RECALL 1

Theorem.3.5. (Beppo-Levy monotone convergence Theorem)

Let $\left(f_{n}\right)$ be an increasing sequence in \mathcal{M}_{+}, then:
$\lim _{n} f_{n}=f \in \mathcal{M}_{+}$and $\int_{X} f . d \mu=\lim _{n} \int_{X} f_{n} d \mu$, in other words:

$$
\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu
$$

Proof. We know that $\lim _{n} f_{n}=f \in \mathcal{M}_{+}$and since $\left(f_{n}\right)$
is increasing we have $\int_{X} f_{n} d \mu \leq \int_{X} f_{n+1} d \mu \leq \int_{X} f . d \mu, \forall n$. So $a=\lim _{n} \int_{X} f_{n} d \mu$ exists
and $a \leq \int_{X} f . d \mu$. Let $s \in \mathcal{E}_{+}$with $s \leq f$ and for $0<c<1$ put $E_{n}=\left\{f_{n} \geq c . s\right\}$.
We have $E_{n} \subset E_{n+1}$ since $f_{n} \leq f_{n+1}$ and $\cup_{n} E_{n}=X$ because $c . s<f=\sup _{n} f_{n}$.
On the other hand $f_{n} \geq 0 \Longrightarrow f_{n} \geq c . s . I_{E_{n}}, \forall n$.
Now put $s=\sum_{i} \alpha_{i} . I_{A_{i}}$ and taking integrals, we obtain $\int_{X} f_{n} \cdot d \mu \geq \int_{X} c . s . I_{E_{n}} \cdot d \mu$ (since $f_{n} \geq$ c.s. $I_{E_{n}}$ on X), then $\int_{X} f_{n} . d \mu \geq c . \sum_{i} \alpha_{i} . \mu\left(A_{i} \cap E_{n}\right), \forall n$. This implies $a=\lim _{n} . \int_{X} f_{n} \cdot d \mu \geq \lim _{n} .\left(c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i} \cap E_{n}\right)\right)=c \cdot \sum_{i} \alpha_{i} \cdot \mu\left(A_{i}\right)=c \cdot \int_{X} s d \mu$, because $\mu\left(A_{i} \cap E_{n}\right)$ goes to $\mu\left(A_{i}\right)$ since E_{n} is increasing to X. Making $c \longrightarrow 1$ we get $a \geq \int_{X} s d \mu$ for all $s \in \mathcal{E}_{+}$with $s \leq f$, so $a \geq \sup \left\{\int_{X} s d \mu, s \in \mathcal{E}_{+}, s \leq f\right\}=$ $\int_{X} f . d \mu$ by Theorem.5.3.4, then $a=\int_{X} f . d \mu$.
Remark. Theorem.3.5.is not valid in general for decreasing sequences $\left(f_{n}\right)$ as is shown by the following example: let $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu\right)$ be the Borel measure space and $f_{n}=I_{] n, \infty[}$, then f_{n} decreases to 0 but $\lim _{n} . \int_{X} f_{n} . d \mu=\infty$.

Lemma 3.6. (Fatou Lemma)

Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, then:
$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$
Proof. Put $F_{k}=\inf _{n \geq k} f_{n}$ then F_{k} is increasing in \mathcal{M}_{+}to $\liminf _{n} f_{n}$,
so by Theorem..3.5, $\lim _{k} \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu$.
But $F_{k} \leq f_{n}, \forall n \geq k$, which implies $\int_{X} F_{k} \cdot d \mu \leq \inf _{n \geq k} \int_{X} f_{n} d \mu$ and then
making $k \longrightarrow \infty$ we get $\lim _{k} . \int_{X} F_{k} \cdot d \mu=\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{k} \inf _{n} \int_{X} f_{n} d \mu=$ $\liminf _{n} \int_{X} f_{n} d \mu$

Theorem.3.7 (Lebesgue's dominated convergence theorem)
Let $\left(f_{n}\right)$ be a sequence in $L_{1}(\mu)$ such that:
(a) f_{n} converges $\mu-a$.e to a function f
(b) there is g in $L_{1}(\mu)$ such that $\forall n \geq 1\left|f_{n}\right| \leq|g| \mu$-a.e

Then the function f is in $L_{1}(\mu)$ and $\lim _{n} \int_{X}\left|f_{n}-f\right| d \mu=0$
in particular $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} f d \mu$

SOLUTIONS TO SOME EXERCISES

24. (a) Prove that in any measure space the uniform convergence implies the convergence in measure.
(b) In the counting measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ the uniform convergence is equivalent to the convergence in measure.

solution.

(a) Let $f_{n}, f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) such that f_{n} converges uniformly to f
then we have $\forall \epsilon>0, \exists N_{\epsilon}$ such that $\forall n \geq N_{\epsilon},\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in X$ this implies $\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=\phi, \forall n \geq N_{\epsilon}$
that is $\lim \mu\left(\left|f_{n}-f\right|>\epsilon\right)=0$ so f_{n} converges in measure to f. The result is true if f_{n}^{n} converges uniformly μ-a.e to f.
(b) use the fact that for the counting measure we have:
$A \subset \mathbb{N}$ and $\mu(A)=0 \Longrightarrow A=\phi$.
25. In the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ consider the sequence of indicator functions $f_{n}=I_{\{1,2, \ldots, n\}}$; prove that f_{n} converges μ-a.e but does not converge in measure.

solution.

The sets $\{1,2, \ldots, n\}$ increase to \mathbb{N} as $n \longrightarrow \infty$ and so $I_{\{1,2, \ldots, n\}}$ converges to 1 for any $x \in \mathbb{N}$.
On the other hand for $\epsilon>0\left\{\left|I_{\{1,2, \ldots, n\}}-1\right|>\epsilon\right\}=\{x \in \mathbb{N}: x>n\}$ $=\{n+1, n+2, n+3, \ldots \ldots$.$\} which gives \mu\left\{\left|I_{\{1,2, \ldots, n\}}-1\right|>\epsilon\right\}=\infty \quad \forall n$
26. Let $f_{n}, f \in \mathcal{M}(X, \mathbb{R})$ and suppose f_{n} converges pointwise to f and there is a positive measurable function g satisfying $\lim _{n} \mu\left\{g>\epsilon_{n}\right\}=0$ for some sequence of positive numbers ϵ_{n} with $\lim _{n} \epsilon_{n}=0$. Then if $\left|f_{n}\right| \leq g, \forall n$, prove that f_{n} converges in measure to f.

solution.

We have to prove that $n \longrightarrow \infty \Longrightarrow \mu\left(\left|f_{n}-f\right|>\epsilon\right) \longrightarrow 0, \forall \epsilon>0$
Since $\left|f_{n}\right| \leq g$ and f_{n} converges pointwise to f we deduce that $|f| \leq g$
so $\left|f_{n}-f\right| \leq 2 g$. Let $\epsilon>0$, since $\lim _{n} \epsilon_{n}=0$ there is $N \geq 1$ with $2 \epsilon_{n}<\epsilon, \forall n \geq N$. Now we have $\left(\left|f_{n}-f\right|>\epsilon\right) \subset\left(2 g^{n}>\epsilon\right) \subset\left(2 g>2 \epsilon_{n}\right)=\left(g>\epsilon_{n}\right), \forall n \geq N$ we deduce that $\lim _{n} \mu\left(\left|f_{n}-f\right|>\epsilon\right) \leq \lim _{n} \mu\left\{g>\epsilon_{n}\right\}=0$. So f_{n} converges in measure to f.
27. Let $f: X \longrightarrow \mathbb{R}$ be measurable in the space (X, \mathcal{F}, μ) and put:
$M(f)=\inf \{\alpha \geq 0: \quad \mu\{|f|>\alpha\}=0\}$, Prove that $|f| \leq M(f) \quad \mu-a . e$.
Prove that $\lim _{n} M\left(f_{n}-f\right)=0$ iff $\lim _{n} f_{n}=f$ uniformly μ-a.e.
solution.
We have to prove that $\mu\{|f|>M(f)\}=0$
If $M(f)=\infty$ the result is true.
Suppose $M(f)$ finite then we have $\{|f|>M(f)\}=\cup_{n}\left\{|f|>M(f)+\frac{1}{n}\right\}$
but $M(f)<M(f)+\frac{1}{n} \Longrightarrow \exists \alpha_{n} \in\{\alpha \geq 0: \quad \mu\{|f|>\alpha\}=0\}$
with $M(f)<\alpha_{n}<M(f)+\frac{1}{n}$ so $\left\{|f|>M(f)+\frac{1}{n}\right\} \subset\left\{|f|>\alpha_{n}\right\}$ and then $\mu\left\{|f|>M(f)+\frac{1}{n}\right\} \leq \mu\left\{|f|>\alpha_{n}\right\}=0, \forall n$, we deduce $\mu\{|f|>M(f)\}=$
$\mu\left(\cup_{n}\left\{|f|>M(f)+\frac{1}{n}\right\}\right) \leq \sum_{n} \mu\left\{|f|>M(f)+\frac{1}{n}\right\}=0$.
28 Let $f_{n}, f: X \longrightarrow \mathbb{R}$ be measurable functions in the space (X, \mathcal{F}, μ) and suppose that f_{n} converges in measure to $f ;$ if $g: \mathbb{R} \longrightarrow \mathbb{R}$ is a uniformly continuous function prove that the sequence $g \circ f_{n}$ converges in measure to $g \circ f$

solution.

We have to prove that $n \longrightarrow \infty \Longrightarrow \mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \longrightarrow 0, \forall \epsilon>0$ g uniformly continuous implies:
(*) $\quad \forall \epsilon>0 \quad \exists \delta>0 \quad \forall(x, y) \in \mathbb{R} \times \mathbb{R} \quad|x-y|<\delta \Longrightarrow|g(x)-g(y)|<\epsilon$
$(* *) \quad f_{n}$ converges in measure to $f \Longrightarrow \mu\left(\left|f_{n}-f\right|>\alpha\right) \longrightarrow 0, \forall \alpha>0$
$(*) \Longrightarrow \forall \epsilon>0 \quad \exists \delta>0$ such that $\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \subset\left(\left|f_{n}-f\right|>\delta\right)$
then applying μ we get $\mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right) \leq \mu\left(\left|f_{n}-f\right|>\delta\right)$
$(* *) \Longrightarrow \lim _{n} \mu\left(\left|f_{n}-f\right|>\delta\right)=0$ so we deduce
$\lim _{n} \mu\left(\left|g \circ f_{n}-g \circ f\right|>\epsilon\right)=0, \forall \epsilon>0$.
29.(a) Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ be the counting measure on \mathbb{N}.

If $f: \mathbb{N} \longrightarrow\left[0, \infty\left[\right.\right.$ is given by $f(i)=a_{i} i \in \mathbb{N}$ prove that:

$$
\int_{\mathbb{N}} f . d \mu=\sum_{i} a_{i}
$$

(b) Let $\mu=\delta_{x_{0}}$ be the Dirac measure on the power set $\mathcal{P}(X)$ of X.
then for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \mu=f\left(x_{0}\right)\right.\right.$.
solution. $\quad f: \mathbb{N} \longrightarrow[0, \infty[$
(a) Suppose f simple function of the form $\sum_{1}^{n} a_{i} \cdot I_{\{i\}}$ then $\int_{\mathbb{N}} f . d \mu=\sum_{1}^{n} a_{i} \cdot \mu\{i\}$ but $\mu\{i\}=1$ since μ is the counting measure so $\int_{\mathbb{N}} f . d \mu=\sum_{1}^{n} a_{i}$ now take f of the form $f=\cdot \sum_{i} a_{i} \cdot I_{\{i\}}$ which is the limit pointwise of the increasing sequence $\varphi_{n}=\sum_{1}^{n} a_{i} \cdot I_{\{i\}}$, by Beppo-Levy theorem we get $\int_{\mathbb{N}} f . d \mu=\lim _{n} \int_{\mathbb{N}} \varphi_{n} \cdot d \mu=\lim _{n} \sum_{1}^{n} a_{i}=\sum_{i} a_{i}$.
(b) Recall that Dirac measure is defined on $\mathcal{P}(X)$ by

$$
\delta_{x_{0}}(A)=I_{A}\left(x_{0}\right)=\left\{\begin{array}{l}
1 \text { if } x_{0} \in A \\
0 \text { if } x_{0} \notin A
\end{array}\right\}
$$

so we have $\delta_{x_{0}}(A)=\int_{X} I_{A} \cdot d \delta_{x_{0}}$ and generalize this formula by usual procedure to get for any $f: X \longrightarrow\left[0, \infty\left[, \int_{X} f . d \delta_{x_{0}}=f\left(x_{0}\right)\right.\right.$
30.Let $\left(f_{n}\right)$ be any sequence in \mathcal{M}_{+}, prove that $\sum_{n} f_{n} \in \mathcal{M}_{+}$and:

$$
\int_{X} \sum_{n} f_{n} d \mu=\sum_{n} \int_{X} f_{n} \cdot d \mu
$$

solution.

$\sum_{1}^{n} f_{i}$ increases to $\sum_{n} f_{n}$ and use Beppo-Levy Theorem, see the recall.
31. Let $f \in \mathcal{M}_{+}$
(a) Prove that the set function $\nu: A \longrightarrow \int_{A} f \cdot d \mu$, defined on \mathcal{F} is a positive measure
(b) If $g \in \mathcal{M}_{+}$prove that $\int_{X} g . d \nu=\int_{X} f . g . d \mu$

solution.

(a) Let $\left(A_{n}\right)$ be a pairwise disjoint sequence of sets in \mathcal{F}
we have to prove that $\int_{\underset{\sim}{\cup} A_{n}} f . d \mu=\sum_{n} \int_{A_{n}} f . d \mu$
since the sets A_{n} are pairwise disjoint we have $I_{\cup A_{n}}=\sum_{n} I_{A_{n}}$ and $f \geq 0$ then $f . I_{\cup n} A_{n}=\sum_{n} f . I_{A_{n}}$, so we get $\int_{X} f \cdot I_{\cup A_{n}} \cdot d \mu=\int_{X} \sum_{n} f . I_{A_{n}} \cdot d \mu=\sum_{n} \int_{A_{n}} f \cdot d \mu$
where the last equality comes from Beppo-Levy Theorem 3.5 (see recall 1) (b) check (b) for $g \in \mathcal{E}_{+}$and apply Beppo-Levy Theorem for $g \in \mathcal{M}_{+}$
32. Let $\left(f_{n}\right)$ be a sequence in \mathcal{M}_{+}with $\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$.Suppose $\sup _{n} \int_{X} f_{n} . d \mu<\infty$, and prove that $\int_{X} f . d \mu<\infty$

solution.

(Apply Fatou Lemma 3.6 see recall 1)
$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$ with $\liminf _{n} f_{n}=\lim _{n} f_{n}(x)=f(x), \forall x \in X$ for some $f \in \mathcal{M}_{+}$so $\int_{X} f . d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu \leq \sup _{n} \int_{X} f_{n} . d \mu<\infty$.
33.Let $\left(f_{n}\right)$ be a decreasing sequence in \mathcal{M}_{+}such that

$$
\int_{X} f_{n_{0}} \cdot d \mu<\infty, \text { for some } n_{0} \geq 1
$$

Prove that $\lim _{n} \int_{X} f_{n} d \mu=\int_{X} \lim _{n} f_{n} d \mu$

solution.

apply Theorem 3.5 (Recall 1) to the increasing positive sequence $\left(f_{n_{0}}-f_{n}\right)$ $n \geq n_{0}$
indeed we have $f_{n+1} \leq f_{n} \Longrightarrow f_{n_{0}}-f_{n} \leq f_{n_{0}}-f_{n+1}, \forall n \geq n_{0}$ and so $\lim _{n}\left(f_{n_{0}}-f_{n}\right)=f_{n_{0}}-f$
by Theorem 3.5 we deduce $\lim _{n} \int_{X}\left(f_{n_{0}}-f_{n}\right) \cdot d \mu=\int_{X} f_{n_{0}} \cdot d \mu-\lim _{n} \int_{X} f_{n} \cdot d \mu=$ $\int_{X} f_{n_{0}} . d \mu-\int_{X} f . d \mu$ since $f \in \mathcal{M}_{+}$
by the fact $\int_{X} f_{n_{0}} \cdot d \mu<\infty$, we get $\lim _{n} \int_{X} f_{n} \cdot d \mu=\int_{X} f \cdot d \mu$
34.Let the interval $] 0,1$ [of real numbers be endowed with Lebesgue measure.
(Apply Fatou Lemma 3.6 see recall 1) to the following sequence:
$f_{n}(x)=n, 0 \leq x \leq \frac{1}{n}$ and $f_{n}(x)=0, \frac{1}{n}<x<1$.

solution.

$\int_{X} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{X} f_{n} d \mu$ with $\liminf _{n} f_{n}=\sup \inf _{n \geq n} f_{k}=0$ and $\int_{X} f_{n} d \mu=$
$1, \forall n$
whence $0 \leq \liminf _{n} \int_{X} f_{n} d \mu \leq 1$.

35 (continuity of integrals depending on a parameter)

Let T be an interval of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) there is g in $L_{1}(\mu)$ such that $|f(x, t)| \leq|g(x)| \quad \mu-a . e$ for all $t \in T$
if $\lim _{t \rightarrow t_{0}} . f(x, t)=f\left(x, t_{0}\right)$ then we have $\lim _{t \rightarrow t_{0}} \int_{X} f(x, t) d \mu=\int_{X} f\left(x, t_{0}\right) d \mu$
solution.
Consider the function $h: T \longrightarrow \mathbb{R}$ given by $h(t)=\int_{X} f(x, t) d \mu$
we have to prove that $\lim _{t \rightarrow t_{0}} h(t)=h\left(t_{0}\right)$
that is the function h is continuous on T which is equivalent to: for any sequence $\left(t_{n}\right)$ with $\lim _{n} t_{n}=t_{0}$ we have $\lim _{n} h\left(t_{n}\right)=h\left(t_{0}\right)$ let us observe that the functions u_{n} defined by $u_{n}(x)=f\left(x, t_{n}\right)$
satisfies Theorem.3.7 by (b) and $\lim _{n} . u_{n}(x)=f\left(x, t_{0}\right)$, so $\int_{X} u_{n} . d \mu=h\left(t_{n}\right)$ converges to $\int_{X} \lim _{n} \cdot u_{n}(x) \cdot d \mu=\int_{X} f\left(x, t_{0}\right) \cdot d \mu=h\left(t_{0}\right)$.

36 (Derivative of integrals depending on a parameter)

Let T be an open set of \mathbb{R} and $f: X \times T \longrightarrow \mathbb{R}$ a function such that:
(a) for each $t \in T$ the function $x \longrightarrow f(x, t)$ is in $L_{1}(\mu)$
(b) the function $t \longrightarrow f(x, t)$ derivable on T for each $x \in X$
(c) there is $g \in L_{1}(\mu)\left|\frac{d}{d t} f(x, t)\right| \leq|g(x)| \quad \mu-a . e$ for all $t \in T$

Then the function $t \longrightarrow \int_{X} f(x, t) d \mu$ is differentiable on T
and $\frac{d}{d t} \int_{X} f(x, t) d \mu=\int_{X} \frac{d}{d t} f(x, t) d \mu$

solution.

Let $\left(t_{n}\right)$ be a sequence with $\lim _{n} t_{n}=t$ and define the sequence $\left(g_{n}\right)$ of functions by
$g_{n}(x)=\frac{f\left(x, t_{n}\right)-f(x, t)}{t_{n}-t}$ then $\lim _{n} g_{n}(x)=\frac{d}{d t} f(x, t)$. By the Mean Value Theorem
there is $\theta_{n}(x)$ between t_{n} and t such that $g_{n}(x)=\frac{d}{d t} f\left(x, \theta_{n}(x)\right)$.
Now we have $\lim _{n} t_{n}=t$ so $\lim _{n} \theta_{n}(x)=t$ and $\lim _{n} g_{n}(x)=\frac{d}{d t} f(x, t)$. But $\left|g_{n}(x)\right| \leq|g(x)|$ by (c) then
we can apply Theorem.3.7 to $g_{n}(x)$ with

$$
\int_{X} g_{n}(x) \cdot d \mu=\frac{\int_{X} f\left(x, t_{n}\right) \cdot d \mu-\int_{X} f(x, t) \cdot d \mu}{t_{n}-t}
$$

to get $\lim _{n} \int_{X} g_{n}(x) \cdot d \mu=\frac{d}{d t} \int_{X} f(x, t) d \mu=\int_{X} \lim _{n} g_{n}(x) d \mu=\int_{X} \frac{d}{d t} f(x, t) d \mu$.

37 (Change of variable formula)

Let (X, \mathcal{F}, μ) be a measure space and let (Y, \mathcal{G}) be a measurable space: If $\varphi: X \longrightarrow Y$ is a measurable mapping from (X, \mathcal{F}) into (Y, \mathcal{G}) then:
(1) the set function $\nu: \mathcal{G} \longrightarrow[0, \infty]$ given by $G \in \mathcal{G}, \nu(G)=\mu\left(\varphi^{-1}(G)\right)$ is a measure on (Y, \mathcal{G})
(2) for every function $g: Y \longrightarrow \mathbb{C}, \nu$-integrable the function $g \circ \varphi$ is μ-integrable and

$$
\begin{aligned}
& (*) \int_{Y} g \cdot d \nu=\int_{X} g \circ \varphi \cdot d \mu \\
& (* *) \int_{E} g \cdot d \nu=\int_{\varphi^{-1}(E)} g \circ \varphi \cdot d \mu \forall E \in \mathcal{G} .
\end{aligned}
$$

solution.

Apply usual procedure:
start with g simple then g in \mathcal{M}_{+}and finally g integrable for ν.
38 Measure defined by an integral. (see exercise 31 for the proof)
Let (X, \mathcal{F}, μ) be a measure space and let $f \in \mathcal{M}_{+}$then
(a) the set function $\nu: \mathcal{F} \longrightarrow[0, \infty]$ given by: $A \in \mathcal{F}, \nu(A)=\int_{A} f \cdot d \mu$
is a positive measure on \mathcal{F} and we have:
(b) $\int_{X} g \cdot d \nu=\int_{X} f \cdot g \cdot d \mu$, for every $g \in \mathcal{M}_{+}$.

RECALL 2

INTEGRATION IN PRODUCT SPACES

Product Measure and Fubini Theorem

In this part we give without proofs the most important results on product spaces useful in applications.Proofs are classical and in general simple.

1. Preliminaries and Notations

1.1 In all what follows, $(X, \mathcal{F}, \mu),(Y, \mathcal{G}, \nu)$ will be fixed measure spaces.
1.2 Let us recall that the product σ-field $\mathcal{F} \otimes \mathcal{G}$ on $X \times Y$ is generated by the family $\{A \times B$, with $A \in \mathcal{F}, B \in \mathcal{G}\}$, (Definition 3.4 Chapter 1)
1.3 The set \mathbb{R} will be endowed with its Borel σ-field $\mathcal{B}_{\mathbb{R}}$. The set \mathbb{R}^{2} endowed with the σ-field $\mathcal{B}_{\mathbb{R}^{2}}=\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ (Theorem2.9Chap.3)

2. Product Measure

2.1 Definition

For any subset $E \subset X \times Y$ and any $(x, y) \in X \times Y$, define:
the section of E at $x, E_{x}=\{y \in Y, \quad(x, y) \in X \times Y\}$
the section of E at $y, E_{y}=\{x \in X, \quad(x, y) \in X \times Y\}$

2.2 Proposition

For every $E \in \mathcal{F} \otimes \mathcal{G}, E_{x} \in \mathcal{G}$ and $E_{y} \in \mathcal{F}$.

2.3 Theorem

Suppose that the measure μ and ν are σ-finite then for every $E \in \mathcal{F} \otimes \mathcal{G}$, we have:
the function $x \longrightarrow \nu\left(E_{x}\right)$ is \mathcal{F} measurable
the function $y \longrightarrow \mu\left(E_{y}\right)$ is \mathcal{G} measurable
Moreover we have $\int_{X} \nu\left(E_{x}\right) d \mu=\int_{Y} \mu\left(E_{y}\right) d \nu$

Corollary.(Product measure)

Under the conditions of Theorem $\mathbf{1 . 6}$ the set function $\mu \otimes \nu$ defined on $\mathcal{F} \otimes \mathcal{G}$ by:

$$
\mu \otimes \nu(E)=\int_{X} \nu\left(E_{x}\right) d \mu=\int_{Y} \mu\left(E_{y}\right) d \nu, E \in \mathcal{F} \otimes \mathcal{G}
$$

is a σ-finite measure on $\mathcal{F} \otimes \mathcal{G}$. Moreover $\mu \otimes \nu$ is the unique σ-finite measure on $\mathcal{F} \otimes \mathcal{G}$ satisfying $\mu \otimes \nu(A \times B)=\mu(A) . \nu(B)$ for every $A \in \mathcal{F}, B \in \mathcal{G}$.

3 Integration in Product Spaces

3.1 Definition Let $f: X \times Y \longrightarrow \mathbb{R}$ be any function and $(x, y) \in X \times Y$, define:
$f_{x}: Y \longrightarrow \mathbb{R}$ by $f_{x}(y)=f(x, y)$ (section of f at x)
$f_{y}: X \longrightarrow \mathbb{R}$ by $f_{y}(x)=f(x, y)$ (section of f at $\left.y\right)$

3.2 Proposition

Let $f: X \times Y \longrightarrow \mathbb{R}$ be $\mathcal{F} \otimes \mathcal{G}$-measurable then
f_{x} is \mathcal{G}-measurable and f_{y} is \mathcal{F}-measurable

3.3 Theorem (Fubini)

Suppose that the measure μ and ν are σ-finite and $f: X \times Y \longrightarrow \mathbb{R}$ is $\mathcal{F} \otimes \mathcal{G}$ measurable positive then:

$$
\text { the function } x \longrightarrow \int_{Y} f(x, y) d \nu \text { is } \mathcal{F} \text {-measurable }
$$

the function $y \longrightarrow \int_{X} f(x, y) d \mu$ is \mathcal{G}-measurable
and we have:

$$
\int_{X \times Y} f(x, y) d \mu \otimes \nu=\int_{X} d \mu \int_{Y} f(x, y) d \nu=\int_{Y} d \nu \int_{X} f(x, y) d \mu
$$

3.4 Theorem (Fubini)

For every $f \in L_{1}(\mu \otimes \nu)$ we have:
(a) $\int_{Y} f(x, y) d \nu \in L_{1}(\mu)$ and $\int_{X} f(x, y) d \mu \in L_{1}(\nu)$
(b) $\int_{X \times Y} f(x, y) d \mu \otimes \nu=\int_{X} d \mu \int_{Y} f(x, y) d \nu=\int_{Y} d \nu \int_{X} f(x, y) d \mu$

3.5 Application. (Convolution of functions)

Let μ be the Lebesgue measure on $\mathbb{R}, \mathcal{B}_{\mathbb{R}}$ and $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be functions in $L_{1}(\mu)$, then:

$$
\int_{\mathbb{R}}|f(x-y)| \cdot|g(y)| \cdot d \mu(y)<\infty \text { for each } x
$$

Let us define the convolution of f and g by the function $h: \mathbb{R} \longrightarrow \mathbb{R}$:

$$
h(x)=\int_{\mathbb{R}} f(x-y) \cdot g(y) \cdot d \mu(y)
$$

we denote h by $h=f * g$
Since $\left|\int_{\mathbb{R}} f(x-y) \cdot g(y) \cdot d \mu(y)\right| \leq \int_{\mathbb{R}}|f(x-y)| \cdot|g(y)| \cdot d \mu(y)<\infty$ we deduce that $h \in L_{1}(\mu)$

3.6 Lemma

Under the definition above we have $\|f * g\| \leq\|f\| .\|g\|$

4 Convolution of Measures

4.1 Definition

Let us consider on the set \mathbb{R}^{2} endowed with the σ-field $\mathcal{B}_{\mathbb{R}^{2}}=\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$, the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ given by $T(x, y)=x+y$ which is measurable because continuous. Let $\mu_{1} \otimes \mu_{2}$ be the product of two finite measures μ_{1}, μ_{2} defined on $\mathbb{R}, \mathcal{B}_{\mathbb{R}}$. The convolution $\mu_{1} * \mu_{2}$ of the measures μ_{1}, μ_{2} is the measure on $\mathcal{B}_{\mathbb{R}}$ given by: $B \in \mathcal{B}_{\mathbb{R}},\left(\mu_{1} * \mu_{2}\right)(B)=\left(\mu_{1} \otimes \mu_{2}\right)\left(T^{-1}(B)\right)$. Then we have:
4.2 Proposition Let $B \in \mathcal{B}_{\mathbb{R}}$ and define:
$\left[T^{-1}(B)\right]_{x}=\{y \in \mathbb{R}, x+y \in B\}=B-x$
$\left[T^{-1}(B)\right]_{y}=\{x \in \mathbb{R}, x+y \in B\}=B-y$
then we get: $\left(\mu_{1} * \mu_{2}\right)(B)=\int_{\mathbb{R}} \cdot \mu_{2}(B-x) \cdot \mu_{1}(d x)=\int_{\mathbb{R}} \cdot \mu_{1}(B-y) \cdot \mu_{2}(d y)$
by applying Fubini Theorem and the relation $\left(\mu_{1} * \mu_{2}\right)(B)=\left(\mu_{1} \otimes \mu_{2}\right)\left(T^{-1}(B)\right)=$ $\int_{X \times Y} \cdot I_{T^{-1}(B)}(x, y) \cdot\left(\mu_{1} \otimes \mu_{2}\right)(d x, d y)$.
Moreover if we take a function $f: \mathbb{R} \longrightarrow \mathbb{C}$ integrable with respect to $\mu_{1} * \mu_{2}$ we obtain the following nice relation:
$\int_{\mathbb{R}} f(t) \cdot\left(\mu_{1} * \mu_{2}\right)(d t)=\int_{\mathbb{R}} \mu_{2}(d y) \int_{\mathbb{R}} f(x+y) \cdot \mu_{1}(d x)=\int_{\mathbb{R}} \mu_{1}(d x) \int_{\mathbb{R}} f(x+y) \cdot \mu_{2}(d y)$
4.3 Proposition With the definitions above we have:
(1) $\mu_{1} * \mu_{2}=\mu_{2} * \mu_{1}$
(2) $\left(\mu_{1} * \mu_{2}\right)(\mathbb{R})=\left(\mu_{1} \otimes \mu_{2}\right)\left(T^{-1}(\mathbb{R})\right)=\left(\mu_{1} \otimes \mu_{2}\right)\left(\mathbb{R}^{2}\right)=\mu_{1}(\mathbb{R}) \cdot \mu_{2}(\mathbb{R})$
(3) $\mu_{1} * \delta_{0}=\delta_{0} * \mu_{1}=\mu_{1}, \quad \delta_{0}$ is the Dirac measure at 0 .

