂( , )∈ ×( , )∈∆×∇ . Assuming that, the family { ( ), ∈ ∆} is 
closed under finite intersections, then it containing ( )⋂  i.e. it exists ∈ ∆ 
such that ( )⋂ =  where,  is an open in , so ∩ ∈

( , ( ) ∈∆). By induction, ( , ( ) ∈∆) is closed under finite intersections. The topology 
( , ( ) ∈∆) is called the weak topology on  generated by the ( ) ∈∆’s. By definition, 

the functions ( ) ∈∆ are continuous for this topology, then the collection { ( ), ∈ ∆} 
is contained in ( , ( ) ∈∆). It is easy to check that, a basis of neighborhoods of ∈ , for 
the weak topology is given by the collection of sets of the form ⋂ ( )∈ , where  is a 
finite subset of ∆ and ∈ ( ) . 
Proposition 17.1. Let { } be a sequence in . Then, { } converges in the topology 

( , ( ) ∈∆) to some ∈  iffy ∀ ∈ ∆, lim ⟶ ( ) = ( ). 
Proof. As, ⟶  in , ( , ( ) ∈∆) , and ∀ ∈ ∆, : , ( , ( ) ∈∆) ⟶  is 
continuous, then ∀ ∈ ∆, lim ⟶ ( ) = ( ). Conversely, let = ⋂ ( ) ∈∈

 be, where  is a finite subset of ∆ and ∈ . As, for all ∈ , ∈  and 
lim ⟶ ( ) = ( ), it exists ∈ ℕ, such that for all ∈ ℕ, >  implies ∈

−1 , so for =max ∈ , and for all > , ∈ , it follows that lim ⟶∞ =  for 
( , ( ) ∈∆). 

Proposition 17.2. Let ( , ) be a topological space, then the map 
: ( , ) ⟶ , ( , ( ) ∈∆)  is continuous iffy for all ∈ ∆, ∘  is continuous. 

Proof. As ∀ ∈ ∆, : , ( , ( ) ∈∆) ⟶  is continuous and : ( , ) ⟶
, ( , ( ) ∈∆) , is continuous then, for all ∈ ∆, ∘  is continuous (the composition 

of two continuous functions is a continuous function). Reciprocally, demonstrate that 
: ( , ) ⟶ , ( , ( ) ∈∆)  is continuous. Let = ⋂ ( ) ∈ ( )∈  be, where  

is a finite subset of ∆ and ∈ ( ) , as ( ) = ⋂ ( ) =∈
∈ ∘ −1  and as for all ∈∆, ∘  is continuous, then ∘ −1 ∈ , for all ∈ ,  

therefore ( ) = ⋂ ( ∘ )∈ ( ) ∈ ( ), so  is continuous. 
 
17.4 The weak topology ( , ∗) in the ℝ-nvs  
     In the sequel,  is a ℝ-nvs, ∗ it’s dual, 

∈ ∗ is a collection of functions from  into 
ℝ, defined by: ( ) = 〈 , 〉 ∗,  for all ∈  and all ∈ ∗. 
Definition 17.3. The weak topology in the ℝ-nvs , is the the topologie ,

∈ ∗  i.e. 

the least fine topology, which makes all the functions 
∈ ∗ continuous. We will note it 

( , ∗).  
Proposition 17.2. The topological space , ( , ∗)  is Hausdorff. 
Proof. Let , ∈  be with ≠ . Apply Hahn Banach's theorem 17.3, for = { } and 

= { }, it exists ∈ ∗ and ∈ ℝ such that 〈 , 〉 ∗, < < 〈 , 〉 ∗, . Because  
belongs to the weak open = ∈ , 〈 , 〉 ∗, < = (]−∞, [),  belongs to the 
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weak open = ∈ , 〈 , 〉 ∗, > = (] , +∞[) and ∩ = ∅, then 
, ( , ∗)  is Hausdorff. 

Proposition 17.3. Let , ( , ∗)  and ∈  are. The collection of the subsets  of  
defined by: ∈  iffy, it exist > 0 and  elements { , … , , … , } of ∗, such that 
〈 , − 〉 ∗, < , for all ∈ {1, … , }, is a basis of neighborhoods of . 

Proof. Let ∈ ( ) be a weak neighborhoods of , it exists a weak open set =
⋂ ∈{ ,…, } ( ), such that ∈ ⊂ , where for all ∈ {1, … , }, ∈ ∗ and  is an 
open in ℝ containing = 〈 , 〉. Then, for all ∈ {1, … , }, it exists > 0, such that 
] − , + [ ⊂ . Thus, (] − , + [) ⊂ ( ) for all ∈ {1, … , }. 
Therefore for = min ∈{ ,…, } , 

∈ = ⋂ ∈{ ,…, } (] − , + [) ⊂ ⋂ ∈{ ,…, } ( ) = ⊂ . 
     In the following proposition, we will summarized some easy results comparing the weak 
topology and the norm (also called strong) topology on .  
Proposition 17 4. 

) Every weakly open (respectively closed) set is strongly open (respectively closed).  
). A sequence { } converges weakly to ∈ , iffy for all ∈ ∗, 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . 
). A strongly converging sequence converges weakly. 
). If { } is a sequence in  converging weakly to ∈ , then the sequence { } is bounded 

and ‖ ‖ ≤ liminf ⟶ ‖ ‖ . 
). If { } is a sequence in  converging weakly to ∈  and { } is a sequence in ∗ 

converging strongly to ∈ ∗, then 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . 
Proof. ) Because the elements of ∗ are continuous for the strong topology and the weak 
topology is the weakest with this property, it is weaker than the strong topology. So every 
weakly open set is strongly open, and by taking complements, every weakly closed set is 
strongly closed. ) It is just a restatement of the proposition 17.1, in the particular case of the 
weak topology on . ) Suppose that the sequence { } converges strongly to ∈ . Because 
for any ∈ ∗, 〈 , 〉 ∗, − 〈 , 〉 ∗, = 〈 , − 〉 ∗, ≤ ‖ ‖ ∗‖ − ‖ , when 

⟶ ∞ 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . ) Because when ⟶ ∞, ⟶  weakly, for every 
∈ ∗ 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗,  by ). Then, for every ∈ ∗ the sequence 〈 , 〉 ∗,  is 

bounded in ℝ, hence for every ∈ ∗, ( ) is bounded in ℝ, here B={ }. By the corollary 
17.6, the sequence = { } is bounded, therefore liminf ⟶ ‖ ‖  exists. As, 
〈 , 〉 ∗, ≤ ‖ ‖ ∗‖ ‖  for all ∈ ∗, when ⟶ ∞, 
〈 , 〉 ∗, ≤ ‖ ‖ ∗ liminf ⟶ ‖ ‖  for all ∈ ∗, using corollary 17.3, we have 

‖ ‖ =sup ∈ ∗( , ) 〈 , 〉 ∗, ≤ ‖ ‖ ∗ liminf ⟶ ‖ ‖ . ) Since, 0 ≤ 〈 , 〉 ∗, −
, ∗, = − , ∗, + , − ∗, ≤ − ∗ + , − ∗, ; − ∗⟶0; 

〈 , − 〉 ∗, ⟶ 0 when ⟶ ∞ and, the sequence { } is bounded, when ⟶ ∞, 
〈 , 〉 ∗, − 〈 , 〉 ∗, ⟶ 0 and 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . 

Proposition 17.5. In the case when, the ℝ-nvs  is finite dimensional, both weak and strong 
topologies on  coincide. 
Proof. We have seen in proposition 17.4 ) that in the infinite dimension, the weak topology 
is contained in the strong topology. Conversely assume that = . Let  be any strong 
open set in , since all the norms defined on  are equivalent by proposition 16.7, for any 
x∈ , it exists > 0 such that ( , ) = { ∈ , ‖ − ‖ < } ⊂ . If we show that 

( , ) is weakly open, then  is weakly open. Let { , … , , … , } be a basis of , for any 
∈  there are -components { , … , , … , } in ℝ such that, = ∑ . Obviously, the 

functions { , … , , … , } defined by: for any ∈ {1, … , } and for any ∈ , 〈 , 〉 ∗, =  
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are in ∗. As, for all ∈ ( , ), ∈  and ‖ − ‖ = max ∈{ ,…, }| − | <  where 
{ , … , , … , } are the components of . Hence, | − | = 〈 , 〉 ∗, − 〈 , 〉 ∗, =
〈 , − 〉 ∗, <  , for all ∈ {1, … , }. Conclusion, ( , ) = ∈ , 〈 , − 〉 ∗, <

  , for all ∈ {1, … , } , then it is weakly open, therefore  is weakly open. 
Corollary 17.8. The nonempty strongly closed convex subset  of the ℝ-nvs  is weakly 
closed. 
Proof. As  is strongly closed, his complementary  is stongly open. Let =  and 

= { } are, where ∈ , by Hahn Banach’s theorem 17.3, there are a nonzero ∈ ∗ 
and ∈ ℝ such that, 〈 , 〉 ∗, < < 〈 , 〉 ∗,  for all ∈ . It is clear that, the weak 
neighborhood = ∈ , 〈 , 〉 ∗, < = (]− , [) contains  and ∩ = ∅, 
therefore ⊂ , thus  is weakly open equivalently  is weakly closed. 
Remark 17.2. The reverse of ) in the proposition 17.4 is not true. For example: 

) The strong closed unit ball (0,1)={ ∈ , ‖ ‖ ≤ 1} is exactly the weak closure of the 
strongly closed unit sphere ={ ∈ , ‖ ‖ = 1}. Indeed, by corollary 17.8, (0,1) is weakly 
closed, as ⊂ (0,1), then the weak closure of  is contained in (0,1).  
It remains to show that, (0,1) is contained in the weak closure of . Let  be any element 
of (0,1) and let  be any weak neighborhood of , there are > 0 and -functions 

, … , , … ,  in ∗ such that = ∈ , 〈 , − 〉 ∗, <  for all ∈ {1, … , }. The 
function Φ: ⟶ ℝ  defined by: for all ∈ , 
Φ( ) =  〈 , 〉 ∗, , … , 〈 , 〉 ∗, , … , 〈 , 〉 ∗,  is clearly linear and Ker = ∈

, , ∗, =0 so KerΦ=1nKer . As, it exists 0∈  such that 0≠0 and , 0 ∗, =0 for 
all ∈ {1, … , }. If not the function Φ: E ⟶  Φ(E) is bijective and bicontinuous. So, Φ is a 
homeomorphism, thus dim = dimImΦ ≤ n, contradiction. Because, for all ∈ ℝ and for all 

∈ {1, … , }, 〈 , + − 〉 ∗, = | | 〈 , 〉 ∗, = 0 < , then + ∈  for all 
∈ ℝ (in infinite dimension, any weak neighborhood of  contains the line passing through 
). It is obvious the the function : ℝ ⟶ ℝ  define by: g( ) = ‖ + ‖  for all ∈ ℝ 

satisfies g(0) < 1 and g( ) ⟶ +∞ when g( ) ⟶ +∞, therefore it exists > 0 such that 
g( ) = 1, hence + ∈ ∩ . Finally  is contained in the weak closure of . 

) We can also check that, the weak (0,1) =∅. Indeed, if it exists  in the weak 
(0,1) , it exists a weak neighborhood  of , such that ⊂ (0,1). As in ) there is a 

nonzero ∈KerΦ and > 0 such that, ‖ + ‖ = 1 and + ∈ ⊂ (0,1), 
contradiction. 
Theorem 17.7. If  and  are two Banach spaces, and : ⟶  is a linear map. Then  is 
strongly continuous iffy  is weakly continuous. 
Proof. Assume that, T is strongly- strongly continuous linear map. Let g ∈ F∗ be, as the 
function = ∘ ∈  ∗ it is weak-weak continous, then  is weakly continuous by the 
proposition 17.2. If now the map  is weakly-weakly continuous and linear, by the closed 
graph theorem 17.6, the graph ( ) of  is weakly closed in ×  and a fortiori ( ) is 
strongly closed, so  is strong-strong continuous. 
Remark 17.3.  
     ) By the same argument used in the proof of theorem 17.7, we prove that if  is linear 
and strong-weak continues it is strong-strong continuous. 
     ) The linearity of T in theorem 17.7 plays an essential role in both sens. Without 
linearity, the theorem fails. 
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17.5 The weak∗ topology ( ∗, ) in the ℝ-nvs ∗ 
     In the ℝ-nvs ∗ two topologies are defined: the strong topology ‖.‖ ∗  and the weak 
topology ( ∗, ). In this section we will define a third topology on ∗ as follows. Let ∗∗ be 
the dual of ∗, also called the bidual of ℝ-nvs . The norm of any element ∈ ∗∗ is defined 
by: ‖ ‖ ∗∗ = sup ∈ ∗,‖ ‖ ∗  〈 , 〉 ∗∗, ∗ , where 〈 , 〉 ∗∗, ∗ = ( ), for ‖.‖ ∗all ∈ ∗. 
Note that the canonical injection : ⟶ ∗∗ defined by: 〈 ( ), 〉 ∗∗, ∗ = 〈 , 〉 ∗,  for all 

∈  and all ∈ ∗ is continuous linear isometric and injective from  into ∗∗. Indeed, it is 
clearly continuous linear and for all ∈ , ‖ ( )‖ ∗∗ = sup ∈ ∗,‖ ‖ ∗  〈 ( ), 〉 ∗∗, ∗ =
sup ∈ ∗,‖ ‖ ∗  〈 , 〉 ∗, = ‖ ‖  by the corollary 17.3, then  is isometric, thus it is 
injective. Therefore  is bijective between  and ( ), which allows us to identify  and 

( ) ⊂ ∗∗, and consider  as a subset of ∗∗. In the case when ( ) = ∗∗ , then = ∗∗ 
and  is said to be reflexive. Consider the collection of the functions ( ) ∈  defined from 

∗ into ℝ by: ( ) = 〈 , 〉 ∗,  for all ∈  and all ∈ ∗. Note that for a fixed ∈ , the 
 satisfies the same properties of . 

Definition 17.4. The weak∗ topology in the ℝ-nvs ∗ is the topology ( ∗, ( ) ∈ ), which 
will be noted by ( ∗, ). 
Remark 17.4.  

) As, ⊂ ∗∗, then ( ∗, ) ⊂ ( ∗, ∗∗) ⊂ ‖.‖ ∗  i.e. in ∗, the weak∗ topology ( ∗, ) 
is weaker than the weak topology ( ∗, ∗∗), which is weaker than the strong topology ‖.‖ ∗ . 
Therefore, the weak∗ topology ( ∗, ) offers more compacts than ( ∗, ∗∗). If a topology 
has fewer open sets, it has more compact sets. However, compact sets play a fundamental role 
when we seek to establish existence theorems. Hence the importance of introducing the 
weak∗ topology ( ∗, ). 

) In the finite dimensional all the topologies are identical. Since in this case 
dim =dim ∗ =dim ∗∗, therefore the canonical injection : ⟶ ∗∗is surjective, so 

= ∗∗ and ( ∗, ∗∗) =  ( ∗, ). 
) Given the two families { , } in  and { , } in ∗. We often use: 

     ⟶  to express that the sequence { } converges strongly to  i.e. ‖ − ‖ ⟶ 0. 
     ⇀  to express that the sequence { } converges weakly to . 
     ⟶  to express that the sequence { } converges strongly to  i.e. ‖ − ‖ ∗ ⟶ 0. 
     ⇀  to express that the sequence { } converges weakly to . 
     ⇀∗  to express that the sequence { } converges weakly∗ to . 
The propositions 17.6-17.8 below, whose verification is simple, summarize the usual 
properties of the weak∗ topology. 
Proposition 17.6. Let ∗, ( ∗, )  and ∈ ∗ are. The collection of the subsets  of ∗ 
defined by: ∈  iffy, it exist > 0 and  elements { , … , , … , } of , such that 
〈 − , 〉 ∗, < , for all ∈ {1, … , }, is a basis of neighborhoods of . 

Proposition 17.7. The topological space ∗, ( ∗, )  is Hausdorff.  
Proof: Let  and  are distinct elements of ∗. Thus, there exists ∈  such that 
〈 , 〉 ∗, ≠ 〈 , 〉 ∗, . Assuming for example that, 〈 , 〉 ∗, < 〈 , 〉 ∗, ., we can find a 
real number  such that ( ) = 〈 , 〉 ∗, < < 〈 , 〉 ∗, = ( ). Therefore ∈

= φ (]−∞, b[) and ∈ = φ (]b, +∞[). Those are two disjoint weak∗ open sets that 
separate  and . 
Proposition 17.8. In ∗, we have: 

). A sequence { } converges weakly∗ to ∈ ∗, iffy for all ∈ ,  〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . 
) A stronly converging sequence converges weakly. 
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). A weakly converging sequence converges weakly∗. 
). If { } is a sequence in ∗ converging weakly∗ to ∈ ∗, then the sequence { } is 

bounded and ‖ ‖ ∗ ≤ liminf ⟶ ‖ ‖ ∗. 
). If { } is a sequence in ∗ converging weakly∗ to ∈  and { } is a sequence in  

converging strongly to ∈ , then 〈 , 〉 ∗, ⟶ 〈 , 〉 ∗, . 
 

This first version is to be completed soon 
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