
RECALL 1

Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let (fn) be an increasing sequence inM+; then:

lim
n
fn = f 2M+ and

Z
X

f:d� = lim
n

Z
X

fn d�, in other words:

lim
n

Z
X

fn d� =

Z
X

lim
n
fn d�

Proof. We know that lim
n
fn = f 2M+ and since (fn)

is increasing we have
Z
X

fn d� �
Z
X

fn+1 d� �
Z
X

f:d�; 8n. So a = lim
n

Z
X

fn d�

exists

and a �
Z
X

f:d�. Let s 2 E+ with s � f and for 0 < c < 1 put En = ffn � c:sg :

We have En � En+1 since fn � fn+1 and [
n
En = X because c:s < f = sup

n
fn:

On the other hand fn � 0 =) fn � c:s:IEn ;8n:

Now put s =
P
i

�i.IAi
and taking integrals, we obtain

Z
X

fn:d� �
Z
X

c:s:IEn :d�

(since fn � c:s:IEn on X), then
Z
X

fn:d� � c:
P
i

�i:� (Ai \ En) ;8n: This implies

a = lim
n
:

Z
X

fn:d� � lim :
n

�
c:
P
i

�i:� (Ai \ En)
�
= c:

P
i

�i:� (Ai) = c:

Z
X

s d�, be-

cause � (Ai \ En) goes to � (Ai) since En is increasing to X. Making c �! 1 we

get a �
Z
X

s d� for all s 2 E+ with s � f , so a � sup

8<:
Z
X

s d�; s 2 E+; s � f

9=; =

Z
X

f:d� by Theorem.5.3.4, then a =
Z
X

f:d�:�

Remark. Theorem.3.5.is not valid in general for decreasing sequences (fn) as
is shown by the following example: let (R;BR; �) be the Borel measure space

and fn = I]n;1[, then fn decreases to 0 but lim
n
:

Z
X

fn:d� =1:�

Lemma 3.6. (Fatou Lemma)
Let (fn) be any sequence inM+; then:Z

X

lim inf
n

fn d� � lim inf
n

Z
X

fn d�

Proof. Put Fk = inf
n�k

fn then Fk is increasing inM+ to lim inf
n

fn,
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so by Theorem..3.5, lim
k
:

Z
X

Fk:d� =

Z
X

lim inf
n

fn d�:

But Fk � fn;8n � k, which implies
Z
X

Fk:d� � inf
n�k

Z
X

fn d� and then

making k �! 1 we get lim
k
:

Z
X

Fk:d� =

Z
X

lim inf
n

fn d� � lim
k
inf
n�k

Z
X

fn d� =

lim inf
n

Z
X

fn d�:�

Theorem.3.7 (Lebesgue�s dominated convergence theorem)
Let (fn) be a sequence in L1 (�) such that:
(a) fn converges �� a:e to a function f
(b) there is g in L1 (�) such that 8n � 1 jfnj � jgj �� a:e

Then the function f is in L1 (�) and lim
n

Z
X

jfn � f j d� = 0

in particular lim
n

Z
X

fn d� =

Z
X

f d �

SOLUTIONS TO SOME EXERCISES

24. (a) Prove that in any measure space the uniform convergence implies
the convergence in measure.
(b) In the counting measure space (N;P (N) ; �) the uniform convergence is
equivalent to the convergence in measure.

solution.
(a) Let fn; f : X �! R be measurable in the space (X;F ; �) such that fn
converges uniformly to f
then we have 8� > 0;9N� such that 8n � N�, jfn (x)� f (x)j < � for all x 2 X
this implies fx : jfn (x)� f (x)j > �g = �;8n � N�
that is lim

n
� (jfn � f j > �) = 0 so fn converges in measure to f . The result is

true if fn converges uniformly �� a:e to f:
(b) use the fact that for the counting measure we have:
A � N and � (A) = 0 =) A = �:

25. In the space (N;P (N) ; �) consider the sequence of indicator functions
fn = If1;2;:::;ng; prove that fn converges ��a:e but does not converge in measure.

solution.
The sets f1; 2; :::; ng increase to N as n �! 1 and so If1;2;:::;ng converges to 1
for any x 2 N:
On the other hand for � > 0

���If1;2;:::;ng � 1�� > �	 = fx 2 N : x > ng
= fn+ 1; n+ 2; n+ 3; :::::::g which gives �

���If1;2;:::;ng � 1�� > �	 =1 8n:�
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26. Let fn; f 2M (X;R) and suppose fn converges pointwise to f and there is
a positive measurable function g satisfying lim

n
� fg > �ng = 0 for some sequence

of positive numbers �n with lim
n
�n = 0. Then if jfnj � g;8n, prove that fn

converges in measure to f .

solution.
We have to prove that n �!1 =) � (jfn � f j > �) �! 0;8� > 0
Since jfnj � g and fn converges pointwise to f we deduce that jf j � g
so jfn � f j � 2g. Let � > 0, since lim

n
�n = 0 there isN � 1 with 2�n < �; 8n � N:

Now we have (jfn � f j > �) � (2g > �) � (2g > 2�n) = (g > �n) ;8n � N
we deduce that lim

n
� (jfn � f j > �) � lim

n
� fg > �ng = 0: So fn converges in

measure to f .�
27. Let f : X �! R be measurable in the space (X;F ; �) and put:
M (f) = inf f� � 0 : � fjf j > �g = 0g ;Prove that jf j �M (f) �� a:e:
Prove that lim

n
M (fn � f) = 0 i¤ lim

n
fn = f uniformly �� a:e:

solution.
We have to prove that � fjf j > M (f)g = 0
If M (f) =1 the result is true.

Suppose M (f) �nite then we have fjf j > M (f)g = [
n

�
jf j > M (f) +

1

n

�
but M (f) < M (f) +

1

n
=) 9�n 2 f� � 0 : � fjf j > �g = 0g

with M (f) < �n < M (f) +
1

n
so
�
jf j > M (f) +

1

n

�
� fjf j > �ng and then

�

�
jf j > M (f) +

1

n

�
� � fjf j > �ng = 0;8n, we deduce � fjf j > M (f)g =

�

�
[
n

�
jf j > M (f) +

1

n

��
�
P
n
�

�
jf j > M (f) +

1

n

�
= 0:�

28 Let fn; f : X �! R be measurable functions in the space (X;F ; �) and
suppose that fn converges in measure to f ; if g : R �! R is a uniformly
continuous function prove that the sequence g �fn converges in measure to g �f

solution.
We have to prove that n �!1 =) � (jg � fn � g � f j > �) �! 0;8� > 0
g uniformly continuous implies:
(�) 8� > 0 9� > 0 8 (x; y) 2 R� R jx� yj < � =) jg (x)� g (y)j < �
(��) fn converges in measure to f =) � (jfn � f j > �) �! 0;8� > 0
(�) =) 8� > 0 9� > 0 such that (jg � fn � g � f j > �) � (jfn � f j > �)
then applying � we get � (jg � fn � g � f j > �) � � (jfn � f j > �)
(��) =) lim

n
� (jfn � f j > �) = 0 so we deduce

lim
n
� (jg � fn � g � f j > �) = 0;8� > 0:�
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29.(a) Let (N;P (N) ; �) be the counting measure on N.
If f : N �! [0;1[ is given by f (i) = ai i 2 N prove that:Z
N

f:d� =
P
i

ai

(b) Let � = �x0 be the Dirac measure on the power set P (X) of X.

then for any f : X �! [0;1[,
Z
X

f:d� = f (x0) :

solution. f : N �! [0;1[

(a) Suppose f simple function of the form
nP
1
ai:Ifig then

Z
N

f:d� =
nP
1
ai:� fig

but � fig = 1 since � is the counting measure so
Z
N

f:d� =
nP
1
ai

now take f of the form f = :
P
i

ai:Ifig which is the limit pointwise of the in-

creasing sequence 'n =
nP
1
ai:Ifig, by Beppo-Levy theorem we getZ

N

f:d� = lim
n

Z
N

'n:d� = lim
n

nP
1
ai =

P
i

ai:

(b) Recall that Dirac measure is de�ned on P (X) by

�x0 (A) = IA (x0) =

�
1 if x0 2 A
0 if x0 =2 A

�
so we have �x0 (A) =

Z
X

IA:d�x0 and generalize this formula by usual procedure

to get for any f : X �! [0;1[,
Z
X

f:d�x0 = f (x0) :�

30.Let (fn) be any sequence inM+; prove that
P
n
fn 2M+ and:Z

X

P
n
fn d� =

P
n

Z
X

fn:d�

solution.
nP
1
fi increases to

P
n
fn and use Beppo-Levy Theorem, see the recall.�

31.Let f 2M+

(a) Prove that the set function � : A �!
Z
A

f:d�, de�ned on F is a positive

measure

(b) If g 2M+ prove that
Z
X

g:d� =

Z
X

f:g:d�
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solution.
(a) Let (An) be a pairwise disjoint sequence of sets in F

we have to prove that
Z

[
n
An

f:d� =
P
n

Z
An

f:d�

since the sets An are pairwise disjoint we have I[
n
An
=
P
n
IAn

and f � 0 then

f .I[
n
An
=
P
n
f:IAn

, so we get
Z
X

f .I[
n
An
:d� =

Z
X

P
n
f:IAn

:d� =
P
n

Z
An

f:d�

where the last equality comes from Beppo-Levy Theorem 3.5 (see recall 1)
(b) check (b) for g 2 E+ and apply Beppo-Levy Theorem for g 2M+:�
32.Let (fn) be a sequence in M+ with lim

n
fn (x) = f (x), 8x 2 X for some

f 2M+:Suppose sup
n

Z
X

fn:d� <1, and prove that
Z
X

f:d� <1

solution.
(Apply Fatou Lemma 3.6 see recall 1 )Z

X

lim inf
n

fn d� � lim inf
n

Z
X

fn d� with lim inf
n

fn = lim
n
fn (x) = f (x), 8x 2 X for

some f 2M+ so
Z
X

f:d� � lim inf
n

Z
X

fn d� � sup
n

Z
X

fn:d� <1:�

33.Let (fn) be a decreasing sequence inM+ such thatZ
X

fn0 :d� <1, for some n0 � 1

Prove that lim
n

Z
X

fn d� =

Z
X

lim
n
fn d�

solution.
apply Theorem 3.5 (Recall 1) to the increasing positive sequence (fn0 � fn)
n � n0
indeed we have fn+1 � fn =) fn0 � fn � fn0 � fn+1;8n � n0 and so
lim
n
(fn0 � fn) = fn0 � f

by Theorem 3.5 we deduce lim
n

Z
X

(fn0 � fn) :d� =
Z
X

fn0 :d� � limn

Z
X

fn:d� =Z
X

fn0 :d��
Z
X

f:d� since f 2M+

by the fact
Z
X

fn0 :d� <1, we get limn

Z
X

fn:d� =

Z
X

f:d� �
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34.Let the interval ]0; 1[ of real numbers be endowed with Lebesgue measure.
(Apply Fatou Lemma 3.6 see recall 1 ) to the following sequence:
fn (x) = n; 0 � x � 1

n and fn (x) = 0;
1
n < x < 1:

solution.Z
X

lim inf
n

fn d� � lim inf
n

Z
X

fn d� with lim inf
n

fn = sup :
n
inf
k�n

fk = 0 and
Z
X

fn d� =

1;8n

whence 0 � lim inf
n

Z
X

fn d� � 1:�

35 (continuity of integrals depending on a parameter)

Let T be an interval of R and f : X � T �! R a function such that:
(a) for each t 2 T the function x �! f (x; t) is in L1 (�)
(b) there is g in L1 (�)such thatjf (x; t)j � jg (x)j �� a:e for all t 2 T

if lim
t!t0

:f (x; t) = f (x; t0) then we have lim
t!t0

Z
X

f (x; t) d� =

Z
X

f (x; t0) d�

solution.

Consider the function h : T �! R given by h (t) =
Z
X

f (x; t) d�

we have to prove that lim
t!t0

h (t) = h (t0)

that is the function h is continuous on T which is equivalent to: for any sequence
(tn) with lim

n
tn = t0 we have lim

n
h (tn) = h (t0)

let us observe that the functions un de�ned by un (x) = f (x; tn)

satis�es Theorem.3.7 by (b) and lim :
n
un (x) = f (x; t0), so

Z
X

un:d� = h (tn)

converges to
Z
X

lim :
n
un (x) :d� =

Z
X

f (x; t0) :d� = h (t0) :�

36 (Derivative of integrals depending on a parameter)

Let T be an open set of R and f : X � T �! R a function such that:
(a) for each t 2 T the function x �! f (x; t) is in L1 (�)
(b) the function t �! f (x; t) derivable on T for each x 2 X

(c) there is g 2 L1 (�)
���� ddtf (x; t)

���� � jg (x)j �� a:e for all t 2 T
Then the function t �!

Z
X

f (x; t) d� is di¤erentiable on T

and
d

dt

Z
X

f (x; t) d� =

Z
X

d

dt
f (x; t) d�
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solution.
Let (tn) be a sequence with lim

n
tn = t and de�ne the sequence (gn) of functions

by

gn (x) =
f (x; tn)� f (x; t)

tn � t
then lim

n
gn (x) =

d

dt
f (x; t). By the Mean Value

Theorem

there is �n (x) between tn and t such that gn (x) =
d

dt
f (x; �n (x)).

Now we have lim
n
tn = t so lim

n
�n (x) = t and lim

n
gn (x) =

d

dt
f (x; t). But

jgn (x)j � jg (x)j by (c) then
we can apply Theorem.3.7 to gn (x) with

Z
X

gn (x) :d� =

Z
X

f (x; tn) :d��
Z
X

f (x; t) :d�

tn � t

to get lim
n

Z
X

gn (x) :d� =
d

dt

Z
X

f (x; t) d� =

Z
X

lim
n
gn (x) d� =

Z
X

d

dt
f (x; t) d�:�

37 (Change of variable formula)
Let (X;F ; �) be a measure space and let (Y;G) be a measurable space:
If ' : X �! Y is a measurable mapping from (X;F) into (Y;G) then:
(1) the set function � : G �! [0;1] given by G 2 G; � (G) = �

�
'�1 (G)

�
is a measure on (Y;G)
(2) for every function g : Y �! C, ��integrable the function g�' is ��integrable
and

(�)
Z
Y

g:d� =

Z
X

g � ':d�

(��)
Z
E

g:d� =

Z
'�1(E)

g � ':d� 8E 2 G.

solution.
Apply usual procedure:
start with g simple then g inM+ and �nally g integrable for �:�

38 Measure de�ned by an integral. (see exercise 31 for the proof)
Let (X;F ; �) be a measure space and let f 2M+ then

(a) the set function � : F �! [0;1] given by: A 2 F ; � (A) =
Z
A

f:d�

is a positive measure on F and we have:

(b)

Z
X

g:d� =

Z
X

f:g:d�, for every g 2M+:
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RECALL 2
INTEGRATION IN PRODUCT SPACES
Product Measure and Fubini Theorem

In this part we give without proofs the most important results on product spaces
useful in applications.Proofs are classical and in general simple.

1. Preliminaries and Notations

1.1 In all what follows, (X;F ; �), (Y;G; �) will be �xed measure spaces.
1.2 Let us recall that the product ���eld F 
G on X � Y is generated by the
family fA�B; with A 2 F ; B 2 Gg, (De�nition 3.4 Chapter 1)
1.3 The set R will be endowed with its Borel ���eld BR. The set R2 endowed
with the �-�eld BR2=BR 
 BR(Theorem2.9Chap.3)

2. Product Measure

2.1 De�nition
For any subset E � X � Y and any (x; y) 2 X � Y , de�ne:
the section of E at x, Ex = fy 2 Y; (x; y) 2 X � Y g
the section of E at y, Ey = fx 2 X; (x; y) 2 X � Y g

2.2 Proposition
For every E 2 F 
 G, Ex 2 G and Ey 2 F :
2.3 Theorem
Suppose that the measure � and � are ���nite
then for every E 2 F 
 G, we have:
the function x �! � (Ex) is F measurable
the function y �! � (Ey) is G measurable

Moreover we have
Z
X

� (Ex) d� =

Z
Y

� (Ey) d�

Corollary.(Product measure)
Under the conditions of Theorem 1.6 the set function � 
 � de�ned on F 
 G
by:

�
 � (E) =
Z
X

� (Ex) d� =

Z
Y

� (Ey) d�, E 2 F 
 G

is a ���nite measure on F 
G. Moreover �
 � is the unique ���nite measure
on F 
 G satisfying �
 � (A�B) = � (A) :� (B) for every A 2 F ; B 2 G:

3 Integration in Product Spaces

3.1 De�nition Let f : X�Y �! R be any function and (x; y) 2 X�Y , de�ne:
fx : Y �! R by fx (y) = f (x; y) (section of f at x)
fy : X �! R by fy (x) = f (x; y) (section of f at y)
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3.2 Proposition
Let f : X � Y �! R be F 
 G-measurable then
fx is G-measurable and fy is F-measurable

3.3 Theorem (Fubini)
Suppose that the measure � and � are ���nite and f : X � Y �! R is F 
 G-
measurable positive then:

the function x �!
Z
Y

f (x; y) d� is F-measurable

the function y �!
Z
X

f (x; y) d� is G-measurable

and we have:Z
X�Y

f (x; y) d�
 � =
Z
X

d�

Z
Y

f (x; y) d� =

Z
Y

d�

Z
X

f (x; y) d�

3.4 Theorem (Fubini)
For every f 2 L1 (�
 �) we have:

(a)

Z
Y

f (x; y) d� 2 L1 (�) and
Z
X

f (x; y) d� 2 L1 (�)

(b)

Z
X�Y

f (x; y) d�
 � =
Z
X

d�

Z
Y

f (x; y) d� =

Z
Y

d�

Z
X

f (x; y) d�

3.5 Application. (Convolution of functions)
Let � be the Lebesgue measure on R,BR and f; g : R �! R be functions in
L1 (�), then:Z

R

jf (x� y)j : jg (y)j :d� (y) <1 for each x

Let us de�ne the convolution of f and g by the function h : R �! R:

h (x) =

Z
R

f (x� y) :g (y) :d� (y)

we denote h by h = f � g

Since

������
Z
R

f (x� y) :g (y) :d� (y)

������ �
Z
R

jf (x� y)j : jg (y)j :d� (y) < 1 we deduce

that h 2 L1 (�)
3.6 Lemma
Under the de�nition above we have kf � gk � kfk : kgk :�
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4 Convolution of Measures

4.1 De�nition
Let us consider on the set R2 endowed with the �-�eld BR2=BR 
 BR, the
transformation T : R2 �! R given by T (x; y) = x + y which is measurable
because continuous. Let �1 
 �2 be the product of two �nite measures �1; �2
de�ned on R, BR. The convolution �1 ��2 of the measures �1; �2 is the measure
on BR given by: B 2 BR, (�1 � �2) (B) = (�1 
 �2)

�
T�1 (B)

�
: Then we have:

4.2 Proposition Let B 2 BR and de�ne:�
T�1 (B)

�
x
= fy 2 R; x+ y 2 Bg = B � x�

T�1 (B)
�
y
= fx 2 R; x+ y 2 Bg = B � y

then we get: (�1 � �2) (B) =
R
R :�2 (B � x) :�1 (dx) =

R
R :�1 (B � y) :�2 (dy)

by applying Fubini Theorem and the relation (�1 � �2) (B) = (�1 
 �2)
�
T�1 (B)

�
=R

X�Y :IT�1(B) (x; y) : (�1 
 �2) (dx; dy) :
Moreover if we take a function f : R �! C integrable with respect to �1 � �2
we obtain the following nice relation:R
R f (t) : (�1 � �2) (dt) =

R
R �2 (dy)

R
R f (x+ y) :�1 (dx) =

R
R �1 (dx)

R
R f (x+ y) :�2 (dy)

4.3 Proposition With the de�nitions above we have:
(1) �1 � �2 = �2 � �1
(2) (�1 � �2) (R) = (�1 
 �2)

�
T�1 (R)

�
= (�1 
 �2)

�
R2
�
= �1 (R) :�2 (R)

(3) �1 � �0 = �0 � �1 = �1, �0 is the Dirac measure at 0:�
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