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Abstractl

The primary goal of this work is to present the various concepts of the Fredholm theory
and their perturbations in Banach spaces, as well as definitions of the essential spectrum
found in the mathematical literature, beginning with Weyl’s fundamental work. This the-
ory has been investigated in relation to various classes of bounded operators defined by
kernels and closed ranges. In order to construct these studies, we touched on a number of
concepts and theories related to the algebraic properties of the kernel and range, and we had
to present the majority of the concepts related to operators with closed range. All of this is
covered in greater depth in the monograph work mentioned in the introduction. And we
didn’t forget to supplement the studies with some useful examples to help you understand

more.

Résumél

L'objectif principal de ce travail est de présenter les différents concepts de la théorie
de Fredholm et leurs perturbations dans les espaces de Banach, ainsi que les définitions
du spectre essentiel trouvées dans la littérature mathématique, en commencant par les
travaux fondamentaux de Weyl. Cette théorie a été étudiée en relation avec diverses classes
d’opérateurs bornés définis par des noyaux et des images fermées.

Afin de construire ces études, nous avons abordé un certain nombre de concepts et de
théories liés aux propriétés algébriques du noyau et du domaine, et nous avons di présenter
la majorité des concepts liés aux opérateurs a domaine fermé. Tout cela est traité plus en
profondeur dans l'ouvrage monographique mentionné en introduction. Nous n’avons pas
oublié de compléter les études avec quelques exemples utiles pour vous aider a mieux com-

prendre.
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INTRODUCTION

The purpose of this work is to introduce the Fredholm theory of bounded linear oper-
ators defined on Banach spaces. The main points of interest are Fredholm operators and
semi-Fredholm operators, but we also look at some of their generalizations recently investi-
gated.

The purpose of this thesis is to present a survey of results pertaining to various types of
Fredholm theory that can be found in the form of research papers scattered throughout the
literature.

To accomplish this goal, we tackled the following tasks: Kato and Kato type operators
are essentially described by their properties and relationships to other known classes of
operators. In addition, a definition of the generalised Kato decomposition for bounded
operators on Banach spaces is introduced. This decomposition property results from the
classical treatment of perturbation theory of Kato [36] has greatly benefited from the work
of many authors in the last ten years, particularly Mbekhta [37], [38] and Muller [39].

The operators that satisfy this property belong to a class that includes semi-Fredholm
operators. Definitions of essential spectra: Fredholm, Weyl, and Browder, as well as B-
Fredholm and quasi-Fredholm classes, are provided, as are many other concepts that will
be addressed in the monograph of this work. This monograph’s architecture will be dis-
cussed in greater depth. This work is divided into three chapters: The first chapter The
theory has been examined in connection with various classes of linear (resp: bounded) op-
erators defined by means of kernels and ranges, that is why we presented the first chapter
in the name of Kernel and Range generalisation , in which we introduce the various re-
lationships between the kernel and the range, which led us to define important invariant
subspaces called hyper-kernel and hyper-range, denoted by N (T)* and R*™(T) respec-
tively. The beginning of this chapter contains also an important proprieties of some classical
algebraic quantities associated with an operator, such as the ascent, the descent , the nul-
lity , and deficiency of an operator. These quantities are the basic bricks in the construction

of the most important classes of linear operators.



The second chapter: The theory has been also examined in connection with various
classes of bounded operators defined with closed ranges in Banach spaces. Therefore as
a second chapter, we presented operators with closed range and decomposition. There-
fore , we discussed theories about operators that have the same properties, and they were
mentioned above (Kato, essentially Kato and Kato type operators). In addition to the min-
imum modulus theories that serve this. we also dealt with a light study on the bounded
below operators . But the most important and important work was about compact opera-
tors and Riesz-schauder theory,because it is considered a watershed step for the study of

the classical Fredholm theory deals with the solution of an equation of the type

b
x(s) = p(s) + Af K(s,t) x()dt  (a<s<b),

a
where k is given continuous scalar function of two real variables with domain [a,b] x
[a,b], v is a given continuous scalar function of a single real variable with domain [a,b],
A is a scalar, and the continuous x scalar function of a single real variable with domain
[a,b] is to be determined ( in much of the literature the scalars are taken to be real, but the
extension to complex scalars is straightforward). Such an equation is known as a Fredholm
integral equation . we call the function k the Fredholm-kernel of the equation ( and of

the associated integral operator K given by the equation

b
K(s) = J k(s t) x(t)dt (a<s<b),

for every continuous scalar function x with domain [a,b].

We also introduced a new concept in the decomposition of operators called Kato de-
composition, which allowed us to provide a short overview about a invariant subspaces (
analytic cor and quasi-nilpotant part, these concepts have been studied by [??] ,[??] and
[?2?]. At the end of this chapter, we presented general concepts about closed operators in

order to generalize the concepts of Fredholm theory later.

The third chapter: The third chapter, called Fredholm theory, is the core of this work
its concepts based precisely on the concepts of the previous tow chapters. We give a survey
of results concerning various types of Fredholm, semi-Fredholm, Weyl, Browder, quasi-
Fredholm and B-Fredholm operators etc. A section of this chapter is also devoted to study
some perturbation ideals which accur in Fredholm theory . In particular we study the
class of compact perturbations, and some relationships between these classes and Calkin
algebra. In the last chapter, we provided an overview of the concepts of the essential spec-
tra,because the theory of the essential spectra of linear operators in Banach space is a mod-
ern section of spectral analysis widely used in the mathematical and physical sense when
when resolving a number of applications that can be formulated in terms of linear operators.

Within the spectral theory lie a vast number of essential spectra defined for an individual



operators, that have been introduced and investigated extensively.
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CHAPTER 1

KERNEL AND RANGE GENERALISATION

In this chapter we recall the basic algebraic properties kernel and range of a linear op-
erator in a vector spaces. Let us start by setting the stage, introducing the basic notions
necessary to study linear operators. Through this monograph, an operator means a linear
transformation defined on vector space. Although many of the results in these monograph
are valid for real vector spaces. we always assume that all vector spaces are complex infinite-
dimensional vector spaces. It can be said that these notions can also be generalized to the
complex infinite-dimensional Banach space.First we study the most important properties of
the kernel and rang of the power T" . Next that we present classical quantities associated
with an operator. These quantities, such as the ascent, descent, the nullity and the deficiency

of an operator are defined in the first and second section .

1.1 Algebraic properties of kernel and range

Let X and ) be two vector spaces over the real or complex numbers (over filed
K = {R,C} ) and L(X,)) the set of linear operators from X into )Y, if X =) we
put L(X)=L(X,X).For Te L(X,)) we denote by D(T) < X its domain, KerT = {x €
D(T), Tx =0} its kernel and R(T) = {Tx, x e D(T)} its range. By induction we define
the iterates T2, T2--- . For n > 1, T" is the linear operator with domain

D(T”)z{xeD(T) . Tkxe D(T), k=1,~-~,n—1},

and such that for each x in D(T")

T"x = T(T" 'x).
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Also we define T? =1 is the identity operator from X into X, then we have D(T?) = X
KerT® = {0} ,and R(T®) =X .If n>1:
KerT" = {x e D(T"), T'x= o},

and

R(T") = {T”x, xe D(T”)};

If n=0:

T =1, D(T%) = &, KerT® = {0}, and R(T?) = X.

Let n and m be non-negative integers. Then x € D(T"*™) if and only if T" € D(T™),

and in this case

Tm (TTZ) _ TTH-mx'

1.1.1 The subspaces KerT" and R(T")

We will see that the kernels and the ranges of the iterates of a linear operator T, defined
on a vector space X, form two increasing and decreasing chains, respectively. In this section
we shall consider operators for which one, or both, of these chains becomes constant at some
neIN.

The kernels and the ranges of the power T" of a linear operator T on a vector space X

form the following two sequences of subspaces:

KerT? = {0} < KerT < KerT? < - --
and

R(TH =X 2R(T) 2R(T?) 2---.

Generally all these inclusions are strict. For every ne€ Ny . Thus {KerT"} and {R(T)}
are non-decreasing and non-increasing (in the inclusion ordering) sequences of subsets of

A, respectively.

[Lemma 1.1. : KerT" and R(T") are T-invariant subspaces of X for each ne IN.

»Proof:
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The kernel space of T" is a T-invariant subspace of X, thatis, T(KerT") < KerT" for
every positive integer n. Indeed, if x € KerT", then T"x = 0 and therefore, T"(Tx) =
T(T"x) =0, i.e. Txe KerT".

R(T") The rang space of T" is a T-invariant subspace of &, that

T(R(T")) = R(T"1) < R(T").

The following proposition shows the stability of kernel and range.

Proposition 1.1. : Let p be an arbitrary integer in IN|,.

1. If KerTP*! =KerTP, then KerT"*! = KerT", forevery n=>p;

2. If R(TPTY) =R(TP) , then R(T"1) = R(T"), for every n = p.

»Proof:

(1). Rewrite the statements in (1) as follows.
KerTPT! = KerTP — KerTPT*+1 — KerTPH* for every k > 0.

The claimed result holds trivially for k = 0. Suppose it holds for some k > 0. Take an arbi-
trary x € KerTP*K+2 5o that TPTF1(Tx) = TPT%*2x = 0. Thus Tx € KerTP+*+1 = KerTP+k
and so TP+k+lx — TP+K(Tx) = 0, which implies x € KerTP*k*1, Hence KerTP+k+2 ¢
KerTP*5+1 However, KerTP+k+1 < KerTP™5+2 since {KerT"} is nondecreasing, and there-
fore KerTP+k+2 — KerTP***1 Then the claimed result holds for k + 1 whenever it holds for

k, which completes the proof of (1) by induction.

(2). Rewrite the statements in (2) as follows.
R(TPHY) = R(TP) — R(TPHF1) = R(TPHK) for every k > 1.

The claimed result holds trivially for k = 0. Suppose it holds for some integer k > 0. Take
an arbitrary y € R(TPHK+1) so that y = TPH*+1x = T(TP*x) for some x € E, and hence
v = Tu for some u € R(TPTX). If R(TP*K) = R(TPT*+1), then u e R(TPH**1), and soy =
T(TP*k+1y) for some v € E. Thus y € R(TPH**2). Therefore R(TPH**1) < R(TP+*+2). Since
the sequence {R(T)} is nonincreasing we get R(TPT*+2) < R(TP*¥*1). Hence R(TPT¥+2) =
R(TP+k+1) Thus the claimed result holds for k+1 whenever it holds for k, which completes
the proof of (2) by induction.
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The next results exhibit some useful connections between the kernels and the ranges of
the iterates T" of an operator T on a vector space X.

Corollary 1.1. : For every T € L(X), on a vector space X . then

1. If KerT = {0} then KerT" ={0}, forall n=0;

2. If R(T) =X then R(T") =X, forall n>0.

Remark 1.1. : We can observe that, if T is injective ( resp: surjective) then T" is also injective (
resp: surjective). As a result if T is bijective , then T" is also bijective.

Lemma 1.2. ([4], Lemma 1.4 ): For every T € L(X) on a vector space X we have .

T™(KerT"*™) = R(T™) n KerT" for all m,n e IN.

»Proof:

If we take x € KerT"*"™ then we have T"x € R(T™) and T"(T"x) = 0, so that T"(KerT"*t™) <
R(T™) N KerT™".

Cnversely, if p € R(T™) n KerT" ,then y = T"x and x € KerT"*™ ,so the opposite
inclusion is verified.

Theorem 1.1. ([4], Theorem 1.5): Let X be a vector space and T € L(X) , the following
statements are equivalent

1. KerT < R(T™) for each m € IN;
2. KerT" < R(T) for each n € IN;

3. KerT" = R(T™) for each (n,m) € IN?;

4. KerT" = T™(KerT"*™) for each (n,m) € N2,

»Proof:

4 = 3 : If we apply Lemma 1.2 m we obtain that for each ne IN
KerT" = T"(KerT"™™) = R(T™) n KerT" < R(T™).

3 =2: Wehave R(T") < R(T), so we obtain that KerT" < R(T) for each n € IN.
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2 = 1: If we apply the inclusion (2) to the operator T™ we obtain Ker(T™)" < R(T™)
and hence KerT < R(T"™), since KerT < KerT™" .

1= 4: If we apply the inclusion (1) to the operator T" we obtain
Ker(T") < R((T")™) < R(T").
By Lemmal.2 we then have

T" (KerT"*") = R(T™) n KerT" = KerT",
so the proof is complete.

~

Lemma 1.3. : Let X be a vector space and T € L(X), for all n€ N and if KerT < R(T") Then

there exist m € IN such that :

KerT n R(T™) = KerT n R(T"*K), forall ke N. (1.1)

J

»Proof:
Obviously, if KerT < R(T") for all n € N, then

KerT A R(T") = KerT n R(T"K) = KerT,

for all integers k > 0.

Remark 1.2. : If one of the Theorem 1.1 statements is valid , then (1.1) remains true.

Definition 1.1. : Let X be a vector space and T € L(X).Then

the hyper-rang of T is the subspace

R*(T) = ] R(T").
nelN
The hyper-kernel of T is the subspace

NZ(T) = | ] KerT",

nelN
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Corollary 1.2. : R®(T) and N*(T) are T-invariant subspaces of X(i.e: T(R*(T)) < R*(T)
and T(N®(T)) € N*(T)), but generally are not closed.

»Proof:
The prove follows immediately from Definition1.1 and Lemmal.1.

Lemma 1.4. : Let Te L(X). If there exist me IN such that (1.1) holds , then

KerT" nR(T™) = R®(T), forall n>1. (1.2)

»Proof:
To prove (1.2), we proceed by indication , the hypotheses implies that

KerT" A R(T™) < R(T™*F), for all k.

On other hand KerT" n R(T™) < N /R(T?) . hence KerT" nR(T™) < n? R(T), this
proved the case n=1 . Now assume that the equality (1.2) is vitrified for n. Let x € KerT"+! n
R(T™) and k = m then

x € KerT" "1 AR(T™) = xeKerT"! and xeR(T™)
= Txe KerT" and T"y=x, yeX
= Tx € KerT" and T"*y =Tx, ye X
= Tx € KerT" n R(T™).

And by the hypotheses of induction we have KerT"nR(T™) < R(T"**), hence Tx = Tk+1y,
pyeX and x —Try e KerT, so x = Tfy + u, u € KerT, since k = m then u e R(T™), so
x € R(TF) + (R(T™) n KerT) = R(T¥). Hence KerT"+! n R(T™) c R(T¥), for all k = m. This
proves (1.2).

Proposition 1.2. : Let T € L(X), X be a vector space and k is a fixed negative integer, then
The sequence of subspaces {R(T") n KerT} is constant for n > k, if and only if R(T*) A KerT =
R*(T) n KerT.

»Proof:

It is clear that if R(T*) n KerT = R®(T) n KerT then The sequence {R(T") N KerT} is
constant for n>k .

Conversely, if The sequence of subspaces {R(T") n KerT} is constant for n > k, then
R(T") 2 R(T*) n KerT for all n > k, so that R(T®) 2 R(T¥) n KerT, which clearly implies
that R(T*) n KerT = R*(T) n KerT.
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Proposition 1.3. : Let T € L(X), X be a vector space and k is a fixed negative integer, then The
sequence {R(T")+ KerT} is constant for n >k, if and only if R(T¥) + KerT = R*(T) + KerT.

»Proof:

It is clear that if R(T*)+ KerT = R*(T) + KerT. then The sequence {R(T")+ KerT} is
constant for n>k .

Conversely, if sequence {R(T")+KerT} is constant for n >k, then R(T") 2 R(TX)+KerT
for all n > k, so that R(T®) 2 R(T¥) + KerT, which clearly implies that R(T¥) + KerT =
R*(T) + KerT.

Remark 1.3. : The statements of Proposition1.2 and Propositionl.3 are equivalent.

~\

Corollary 1.3. ([4], Corollary 1.6): Let X be a vector space and T € L(X). Then the statements

of Theorem1.1 are equivalent to each of the following inclusions:
1. KerT < R*(T);
2. N®(T) < R(T);

3. N*®(T) € R*(T).

Remark 1.4. : We can observe that if one of the Corollaryl.3 statements is valid, then (1.1)

remains valid.

Proposition 1.4. : Let T e L(X). If there exist m e N such that (1.1) holds , then

T(R®(T)) = R®(T).

»Proof:

The fact that R*(T) is invariant by T (see Corollaryl.2), then the proof is done if we
show that R®(T) < T(R*(T)). Let ye R*(T) then y e R(T"), for every ne N, so there
exists x; € X' such that y = T"**x; for every ke IN. If we set

zp =T"x; —T" 1y, keN.
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Then z; € R(T™) and since Tz = T"*+1x; — T"*kx =y —y = 0, we also have z; € KerT,
thus z; € R(T") n KerT and since R(T"%) A KerT < R(T"+k~1) A KerT we deduce that
z; € R(T™+k=1), This implies that

v =T"x; =z + T" " 1 e R(T™KY), forall keN

and therefore y € R*(T), we may conclude that R*(T) < T(R®(T)), then R*(T) =
T(R*(T)).

]
The notion of hyper-rang and hyper-kernel holds for every bounded operator of a normed

space (resp: Banach space) into itself . So when X is a normed space and T is bounded

linear operator, then the subspaces KerT" are closed , but there is nothing to suggest that
either N*(T) or R™(T) should be closed .

Theorem 1.2. : if X' is a normed space, and T is bounded linear operator . Then

T Y (N®(T)) € N*°(T).

»Proof:
Observe that if ne N is arbitrary and x € X' then
Tx € KerT" —> x € KerT""! < N°(T).
Therefore T™1(N*®(T)) € N°(T).

. If S is bounded linear operator commutes with T, then

S(R®(T)) € R®(T) and  S(N®(T)) < N°(T).

Theorem 1.3. ([12], Theorem 7.8.3): if X is a normed space, and T is bounded linear operator

~\

The following subspace, is important T-invariant sub-spaces, is called the algebraic core
C(T) of T is defined to be the largest linear subspace M such that T(M) = M. Of
course if T is surjective then C(T) =X and in general for every T € £L(X) we have C(T) =
T"(C(T)) < R(T") for all ne IN. From that it follows that C(T) € R*(T). and we have:

C(T)z{xeX: I(xy)n<co <X, x9=x and Tx, =x,—1 Vn}l}.

we will prove this statement in the next theorem.
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=~

Theorem 1.4. ([4], Theorem 1.8): For a linear operator T on a vector space X the following

statements are equivalent:

1. xeC(T);

2. There exists a sequence (u,) < X such that x =uy and Tu, | =u, forevery neZ" .

»Proof:

Let M denote the set of all x € X for which there exists a sequence (u,) < X such that
x=ug and Tu,,, =u, forall ne Z". We show first that C(T) = M.

Let x € C(T). From the equality T(C(T)) = C(T), we obtain that there is an element
u; € C(T) such that x = Tu; . Since u; € C(T), the same equality implies that there exists
u, € C(T) such that u; = Tu,. By repeating this process we can find the desired sequence
(u,), with n e Z*, for which x = uy and Tu, ; = u,. Therefore C(T)< M. Conversely, to
show the inclusion M < C(T) it suffices to prove, since M is a linear subspace of X, that
T(M) = M.

Let xe M and let (u,), n€ Z", be a sequence for which x = uy and Tu,; = u,. Define
(w,) by

wy=Tx and w,, :=u,_;,neZ*.

Then

wy =y =Tu, =Tw, 1,

and hence the sequence satisfies the definition of M. Hence wy = Tx € M, and therefore
T(M) < M. On the other hand, to prove the opposite inclusion, M < T(M), let us consider
an arbitrary element x € M and let (u,,),cz+ be a sequence such that the equalities x = 1
and Tu,,; = u, hold for every (ne€ Z*) Since x = ug = Tu; it suffices to verify that

uy € M. To see that let us consider the following sequence:
wo:=up and w, 1= U, .
Then
w, =uy 1 =T, r=Tw,, forall neZ",

and hence u; belongs to M. Therefore M < T(M), and hence M = T(M).

Lemma 1.5. : Let T,S € L(X) such that TS = ST, then

C(TS) < C(T) A C(S).
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»Proof:

Let x € C(TS), then there exists (x,),>o =X such that xo = x, TSx,, = x,,_1. Let (v,,),>0
be defined by 1y, = S"x,, then y, = xy = x, hence Ty, = TS"x, = TS" x,_; = v,_1,
consequently x € C(T). Similarly we have x € C(S) .

[ Corollary 1.4. : Let T,Se€ L(X), then C(T)=C(T"), forall n>IN. ]

The next result shows that under certain purely algebraic conditions the algebraic core

and the hyper-range of an operator coincide.

Lemma 1.6. ( [4], Lemma 1.9.): Let T be a linear operator on vector space X. Suppose that

there exists an m € IN such that

Ker(T) n R(T™) = Ker(T) n R(T™ %) for all integers k > 0.

Then C(T)=R>*(T)

»Proof:
We have only to prove that R*(T) < C(T). By Proposition1.4 we show that T(R*(T)) =
R*(T). Evidently the inclusion T(R*(T)) < R*(T) holds for every linear operator, so we

need only to prove the opposite inclusion. Let
D = Ker(T) n R(T™).
Obviously we have
D = Ker(T) nR(T™) = Ker(T) n R*(T).

Let us now consider an element y € R*(T). Then y € R(T") for each n €N, so there

exists an x; € X such that y = T x;, for every ke IN. If we set

zp =T"x —T" " 1x,  (keN),

then z, € R(T™) and since

Tz = Ty — Ty —p—y =0,

we also have z; € Ker(T). Thus z; € D, and from the inclusion

D = Ker(T) n R(T"+F) < Ker(T) n R(T™+F1),

it follows that z; € R(T"**~1). This implies that
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mel —z; +Tm+k_1Xk c R(Tm+k_1),

for each k €N, and therefore T"x; € R*(T). Finally, from

T(T"x;) =T x; = v,

we may conclude that y € T(R®(T)). Therefore R*(T) < T(R™(T)), so the proof is

complete.

|
Proposition 1.5. : Let Te L(X), if KerT < R(T"). Then
C(T) = R™(T).
»Proof:
These results immediately follows from Lemma 1.3 and Lemmal.6 .
|

Remark 1.5. : We can note that, if one of the Theorem 1.1 or Corollary 1.3 statements is valid,
then C(T) = R*(T) remains valid.

1.1.2 Ascent and descent of an operator

We have already seen that the kernels and the ranges of the iterates of a linear operator
T, defined on a vector space X, form two increasing and decreasing chains, respectively.
In this section we shall consider operators for which one, or both, of these chains becomes

constant at some n e IN.

Now we will define very important classical algebraic quantities associated with an op-

erator. They are the ascent and the descent.



1.1. ALGEBRAIC PROPERTIES OF KERNEL AND RANGE 15

Definition 1.2. : Let Ny = Ny U +{0} denote the set of all extended non-negative integers
with its natural (extended) ordering. The ascent and descent of an operator T € L(X) are defined

as follows.

The ascent of T, asc(T), is the least (extended) non-negative integer for which KerT"t1 = KerT":

asc(T) = inf{n e Ny : KerT"*1 = KerT”}.

and the descent of T, dsc(T), is the least (extended) non-negative integer for which
R(T™1) = R(T™):

dsc(T) = inf{n e Ny : R(T™!) = R(T")}.

we can write also, T is said to have finite ascent if N ®(T) = KerT* for some positive

integer k. Analogously, T is said to have finite descent if R*(T) = R(T¥) for some k.

Remark 1.6. : Take any operator T € L(X') on a vector space X. Then we have the following

notions
asc(T) =n < oo < KerT""! = KerT" and dsc(T) =n <o < R(T") =R(T");
asc(T) = oo & KerT" ¢ KerT"! and dsc(T) =0 < R(T") 2 R(T"+1).

All following results are originally taken from Definition 1.2.

Now we give examples of descent and ascent of operators defined on ¢F (1 < p < x0),
the Banach space of all p-summable sequences ( bounded sequences for p = c0) of complex

numbers under the stander p-norm on it.

Example 1.1. : Let T be defined by Tx =y, where x = (x,,),>0 and v = (v,)n>o are related by

Xpio if nisodd
Yy = xg if n=20,2
Xp_p if mnisevenand n>4
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Then for each ne N, e, , € Ker(T"1) whilst e, , ¢ Ker(T"). Hence Ker(T") # Ker(T"*1),
asc(T) = oo. Further for each neIN, R(T) = {(yn) elP(IN) :y9 = yz}, and

R(T?) = {(yn) €elP(N) 199 =19y, = y4} and so on ...e.g. Thus R(T") # R(T"T!) for each

n>=1 . Hence dsc(T) = .

Proposition 1.6. ([16], Lemma 1.4.1): Take any operator T € L(X) on a vector space X . Then

If asc(T) < w0 and dsc(T) = 0, then. asc(T) = 0.

»Proof:

Suppose that the conclusion is false. Then there exists x; € X, x # 0 with T(x;) = 0.
Inasmuch as R(T) = X there exists x, € X with T(x;) = x; induction we define a
sequence {x,} € X with T(x,,;) =x, for each n > 1. But then T"(x,,;) = x; whereas
T"*!(x,,1) =0 Thus x,.; € KerT"*! and x,,, ¢ KerT" for each n.

which is contrary to the hypothesis that asc(T) < oo.
]

Remark 1.7. : The ascent of T is null if and only if T is injective, and the descent of T is null if
and only if T is surjective. Indeed, since KerT = {0} and R(T) =X,

asc(T) = 0 < KerT = {0}.

dsc(T) =0«<= R(T) = X.

Example 1.2. : Let T be defined by Tx =y, where x = (x,,),=0 and v = (v,)n>o are related by

xXo 1 n=20,1
yn:{ 0 f

x, if nx=1

T is injective. Hence asc(T) = 0. Further for each n > 1, R(T") = {(})n>n>0 ell :yg=y =
Pp == yn}, Thus R(T") # R(T"*1). Therefore dsc(T) = .

Example 1.3. : Let T, denote the right shift operator defined by T,(x) =y, where x = (x,) €
C2(N) and y = (y,) € €2(N) are related by
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T, is injective. Hence asc(T,) = 0. Further for each ne N, R(T}) = {(yn) e 2(N) :

(19295.-) = (0,0,0,x1,30,..) }, and R(TF) = {(9,) € C(N) = (91,92,93...) = (0,0,0,%1,%5,...) |
n.th n+1.th
Thus R(T?) # R(T!) . Therefore dsc(T,) = .

Example 1.4. : Let T; denote the left shift operator defined by T;(x) =y, where x = (x,) €
C2(N) and y = (y,) € €2(N) are related by

Tli 52 i 52

x — T(x) =(x,x3,...)

T, is surjective. Hence dsc(T;) = 0. Further it is easily seen that e, | € Ker(T?H) whilst
en+1 ¢ Ker(T}) for every ne N, thus Ker(T}) # Ker(T?H), so asc(T;) = 0.

Since T, and T, are each one the adjoint of the other, then we have

dsc(T;) =asc(T,)=0 and  asc(T;) =dsc(T,) = .

It is obvious that the sum M + N of two linear subspaces M and N of a vector X
space is again a linear subspace. If M N = {0} then this sum is called the direct sum of
M and N and will be denoted by M@ N. In this case for every z=x+yin M+ N the
components x,y are uniquely determined. If X = M@®N then N is called an algebraic
complement of M. In this case the (Hamel) basis of & is the union of the basis of M
with the basis of N. It is obvious that every subspace of a vector space admits at least one

algebraic complement.

Lemma 1.7. : Let T e L(X) and X be a vector space . For natural m € N, then we have:

asc(T) <m < o if and only if for every n € IN we have R(T™) n KerT" = {0}.

»Proof:

Suppose asc(T) <m < and ne€IN any natural number. Consider an element
y € R(T™) n KerT". Then there exists y € X such that y = T"x and T"y = 0. From that we
obtain T"*"x = T"y = 0 and therefore x € KerT"*" = KerT™. Hence y = T"x = 0.
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Conversely, suppose R(T™)nKerT" = {0} for some natural m and let x € KerT™ "1, Then

T"x € KerT and therefore
T"x e R(T™) n KerT < R(T™) n KerT" = {0}.

Hence x € KerT™. We have shown that KerT™*! < KerT™. Since the opposite inclusion is
verified for all operators we conclude that KerT™*! = KerT™, this will imply that asc(T) <

m < 0.

Lemma1.8. : Let T € L(X') and X be a vector space. For natural m € N, then we have: dsc(T) <
m < oo if and only if for every n € IN there exists a subspace Y, < KerT™, Y, n R(T") = {0},
such that X =Y, ®R(T").

»Proof:

Let k = dsc(T) < m <o and Y be a complementary subspace to R(T") in X. Let
{xj:j €]} be a basis of Y. For every element x; of the basis there exists, since T*(Y) <
R(T*) = R(TK*"), an element yj € X such that Tk Tk+”y Set zj = xj — Ty;. Then

TFz; = Thx; - TF "y, = 0.

From this it follows that the linear subspace Y,, generated by the elements z; is contained
in KerT* and a fortiori in KerT™. From the decomposition Y @R (T") = X we obtain for

every x € X' a representation of the form

Xx=Y A+ T = > Aj(zj+ T'y) + Tp = Y Az + Tz,
jeJ j€J jel
so X =Y, +R(T"). We show that this sum is direct. Indeed, suppose that x € Y, nR(T").
Then x =} ;) ujz; = T"v for some v e X, and therefore

Zijj = Zij”y]- +T'v e R(T").
J€] J€J
From the decomposition X = Y @ R(T") we then obtain that pu; = 0 forall je] and
hence x = 0. Therefore Y, is a complement of R(T") contained in KerT™.
Conversely, It will suffice to prove that that R(T™) = R(T"*") if for n € N the subspace
R(T") has a complement Y, < KerT™ then

R(T™) =T"™(Y,) +R(T"") = R(T"*™).

And therefore dsc(T) < m.
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Theorem 1.5. ( [4], Theorem 3.3): Let X be a vector space and T € L(X). Then

If asc(T) < oo and dsc(T) < oo. then asc(T) = dsc(T).

»Proof:

Set n = asc(T) < oo and m = dsc(T) < o . Assume first that n < m, so that the
inclusion R(T™) < R(T") holds. Obviously we may assume m > 0. From Lemma 1.8
we have X' = KerT™ + R(T™), so every element y = T"(x) € R(T") admits the decompo-
sition y = z 4+ T"w, with z € KerT" . From z = T"x — T"w € R(T™) we then obtain
thatz € KerT™ n R(T™) and hence the last intersection is {0} by Lemmal.7. Therefore
y = T"w € R(T™) and this shows the equality R(T") = R(T"), from whence we obtain

m > n, so that n = m.

Assume now that m < n and n > 0, so that KerT" < KerT". From Lemma 1.8 we have
X = KerT™ + R(T"), so that an arbitrary element x of KerT" admits the representation
x = u + T"v, with u € KerT™. From T"x = T"u = 0 it then follows that T?"v = 0, so that
v € KerT?" = KerT". Hence T"v = 0 and consequently x = u € KerT™. This shows that

KerT™ = KerT", hence n > m. Therefore n = m.

Example 1.5. : Let T be defined by Tx =y, where x = (x,,),=0 and v = (V,)n>o are related by

Xy11 if mniseven
Yn = . .
X, if mnisodd.

Then KerT = KerT? = {(xn)@() el : x3,.1 =0 foreach ne ]N}. Hence asc(T) =1,
Also R(T) = R(T?) = {(yn)n>0 €lP : vy, =Vruy1 foreach ne IN}. Therefore dsc(T) = 1.

Corollary 1.5. : Let X be a vector space and T € L(X). Then

If dsc(T) < and asc(T) =0, then dsc(T)=0.

Example 1.6. : a simple example is bijective operators which is injective and surjective in same

time this operators will have null ascent and descent.

Given n € N, we denote by T, = T\g(» the restriction of T € L(X) on the subspace
R(T"). Observe that
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KerT, .| = KerT nR(T"™!) € KerT n R(T") = KerT,, for allne NN, (1.3)

and

R(T)) =R(T"™) =R(T},) for all n,meN. (1.4)

~

Lemma 1.9. : Let Te L(X), X be a vector space. Then the following statements are equivalent:
1. asc(T) < w;

2. there exists n e IN such that T, is injective;

Q0.

3. there exists n € N such that asc(T,)

»Proof:

(1)=(2) . If m = asc(T) < w0, by Lemma 1.7 then KerT,, = KerT n R(T™) = {0}. Con-
versely, suppose that KerT, = {0}, for some n e IN. If x € KerT""! then T(T"x) = 0,
SO

T"x € KerT n R(T") = KerT,, = {0}.
Hence x € KerT,,. This shows that KerT"+! < KerT". The opposite inclusion is true for

every operator, thus KerT"™! = KerT" and consequently asc(T) < n.

(2)«<(3) . The implication (2) = (3) is obvious. To show the opposite implication,
suppose that p = asc(T,) < 0. By Lemma 1.7 we then have:

{0} = KerT,, n R(Th) = (KerT n R(T")) n R(TH)
= (KerT) nR(T}) = KerT n R(TP*") = KerT ).

so that the equivalence (2)<(3) is proved.

A similar result holds for the descent,
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=~

Lemma 1.10. : Let Te L(X), X be avector space. Then the following statements are equivalent:
1. dsc(T) < oo;
2. there exists n € IN such that T, is onto;

3. there exists n €N such that dsc(T,) = w

»Proof:
(1)<(2) . Suppose that m = dsc(T) < oo. Then

R(T") = R(T"*!) = T(R(T™)) = R(T,),

hence T, is onto. Conversely, if T, is onto for some ne€IN the

R(T™!) = T(R(T")) = R(T,) = R(T"),
thus dsc(T) < n.
The implication (2) = (3) is obvious. We show (3) = (1). Suppose that g = dsc(T,) < ©
for some ne IN. Then R(T}) = R(TZH), so R(T"9) = R(T"*971), hence dsc(T) <n+gq.

Remark 1.8. : As observed in the proof of Lemma 1.9, if m = asc(T) < oo then KerTy = {0} and
hence KerT; = {0} forall i = m. Conversely, if KerT, = {0} for some neIN then asc(T) <
and asc(T) < n. Hence, if asc(T) < oo we have
asc(T) = inf{n eIN : T, is injective }
Analogously, As observed in the proof of Lemma 1.10, if m = dsc(T) < oo then T; is surjective

for all i = m. Conversely, if T, is onto for some n€IN then dsc(T) < n, so that

dsc(T) = inf{n eIN : T, isonto }

' A

Proposition 1.7. : Suppose that T € L(X) on a vector space X. If n=asc(T)=dsc(T) <o

then we have the decomposition
X =KerT"®@R(T").

Conversely, if for a natural number n we have the decomposition X = KerT" @ R(T") then

asc(T) = dsc(T) < n. In this case T,, is bijective.
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»Proof:

If n < o0 and we may assume that n > 0, then the decomposition X = KerT" @ R(T")
immediately follows from Lemmal.7, Lemmal.9 and Lemma 1.10.

If we denote by T, the restriction of T to R(T"), then by Lemmal.9and Lemma??
T, is injective and onto itself, hence it is bijective. Conversely, if X = KerT" @ R(T") is
valid, then asc(T),dsc(T) < n by Lemmal.7 and Lemmal.8, and so asc(T) = dsc(T) <
n by Theorem1.5. If asc(T) = dsc(T) = n < o (where we may assume n > 0), then

decomposition X = KerT" @ R(T") immediately follows from Lemmal.7 and Lemmal.8.
|

The notion of ascent and descent holds for every bounded transformation of a Banach

space into itself.

Theorem 1.6. : Let E be a banach space over filed K € {IR,C}, take any bounded operator T in
E with closed rang. So R(T") is closed then we have the topological direct sum:

if asc(T) =dsc(T) =n < o then E =KerT"®@R(T").

»Proof:
If asc(T) < o and dsc(T) =n < o, then E = KerT" @ R(T") is direct algebraic sum by
Theorem1.7, T" is a bounded operator. Therefore, KerT" is closed subspace of E, which

is a Banach space, then the topological direct sum E = KerT" @ R(T") is verified.

1.1.3 The nullity and deficiency of an operator

The codimension of subspace M of a vector space X is the dimension of the quotient space
X /M, it is denoted by codim M, therefore:

codim(M) = dim (X' /M).

In addition, let X be a vector space, when M is a subspace of X' then, codimension of
M is equal to the dimension of any algebraic complement of M in X, which coincides with

demention of the quotient space X'/ M.One has

dim(M) + dim(X /M) = dim(M) + codim(M) = dimX.
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Definition 1.3. : Let T an operator on a vector space X. Then
The nullity of T is the positive integer defined by

a(T) = dimKerT.

The deficiency of T is the positive defined integer by

B(T) = codimR(T).

Let A(X) denote the set of all linear operators on vector space X, for which «a(T)
and B(T) are both finite. With every operator T € A(X) of finite nullity and deficiency one

associates its index, which is the integer

ind(T) = a(T) — B(T).

Example 1.7. : Let X = (P , write each u € X in the form of a bilateral sequence u =
(r8_1,&0,&1,-0). Let {x;} be the canonical basis of X and let T be bounded operator in X, be
such that Txg =0, Tx; = x;_; (j = £1,%2,...). Ker(T) is the one-dimensional subspace spanned
by xo and R(T) is the subspace spanned by all the x; except x,. Hence a(T)=1, B(T) =1,
ind(T) = 0.

The basic assertion concerning the index is made by the following index theorem,

Theorem 1.7. (index theorem): Let X be a vector space, T,S € A(X). Then

ind(TS) = ind(T) + ind(S).

»Proof:
See [25] Theorem 23.1. p 108.

Example 1.8. :  Let’s take as a practical example the right shift operator mentioned in Exam-
ple 1.3, and X = (P . As is easily verified, Ker(T,) is the one-dimensional subspace spanned by
x1, and R(T,)=X. Thus a(T,)=1, B(T,) =0, ind(T,) = 1.
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Example 1.9. : Let’s take as a practical example the left shift operator mentioned in Example
1.4, and X = (P It is easily verified that Ker(T;) =0, and that R(T;) is the subspace spanned by
X2,X3,...... Hence a(T;) =0, B(T;) =1, ind(T;) = —1.

We can observe that T;, T, € A(X). Then
ind(T,T,) = ind(T,T;) = 0. (1.5)
Remark 1.9. : If for an operator T € A(X') an equation of the form
TS =C or ST =C with ind(C) =0

holds, then also S € A(X) and ind(S) = —ind(T).

Example 1.10. : Like an example see (1.5). We can observe that ind(T;) = —ind(T,).

Proposition 1.8. : Let X be a vector space, T € A(X'), and S a finite-dimensional one. Then

ind(T+S) =ind(T).

»Proof:
See [25] Proposition 23.3. p 109.

Lemma 1.11. ([5], Lemma 1.21): Let T be a linear operator on a linear vector space X. If
a(T) < oo then a(T") < forall neIN. Analogously, if B(T) < o then B(T") < oo for all
nelN

»Proof:
We use an inductive argument. Suppose that a(T") < oo. Since T(KerT"™!) < KerT"

then the restriction
To = T jgerpns1 : KerT" T — KerT"

has kernel equal to KerT, so the canonical mapping T: KerT"*1 /KerT — KerT" /KerT is

injective. Therefore we have

dim(KerT" ! /KerT) < dim(KerT"/KerT) < dim(KerT") = a(T") < 0.
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and since a(T) < o we then conclude that a(T"*!) < co.

Suppose now that B(T") < . Since the map
T . R(Tn>/R(Tn+l) N Tn+l (R(T”)/R(T"+2>,
defined by
T(z+R(T")) = Tz+ R(T"?), zeR(T"),

is onto, dimR(T"*1)/R(T""?) < dim R(T")/R(T"1).
This easily implies that g(T"*!) < co.
|

In the next theorem we establish the basic relationships between the quantities «a(T),

B(T), asc(T) and dsc(T).

~\

Theorem 1.8. ([4], Theorem 3.4): If T is is a linear operator on a vector space X, then the
following properties hold:

1. If asc(T) < o then a(T) < B(T);
2. If dsc(T) < oo then B(T) < a(T);
3. If asc(T) =dsc(T) < oo then a(T) = B(T);

4. If a(T)=B(T) <o and if either asc(T) < 0 or dsc(T) < oo then asc(T) = dsc(T).

»Proof:
(1). Let p = asc(T) < o, i.e., KerTP = KerTP*" for all n € N. Obviously if B(T) =
o there is nothing to prove. Assume that B(T) < co. By Lemmal.7, we have KerT n
R(TP) = {0}. Since B(T") < oo, by Lemma 1.11, this implies that «a(T) < o0, so T has
finite deficiency. According to the index theorem we then obtain for all n > p the following
equality:
n.ind(T) =ind(T") = a(T") — B(T") = a(TP) — B(T").

Now suppose that g = dsc(T) < co. For all integers n > max{p,q} the quantity n.ind(T) =
a(TP) — B(TP) is then constant, so that ind(T) = 0, i.e., a(T) = B(T). Consider the other
case g =o0. Then B(T") — 0as n— o0,so0 n.ind(T)becomes eventually negative, and
hence ind(T) < 0. Therefore, in this case we have a(T) < B(T).

(2). Let g = dsc(T) < . Also here we can assume that «(T) < o, otherwise there is
nothing to prove. Consequently, as is easy to check, also B(T") < o and by of Lemma 1.8
X =Y®R(T) with Y < KerT9. From this it follows that

B(T) = dimY < a(T?) < .
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If we use, with appropriate changes, the index argument used in the proof of part (1) then
we obtain that B(T) = a(T) if asc(T) <oo,and a(T) < B(T) if dsc(T) = .

(3). This is clear from part (1) and part (2).

(4). This is an immediate consequence of the equality «a(T") — B(T") = ind(T") =
n.ind(T) = 0, valid for every n € IN.

Remark 1.10. : We can observe that if T € A(X), and ascent and descent are both finite then
ind(T) = 0.

Lemma 1.12. ([15], Lemma 5.4): Let T € L(X), and let k € N. Then

1. If a(T) < o, then a(T*) < ka(T);

2. If B(T) < o, then B(TX) < kB(T).

»Proof:

(1). Let n > 0. Since KerT" < KerT"*! it follows that there exists a complementary
subspace N (relative to KerT**!) such that KerT**! = KerT* @ N. It will be shown
that dimN < «(T). The case dimN = 0 is trivial, hence assume that dimN > 0. Let
X1,X0,00, Xp € N be linearly independent, 1 < p < dimN. Then ( because N c KerT”“) there

exist ¥1,92,..,y, € KerT such that

{x1, 91}, {x2, 92}, -0, {xp,yp} eT".

Assume that 2?21 c;y; = 0 for certain ¢; €IK,1 <i <p. Then

p P p p
> cifxivi} = {2 CixirZCiyi} = {Zcixi:o} eT"
i=1 -1 il i=1

so that Zle c;X; € KerT" nN. Since N and KerT" are complementary spaces it follows
that Zle ¢;X; = 0 which implies that ¢; = 0,1 <i < p. This means that for any p linearly
independent vectors in N there exist p linearly independent vectors in KerT. Hence
dimN < dimKerT = a(T). Thus a(T"*!) < a(T") + a(T), so that the statement follows by
induction; recall that «(T?) = 0.

(2). B(TY) =0, the case k =0 is trivial. Assume ke IN and define

M, = R(TF1) /R(TH).

we have that B(T¥) = g(T*~!) + dimM, and a repeated application gives
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B(TF) = dimM, + dimM, + ... + dimM;, ke . (1.6)

Note that dimM = dim(R(T?)/R(T!)) = dim(X/R(T)) = codimR(T) = B(T). Now the

inequality

dimM,,,; <dimM,, nelN, (1.7)

will be shown. Let [y1],[y2],..-,[yp] € dimM,,; be linearly independent cosets. Then y; €
R(T") for 1 <i < p,so there exist X1y X200y Xp € R(T”_l) such that {x1, 91}, {x2,v2}, ..., {xp,yp} €
T (even if n =1 because D(T) < X = R(T?) ). Now if Zle ci[xi] =1 le c;x;] =[0]in M,
for certain ¢; € K, then Y¥_ c;x; € R(T"), and hence Zle c;y; € R(T"+1). It follows that

P
ci[yi] = [Z Cz’yi] = [0]
i=1

1 i—

P
1=

which implies ¢; =0, 1 <i < p. Hence for any p linearly independent vectors in M, 4
there exist p linearly independent vectors in M,,. Therefore (1.7) has been established. The

statement now follows from (1.6) and (1.7), since dimM; = B(T).

Proposition 1.9. : Let T € L(X). Assume there exists some ne N such that a(TK) <n for
k € N. Then asc(T) < n.

»Proof:

If asc(T) = oo then KerTK*! 2 KerT*, k € N Hence a(T*) < a(T* +1), ke N, which
implies that the sequence a(T¥) is unbounded. This contradiction implies that asc(T) < oo.
Assume that asc(T) = p for some p € IN. In the case p =0 the statement is trivial, so what
remains to be shown is that p <n if p > 0. Cleary

{0} = KerT® < KerT < < KerTP~! < KerT?,

and thus
0=a(T’ <a(T) < <a(TP) < a(TP).
Therefore, p —1 < a(T?) < n, leading to p < M.

Proposition 1.10. : Let T € L(X). Assume there exists some ne N such that p(TK) <n for
k € N. Then dsc(T) < n.
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»Proof:

If dsc(T) = then R(TF!) ¢ R(TK), k e N. Hence B(TF*!') > B(T*), k € N, which
implies that the sequence (T¥) is unbounded. This contradiction implies that dsc(T) < co.
Assume that dsc(T) = q for some g€ IN. The case g =0 is obvious, so let g > 0. Since
dim(R(T*)/R(T¥*1)) > 0 for k < g, we have that

0=B(T% < B(T) < ... < B(TI1) < B(TY).

Therefore, g —1 < B(TY) < n, leading to g < n.

Corollary 1.6. : Let Te L(X), and let k € N. Then
1. a(TK) < asc(T)a(T);

2. B(TK) < dsc(T)B(T).

»Proof:

(1) . We firstly observe that asc(T) = 0 if and only if a(T) = 0. Hence the product
asc(T)a(T) is well defined. We need only consider the case where both asc(T)anda(T)
are finite. Let asc(T) = p. Then a(T*) < a(TP) for any k and if we show a(TK) <
ka(T) for every non-negative integer k, the result will follow. Therefore the result follows
immediately by Lemma 1.12.

(2) . Again, since dsc(T) is zero if and only if B(T) is zero, the product dsc(T)B(T) is
well defined and we need only consider the case when dsc(T) and B(T) are finite. Again
it suffices to prove that for each positive integer k, f(T*) < kB(T). So by Lemma 1.12, this
completes the proof of (2).

|
r Theorem 1.9. : Let T € L(X). If one of the following conditions holds:
1. a(T) < oo;
2. B(T) < wo;
Then there exist m € IN such that :
KerT n R(T™) = KerT n R(T"*X), forall neN. (1.8)

»Proof:
(1). If KerT is finite-dimensional then there exists a positive integer m such that
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KerT n R(T™) = KerT n R(T™*K)

(2) . Suppose that X = Y@R(T) with dim(Y) < oo. Clearly, if we let D, = KerT nR(T")
then we have D, 2 D, for all n € IN. Suppose that there exist k distinct subspaces D,,.
There is no loss of generality in assuming D; # Dj+1 for j=1,2,---k. Then for every one
of these j we can find an element w; € X such that T/w; € D; and T/w; € D;, ;. By means of
the decomposition X =Y ®R(T) we also find u; € Y and v; € R(T) such that w; = u; +v; .
We claim that the vectors uy,---,uy are linearly independent.

To see this let us suppose 2?21 Aju; = 0. Then

k k
DA = ), A
j=1 j=1
and therefore from the equalities Tfw, = ... = Tfw;_; = 0 we deduce that
k k
T () Ajwj) = L Thwe = T() | Ajvj) e THR(T)) = R(THH)
j=1 j=1

From TKwj € KerT we obtain A, TXwj € Dy, and since TFwy ¢ Dy, this is possible only
if Ay = 0. Analogously we have Ay _; =... = A; = 0, so the vectors uy,...,u; are linearly
independent. From this it follows that k is smaller than or equal to the dimension of Y. But

then for a sufficiently large m we obtain that

KerT n R(T™) = KerT n R(T™"/).

Lemma 1.13. ([25], Lemma 38.1): Let T € L(X) maps the linear space R*(T) into itself, and

in the case of a(T) < o even onto itself.

»Proof:

It is trivial that R™(T) is mapped into itself by T. We now assume that a(T) < and
show that every element of R™(T) is the image of an element of R*(T) under T. From
KerT nR(T") o KerT nR(T"*!) for n=0,1,2,... it follows, because of @(T) < o and, that

there exists a natural number m with
D := KerT n R(T™) = KerT n R(T"™ ) for k=0,1,2,... (1.9)

Obviously also D := KerT n R®(T). Let now y be an arbitrary element of R™(T). Then for
every k=0,1,2,.. there exists an x; € X' so that y = T’”+kxk. If we set

zp = T"x; —T"H 1y for k=1,2,., (1.10)
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then z; liesin R(T™) and, because of Tz = T"+lx; — T" " x, =y —p =0, also in KerT,
hence z; € KerT n R(T™) = D. From (1.9) it follows that z; lies also in R(T"”k’l) and
with the aid of (1.10) this implies

T"x; =z + T" 1y e R(T™Y) for k=1,2,..,

hence T™x; € R®(T). Because of T(T"x;) =T"!x; =y, we see that p is indeed the image

of an element of R*(T) under T.

tions are equivalent:
1. asc(T) < oo;
2. On every subspace D of X, which is mapped by T onto itself, T is injective;

3. T isinjective on the subspace R*(T) .

Proposition 1.11. ([25], Proposition 28.2): Let T € L(X) with a(T) < oo the following asser-

=~

»Proof:

1=2: If T(D)=D and T is the restriction of TtoD, then dsc(T) = 0. From KerT" =
KerT" n D it follows because of (1) that asc(T) < o0. Because of Theorem1.5 we thus have
asc(T) = asc(T) =0, and so T is injective.

2 = 3: This implication is trivial because of Lemma 1.13.

3 = 1: From (3) it follows in the first place that D = KerT n R*(T) = {0}. Because of
(1.9) we have thus also KerT nR(T™) = {0} for some natural number m. Assertion (1) is

now a consequence of Lemmal.7.

and p, are relatively prime polynomials then there exist polynomials q; and q, such that

p1(T)q1(T) + p2(T)q2(T) = T.

Lemma 1.14. ([4], Lemma 1.2 ): Let T € L(X) and X be a vector space. then we have, if p;

=~

»Proof:
If p; and ¢; are relatively prime polynomials then there are polynomials such that
p1(A)q1(A) +p2(A)q2(A) =1 for every AeC.
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Lemma 1.15. : Let X be a vector space, T e L(X) and A, ye C. Then we have

1. (MI—T)(KerT") = KerT" forall neIN and A # 0;

2. Ker(AI-T)") < R((pI—T)") forall neIN and A # p.

»Proof:

(1). We prove that (Al — T)(KerT") = KerT" for every ne€ IN and A # 0. Clearly,
(AI—T)(KerT") < KerT" holds for all neIN. By Lemma 1.14 there exist polynomials p and
g such that

(AI-T)p(T) +q(T)T" =1

If x e KerT" then (AI—T)p(T)x = x and since p(T)x € KerT" this implies KerT" < (AI —
T)(KerT"). Then we have
(Al —T)(KerT") = KerT".

(2). Put S=AI—-T and write yll - T = (p—A) I+ AI-T = (u — A)I +S. By assumption
p— A #0,so by part (1) we obtain that (uI —T)(Ker((AI —T)")) = ((p — A)I +S)(KerS") =
Ker((AI—T)"). From this it easily follows that (uI —T)"(KerS") = KerS") for all ne N, and
consequently Ker((AI—T)") < R((AI—T)").

Corollary 1.7. :
Let X be a vector space and T € L(X) (a linear operator on X). Then we have:

1. (MI-T)(N*®(T)) = N®(T) for every A # 0;

2. NP(AMI=T) = R®(ul —T) forevery A+ p.

»Proof:
(1). It suffices to prove that (Al —T)(KerT") = KerT" for every ne€IN and A # 0, so by
part (1) of Lemma 1.15. Then we have
(AL -=T)(N®(T)) = N*(T).

(2). It suffices to prove that Ker((AI -T)") < R((uI —T)") forall neIN and A # y, so

by part (2) of Lemma 1.15, consequently we have

NPAI-T) = RP(AI-T).
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We have the following statement
R(AMI-T)")+R(T") =X for allneNand A #0 (1.11)

we will use it in the next lemma .

Lemma 1.16. : Let Te L(X) and T,, = T\R(T™). Forall A\e C and A # 0, we have

1. B((AI=T)") = B((AML—T,)"), forall nelN;

2. a((AMI-T,)") =a((AI—-T)"), forall neN.

»Proof:
(1). By (1.11), we have :

BAI=T)") =dim(X/R(AI—T)"))
— dim(R(AI—T)") + R(T™)/R(AI - T)")
— dim(R(T™)/R(T™) A R(AL - T)"))
— B((AL-T,,)")

(2). It will suffice to show that
Ker(A—T)" = Ker(A —T,,)" (1.12)
for n=0,1..... When n =0, (1.12) holds trivially, so fix n > 1. Let x € Ker(AI —T)". Then
0=(A1—-T)"x=A"x+p(T)x,
where p(T) is a linear combination of the iterates T,T?....T" of T.Then
x=[=A7"p(T)]'x

for i =1, and hence for i = 2,3.... Thus xe R(T') for i =1,2,.... In particular x e R(T™),
so 0=(A—T,)"x and xe€ Ker(A—T)". Thus Ker(A—T)"<Ker(A—T,,)" . Containment in

the other direction is obvious.

~\

Corollary 1.8. : Let T e L(X) and for some fixed m < 0, T,, = T\R(T™). be the restriction of
T. Forall A e C and A # 0, we have:

1. B(AI-T) =B(AMI—-T,,);

2. a(M—-T)=a(AMl—-T,).
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»Proof:

The result follows frome Lemma 1.16, when n=1.

]
r Corollary 1.9. : Let Te L(X) and Ty, = T\goo(r). Forall A\e C and ) # 0, we have
1. B(AMI—T) =B(AI-T,);
2. a(MI-T) =a(AI—Ty).
»Proof:
The proof of this lemma also follows immediately from that of Lemmal.16.
]

Proposition 1.12. : Let T € L(X). If one of the following conditions holds:
1. a(T) < oo;

2. B(T) < w5

Then C(T)=R*(T).

»Proof:

These results immediately follows from Theorem 1.9 and lemma 1.6.



CHAPTER 2

OPERATORS WITH CLOSED RANGE
AND DECOMPOSITION

Let E, F are Banach spaces, we says that an operator T is bounded ( or continuous) if

there is a constant ¢ > 0 such that

ITx[ <clx|  vxeE

We denote the Banach space of all bounded linear operators from E into F by B(E,F),
B(E,E) is also denoted B(E). Recall that if T € B(E,F), the norm of T is defined by :

| Tx]

IT|| = sup ===
20 X

Recall that when E is Banach spaces, the dual space E' := B(E,C), consists of the
bounded linear functionals f on E; it is Banach space with norm

Ifler =inf{ | ()] : xeB x| =1},

2.1 Minimum modulus and Kato operator theory

Let M and N be tow nonzero subsets of E and F/, respectively (i.e M < E, and
N cFE):

1. Let M be a subset of a Banach space E The annihilator of M is the closed subspace
of E’ defined by

34
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Mlz{feE’ : VxeM, f(x)zO}.

2. Let N be a subset of E’. The pre-annihilator of N is the closed subspace of a Banach
space E defined by

L/\/z{er :VfeN, f(x)zO}.

Even if M and N are not subspaces, and M’ and N are closed subspaces of E’
and E’ respectively. We have M+ =E/ (resp. *N)if and only if M = {0} (resp. N = {0}).

Clearly +(M1) = ML if Mis closed. Moreover, if M and W are closed linear subspaces
of Ethen (M+ N)t = M AW The dual relation M+ + WL = (M~ W)L is not always
true, since (MnW)* is always closed but M+ +W+ need not be closed. However, a classical

theorem establishes that

ML Wt isclosedin E/ «—— M + )W is closed in E.

Definition 2.1. : If T € B(E,F), then the dual map(adjoint) of T is the map T' € B(F',E') defined
by :

T'(g) =goT for geF.

Example 2.1. : Let define T: P(R) — P(R) by Tp =p’.
Suppose ¢ is the linear functional on P(R) defined by @(p) = p(3). Then T'(¢) is the
linear functional on P(RR) given by

(T'(¢))(p) = (poT)(p) = @(Tp) = @(p’) = p'(3).

Thus T'(¢@) is the linear functional on P(IR) that takes p to p'(3).

Example 2.2. : Suppose ¢ is the linear functional on P(R) defined by ¢(p) = S(l) p. Then
T/ (@) is the linear functional on P(R) given by

1

(T'(@))(p) = (poT)(p) = (Tp) = @(p') = L p'=p(1)—p(0).

Thus T'(¢@) is the linear functional on P(R) that takes p to p(1)—p(0).
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Remark 2.1. : All adjoint operators in Hilbert spaces are dual map but the opposite is not true.

Example 2.3. : Consider the Banach space L*[a,b] of all integrable complex-valued functions on
a bounded closed interval [a,b] with the sup-norm.
A continuous function k(s,t) defined on [a,b] x [a,b] defines an operator T € B(L*[a,b]) by

b
(Tx)(s) = f k(s,t) x(t) dt, xeL*[a,b].

Then T’ is given y

Example 2.4. : If (E,Q, u) is a a-finite measure space and ¢ € L (E,Q, u), define M, e
LP(E,Q,u) — LP(E,Q,pu), 1 < p <0 by Myf = ¢f forall f in LP(E,Q,u). Then My €
B(LP(E,Q,p)) and |[My| = |¢loe If 1/p+1/q=1, then M/¢ :€ LP(p) — LP(p) is given by
Mipf = ¢f. That is, M;)f =My f .

Remark 2.2. : If T is bounded operator from E into F then T’ is also a bounded operator

from ¥ into E' and, moreover, |T| = |T’|.

And we have:

Ker(T) =+ R(T') and R(T) =" Ker(T');

and

Ker(T') = R(T) and R(T') < Ker(T)".

Lemma 2.1. : Let T € B(E,F). If R(T) is closed, then :

R(T') = Ker(T)* and R(T) =" Ker(T).

»Proof:
See [27] Lemma 7.1. p 18.
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Let M be a closed subspace of a Banach space E. Then M’ is isometrically isomorphic
to the quotient E’/M™, while (E/M)’ is isometrically isomorphic to M.

Proposition 2.1. : Let T € B(E,F) with closed rang, E and F are Banach spaces. Then:

1. a(T) = p(T');
2. B(T) =a(T);
3. a(T) = a(T");

4. p(T) = p(T").

»Proof:

By Lemma 2.1 asserts that R(T') = KerT+, so we have that [KerT]' is isomorphic to
E'/R(T’). Therefore

a(T) =dimKerT = dim(KerT)’
= dim(E’/(KerT)*)
=dim(E'/R(T))
= B(T').

As noted earlier also we have that [F/R(T)]" is isomorphic to R(T)*. Therefore

B(T) — dim(F/R(T))
= dim(F/R(T))’
= dimR(T)*
= dimKerT’
= a(T').

Then immediately we have a(T) = a(T”) and B(T) = B(T" ).

|

Example 2.5. : Let right shift operator T, and the left shift operator T;, which defined in
Examplel.3, and Examplel.4 respectively, we have the following results

T, =T,

and
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Definition 2.2. : Let E and F be Banach spaces ,then T € B(E,F) is said to be Kato if R(T) is
closed and T wverifies one of the equivalent conditions of Theorem 1.1.

Example 2.6. : Trivial examples of Kato' operators are surjective operators as well as injective

operators with closed range.

Example 2.7. :. Let H be a Hilbert space with an orthonormal basis (e; ;) where i, j are integers
and i > 1. LetT be defined by:

Te. . ) G+t if J#0,
v 0 if j=0.

Clearly R(T) is closed and

KerT = span{ey j} = R*(T),

j=1

so that T is Kato.

Definition 2.3. : Let E and F be Banach spaces, then T € B(E,F) is said to be essentially Kato
if R(T) is closed and d there exists a finite dimensional subspace ¥, such that KerT < R(T")+F,
forall neN.

Let (M,N) be a pair of closed subspaces of E. T is said to be decomposed according
to E=M®N, if TM)<c M, and T(N) < N. When T is decomposed as above, the pair
Ty, Ty of Tin M, N, respectively, can be defined: T, is an operator in the Banach space
M with D(Ty;) = M such that Ty;x = Tx€ M, and Ty is similarly defined. In this case,
we write T=T,;®Ty .

Definition 2.4. : Let E and F be Banach spaces ,then T € B(E,F) is said to be of Kato- type of
order d € N fif, there exist a pair of closed subspaces (M,N) of E such that T =Ty ® Ty,
where T is Kato operator and Ty is nilpotent of order d (i.e., T}'{, =0).

An operator T is said to be of Kato type if, there exists d € IN such that T is a Kato type of order
d.

Example 2.8. :

* Clearly, every Kato operator is of Kato type with M =E and N = {0} and a nilpotent
operator has a decomposition with M = {0} and N =E.

I Tosio Kato, August 25, 1917 - October 2, 1999. Japanese mathematician.
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* Every essentially Kato operator admits a decomposition (M,N) such that N is a finite-
dimensional vector space.

Definition 2.5. : If T € B(E,F), where E and F are Banach spaces the reduced minimum
modulus of a non-zero operator T is defined to be

I T ]|
= 1mn _—
x¢KerT dlSt(X, KerT)

y(T):
Remark 2.3. : If T = 0 then we take y(T) = cc.

Therefore. It easily seen that if T is bijective then y(T) In fact, if T is bijective then

Rl
dist(x,KerT) = dist(x,{0}) = ||x|, thus if Tx =7y,
(1) = inf ITx| x| -
x20 x| Ve [Tx|
T 1y 1
= (sup ——) 1= ——.
ven 9l ITT]

Example 2.9. : Trivial example is the operator which defined in Examplel.7. For any u = (&;)
we have |ii|| = dist(u,Ker(T)) = (Z;’iz | & |)%) = |Tu|. Hence ||Tu| || =1 forevery ue (P,
so that y(T) = 1.

Theorem 2.1. ([6], Theorem 1.2): Let T € B(E,F), E and F are Banach spaces. Then
1. ¥(T) >0 ifand only if R(T) is closed.

2. y(T) = y(T").

»Proof:
(1) . Let E =E\KerT and let T : E — F denote the continuous injection corresponding
to T, defined by

T#% = Tx for every x€E.

Clearly R(T) = R(T). From the open mapping theorem it follows that R(T) is closed if and
only if T admits a continuous inverse, there exists a constant & > 0 such that |T%| > o|%|
for every x € E. From the equality

HD) = infro
e
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we then conclude that R(T) = R(T) is closed if and only if y(T) > 0.

(2). The assertion is obvious if ¥(T) = 0. Suppose that (T) > 0. Then R(T) is closed.
If Ty:E— R(T) is defined by T% = T for every x e E, then y(T) = y(T)and T =]JT,Q,
where J : R(T) — F denotes the natural embedding and Q : E — E is the canonical
projection defined by Qx = % . Clearly, T is bijective, and from T = JT,Q it then follows
that T = Q’ (T,)"J'. From this we easily obtain that

1 B 1
1(To)= 21 11 (Tp)

y(T) = =i y(T').

[ Corollary 2.1. : Let T € B(E,F). Then R(T) is closed if and only if R(T') is closed

»Proof:
It is obvious from the equality y(T) = y(T’) (by Theorem 2.1) observed above. We have
that y(T) = y(T’) > 0. Therefore R(T) is closed if and only if R(T’) is closed.

Example 2.10. : a trivial example is also right shift operator and left shift operator, which
defined in Examplel.3 and Examplel.1respectively. A consideration similar to that in Example
2.9 shows that y(T,) = 1. suppose that E = {P. In this case E = E, T, = T, |Tju| = |u| so that

y(T)=1.

[ Corollary 2.2. : The function y : B(E,F) —(0,00) is upper sem-icontinuous.

. . . 1 0
Example 2.11. : In general, the function 7y is not continuous. Let T, = (O 1 ) and
n

1
T = (0 (1)> Then y(T,)=1/n,T,—T and y(T)=1.

Theorem 2.2. ([4], Theorem 1.14): Let T € B(E), E a Banach space, and suppose that there
exists a closed subspace Y of E such that R(T) nY = {0} and R(T)®Y is closed. Then R(T)

is also closed.

»Proof:

Consider the product space E x Y under the norm
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[Co )| =lx[ +[y] (xeE yeY).

Then E xY is a Banach space, and the continuous map S : E xY —— E defined by
S(x,y) = Tx+yhasrange S(ExY) = R(T)®Y, which is closed by assumption. Consequently
by Theorem 2.1 we have

. IS(x.»)|
Jékers Aist((x,p),KerS

y(S) =

i >
(xy )
Clearly, KerS = KerT x {0}, so that if x ¢ KerT then (x,0) ¢ KerS. Moreover

dist((x,0),KerS) = dist(x,KerT),
and therefore
ITx| =[S(x,0)|| = v(S)dist((x,0),KerS) = y(S)dist(x,KerT).
This implies that y(T) > ¢(S) > 0, and therefore T has closed range.

that R(T)+Y is closed. Then R(T) is closed.
In particular,

if B(T) < oo then R(T) is closed.

Corollary 2.3. : Let T € B(E), E a Banach space, and Y a finite-dimensional subspace of E such

=~

»Proof:
Let Y; be any subspace of Y for which Y; nR(T) = {0} and R(T)+Y; = R(T)+Y. From
the assumption we infer that R(T) @Y is closed, so R(T) is closed by Theorem 2.2.

The second statements is clear, since every finite-dimensional subspace of a Banach space

E is always closed, we know that dimY = codimR(T).

Theorem 2.3. ([4], Theorem 1.16): Suppose that T € B(E), E is a Banach space. Then we have

If T is Kato. Then y(T") = y(T)".

»Proof:
We proceed by induction. The case n =1 is trivial.
Suppose that y(T") > y(T)". For every element x€E, and u € KerT"*! we have
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dist(x, KerT"1) = dist(x — u, KerT"*1)
< dist(x — u,KerT).

By assumption T is Kato, so by Theorem 1.2 KerT = T"(KerT"*1) and therefore

dist(T"x,KerT) = dist(T"x, T"(KerT"+1))

= inf T*x—u
u¢KerTntl
>y(T"). inf dist(x —u,KerT")
u¢KerTn+1
> y(T")dist(x, KerT" 1),

From this estimate it follows that

IT" x| = (T)dist(T"x,KerT) = y(T)y(T").dist(x, KerT"*1);

Consequently from our inductive assumption we obtain that

P(T1) = p(T)y(T)" = p(T)" 1,
which completes the proof.

Proposition 2.2. ( [19], Proposition 6): Let T,S € B(E), TS = ST. If TS is Kato, then both
T and S are Kato.

»Proof:

It is sufficient to show that T is Kato. We have KerT" — Ker(TS)" < R(TS) < R(T) for
all n, and so N*(T) < R(T).

It remains to show that R(T) is closed. Let x4 € E and Tx;y — v for some v € E. Then
STx; — Sv, and so Sv = STu for some u € E. Thus v — Tu € KerS < Ker(TS) < R(TS) c
R(T), andso veR(T).

Remark 2.4. : the product of two Kato operators, also commuting Kato operators, need not be
Kato.

Example 2.12. : . Let H be a Hilbert space with an orthonormal basis (e;,j) where i,j are
integers for which ij <O0. Let Te B(H), and S € B(H) are defined by the assignment:

Te. i 0 if i=0,j>0
e, j =
] €it1,j otherwise,

and
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Sei,],:{ 0 if j=0,i>0

€ijr1 otherwise,
Then
Te. i — Se. i 0 if i=0,j>0,i>0
ej,j =Se;,j= ,
i] ir] Citl,;,, otherwise,

Hence TS = ST and, as it is easy to verify

KerT = span{e;, 0} = R*(T).
i>1
where span{ey,j} denotes the linear subspace of M generated by the set {e; :j > 0}.
j>1
Analogously we have

KerS = span{e;, 0} = R*(S).

i>1

Corollary 2.4. : Let T € B(E), where E is a Banach space. Then

If T is Kato then T" is also Kato for all neIN.

»Proof:
If T is Kato then by Theorem 2.3 we have

y(T") = y(T)" > 0.
So S =T" has closed range .

Furthermore, R(S*) = R(T*) and, by Theorem 1.1, KerS < R(T*) = R(S*). From
Corollary 1.3, which equivalent to the statements of Theorem1.1 we conclude that T" is

Kato.

Corollary 2.5. : Let T € B(E), where E is a Banach space. Then

T is Kato if and only if R(T") is closed for all n € N and T wverifies one of the equivalent
conditions of Theorem 1.1.
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Theorem 2.4. ([4], Theorem 1.19): Let T € B(E), E a Banach space. Then:

T is Kato if and only if T is Kato.

»Proof:

Suppose that T is Kato. Then R(T) is closed so that »(T) > 0 by Theorem 2.1.
From Theorem 2.3 we then obtain that y(T") > y(T)" > 0 and this implies, again by
Theorem?2.1, that R(T") is closed for every n € IN. The same argument also shows that
R((T™")") = R((T")") is closed for every n € N by part (1) of Theorem 2.1. Therefore by part
(2) of Theorem?2.1 it follows that the equalities

Ker(T")* = R(T") and ‘Ker(T") = R(T") (2.1)

hold for all n e IN.

Now, since T is Kato then KerT < R(T") for every n e N and therefore R(T"): <
Ker(T)*+ = R(T’). Moreover, from the second equality of (2.1) we obtain Ker(T'") = R(T")*,
so that Ker(T") = R(T’) holds for every n e IN. This shows, since R(T’) is closed, that T’ is
Kato.

A similar argument shows that if T’ is Kato then also T is Kato .
]

Let E, F be Banach spaces and T € B(E,F) an operator. An operator S:F — E is called
a generalized inverse of T if TST =T and STS =S. It is easy to see thatif S:F— Eisa
one-sided inverse of T (i.e., either TS =Ig or ST =1Ig), then S is a generalized inverse of
S.

Definition 2.6. : An operator T € B(E) is called Saphar if T is Kato and has a generalized
inverse. Equivalently, T is Saphar if and only if T has a generalized inverse and KerT < R*(T).

Remark 2.5. Obviously, in Hilbert spaces the Saphar operators coincide with the Kato operators.

Definition 2.7. : A closed operator T € B(E) is called essentially Saphar, if T has a generalized

inverse and KerT <, R*(T).

Remark 2.6. Obviously, in Hilbert spaces the Saphar operators coincide with the essentially

Kato operators.
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Our aim is to show that the set of all Saphar operators is a regularity. This will be an im-

mediate consequence of the following tow propositions, which are of independent interest.

Proposition 2.3. : Let T € B(E) be a Saphar operator, let S € B(E) satisfy TST =T and let
neIN. Then T"S"T" =T". In particular, T" is a Saphar operator.

»Proof:
Let Se B(E) satisfy TST =T. We prove by induction on n that T"S"T" = T"
Suppose that n>1 and T"S"T" = T". Then
Tl — T(T"S"(ST — 1) + T"S™)T".
Since T"S"T" = T" and TST = T, we can check easily that T"S" is a projection onto
R(T") and I—ST is a projection onto KerT < R(T"). Thus
Tn+1sn+lTVl+1 _ T((ST o I) + TI’ZSn)Tn — TT"S"T" = T1’l+1.

r Proposition 2.4. : Let T € B(E) be a Saphar operator. Then there exists € > 0 such that T—U |
has a generalized inverse for every operator U e B(E) commuting with T such that |U| <e.
More precisely, if T is Kato, TST =T, UT = TU and |U| < |S||7!, then (T —U)S(I —
UsS) (T-U)=T-U.

»Proof:

Let TST=T, UT =TU and |U| < |[S|~ .

We first prove by induction on n that U(SU)"KerT < KerT"*!. This is clear for n = 0.
Suppose that U(SU)"~!KerT < KerT" < R(T) and let ze KerT. Then U(SU)" !z =Tv for
some v € E, and

T"HU(SU)"z = T""1USTv = T"UTSTv = T"UTv = UT"U(SU)" "'z = 0,

by the induction assumption. Thus U(SU)"KerT < KerT"*! for all n. Since I —-ST isa

projection onto KerT, we have
U(SU)"(I-ST)E c KerT""! c R(T) (n>0),

and so

(I—TS)USU)*(I-ST)=0 (n>0).

Then
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(T-U)S(I-US)"(T-U) =(T-U)SYZ,(US)(T~U)
= TST — UST — TSU + TSUST
+ 377 o(TS(US)+2T — US(US) 1T — TS(US)' 1 U + US(US)'U)
=T-UST - TSU+TSUST + Y. ,(I - TS)(US)' "1 U(I - ST)
=T-U+(I1-TS)U(I-ST)
=T-U.
Hence T —U has a generalized inverse.

2.2 Bounded below operators theory

A very important class of operators is the class of injective operators having closed range.

Definition 2.8. : An operator T € B(E,F) is said to be bounded below if T is injective and has

closed rang.

Theorem 2.5. ([6], Theorem 1.5 ): Let T € B(E,F) is bounded below if and only if there exists
c >0 such that
|Tx| = c|x| VxeE. (2.2)

»Proof:

Indeed, if ||Tx| > c|x| for some ¢ > 0and all x€ E then T is injective. Moreover, if (x,)
is a sequence in E for which (Tx,) converges to y € E then (x,,) is a Cauchy sequence and
hence convergent to some x € E. Since T is continuous then Tx =y and therefore R(T)
is closed. Conversely, if T is injective and R(T) is closed then, from the open mapping

theorem, it easily follows that there exists a ¢ > 0 for which the inequality (2.2) holds.
|

Example 2.13. : Let E = C'[0,1] and F = C[0,1], bothwith ||. |, and Tx=x', xe C'[0,1].
Taking x,(t) =t n for te€|a,b], ne N, we have

Xy €E  xuloo =1, [Txyloo =n

for every neIN. Hence, T is not a bounded operator.
If E={xeC![0,1]:  x(0) =0}, then T is bounded below, for in this case, we have

1
x(t) = fo x(s)ds VxeE, te]0,1],
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so that

[xlloo < fx0/lcc = [Tx[c  ¥x € E.

and take any

T € B(E,F) . The following assertions are equivalent:

1. T has a bounded inverse on its range;
2. T is bounded below;

3. T is injective and has a closed range .

Theorem 2.6. ([7], Theorem 1.2) (Bounded Inverse Theorem): Let E and F be Banach spaces

=~

»Proof:

Part (i). The equivalence between (1) and (2) still holds if E and F are just normed
spaces. Indeed, if there exists T~! € B(R(T),E), then there exists a constant § > 0 for
which |TT™'y| < B|y|foreveryy € R(T). Take an arbitrary x € E so that Tx € R(T).
Thus |x| = |[T~!Tx| < g|Tx|, and so %HxH < |Tx|. Hence (1) implies (2). Conversely,
if (2) holds true, then 0 < |Tx|| for every nonzero x € E, and so Ker(T) = {0}. Then
T has a (linear) inverse on its range a linear transformation is injective if and only if it
has a null kernel. Take an arbitrary yp € R(T) so that y = Tx for some x € E. Thus
IT Yy = T 'Tx| = ||x]| < éHTXH = é”yH for some constant a > 0. Hence T~! is bounded.
Thus (2) implies (1).

Part (ii). Take an arbitrary R(T)-valued convergent sequence {y,}. Since each y, liesin
R(T), then there exists an E -valued sequence {x,} for which y, = Tx, for each . Since
{Tx,} convergesin F, then itis a Cauchy sequence in E. Thusif T is bounded below, then

there exists a > 0 such that

0< ame - xn” < HT(xm - xn)” = HTxm _Tan'

for every m,n. Hence {x,} is a Cauchy sequence in E, and so it converges in E to, say,
x € E if E is a Banach space. Since T is continuous, it preserves convergence and hence
v, = Tx, — Tx. Then the (unique) limit of {y,} lies in R(T). Conclusion: R(T) is closed
in F by the classical closed set theorem. That is, R(T) = R(T) whenever E is a Banach
space, where R(T) stands for the closure of R(T). Moreover, since (2) trivially implies
Ker(T) = {0}, it follows that (2) implies (3). On the other hand, if Ker(T) = {0}, then T is
injective. If in addition the linear manifold : R(T) is closed in the Banach space F, then it
is itself a Banach space and so T : E — R(T) is an injective and surjective bounded linear

transformation of the Banach space E onto the Banach space R(T). Hence its inverse T~!
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liesin B(R(T),E) by the Inverse Mapping Theorem. Thus (3) implies (1).

Example 2.14. : Let E=L1?[0,1] =F,
E)= {x e L?[0,1]: x absolutely continuous x(0) =0, xy€ L2[O,1]}

and

/
Tx =x", xeE,.

By the fundamental theorem of Lebesgue integration®, we have

for every xeEy and te[0,1] so that

x(8) < fo 1X(s) < )

Hence

Ix|2 < ||, VxeE,,

that is, T is bounded below. Therefore, T has a bounded inverse from its range. Again, by
fundamental theorem of Lebesgue integration, for every y € L*[0, 1], the function x defined by

x(t) = L y(s)ds, te][0,1],

belongs to By and x 0 =1y so that R(T) = L?[0,1]. Therefore, T~ is a bounded operator
with closed domain.

Now we will define tow important quantities .

Definition 2.9. : Let T € B(E,F). The quantity

Tx
j(T) = inf Tx:inf—zinf{ ITx| :x<E, Htzl},
=1 x£0 x|

is called the injectivity modulus of T.

2Fundamental theorem of Lebesgue integration: If y € L![0,1], then x defined by x(t) = S(t)y(s)ds is
absolutely continuous, differentiable a.e., and x' = y. Conversely, if x:[0,1] —» K is absolutely continuous,
then it is differentiable a.e., x' € L'[, blandx(t) = § y(s)ds.
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Definition 2.10. : Let T € B(E,F). The quantity
k(T) = inf{ r>=0:TBg> r.BF},

is called the surjectivity modulus of T.

Remark 2.7. : T is onto if and only if k(T) > 0. Furthermore, if T is onto, then k(T) >0 by
the open mapping theorem. If T is not onto, then k(T) =0 by definition.
We have also the following results

T is bounded below if and only if j(T) >0,

and in this case j(T) = y(T).

The next theorem shows that some properties of injectivity and surjectivity modulus .

Theorem 2.7. : Let E,F,G be Banach spaces, T € B(E,F) and Se B(F,G). Then:
1. j(ST) < |IS[lj(T);
2. j(ST) = j(S)j(T);
3. k(ST) <k(S)|T|;

4. k(ST) = k(S)k(T).

»Proof:
See [19] .Theorem 6. p 87.

Remark 2.8. : If T is bijective, then j(T) = |T~!|~! =k(T).

The relation between Kato operator and bounded below operators in the next example .

Example 2.15. : Any operator that is either onto or bounded below is Kato. In particular, the
isometrical shift S on a Hilbert space H is Kato. Note that in this case R*(S) = {0} = N o(S).
Similarly, S is also Kato and R™(S) = H = N wo(S).

The direct sum S@S' is an example of a Kato operator that is neither onto nor bounded below.
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The next result shows that the properties of being bounded below or being surjective are
dual each other.

Theorem 2.8. ([6], Theorem 1.6) : Let T € B(E,F), then

1. T is bounded below (respectively, surjective) if and only if T’ is surjective (respectively,
bounded below);

2. If T is bounded below (respectively, surjective) then Al —T is surjective ( respectively,
bounded below ) for all | A |< y(T).

»Proof:

(1). Suppose that T is surjective. Trivially T has closed range and therefore also T’
has closed range. From the equality KerT' = R(T)+ = E = {0}, we conclude that T’ is
injective.

Conversely, suppose that T’ is bounded below. Then T’ has closed range and hence by
Theorem 2.1 the operator T has also closed range. From the equality R(T) =+ KerT' =+
{0} = E we then conclude that T is surjective. The proof of T being bounded below if and
only if T’ is surjective is analogous.

(2). Suppose that T is injective with closed range. Then »(T) > 0 and from definition
of y(T) we obtain

y(T)dist(x,KerT) = y(T)|x| < |Tx|| for all xeE.
From that we obtain
[AL=T)x| = [Tx|= [ A x| = (y(T)= [ A )] x],
thus for all | A |< y(T), the operator AI — T is bounded below. The case that T is

surjective follows now easily by considering the adjoint T'.

Remark 2.9. For all bounded operators in Banach space we have the following results

J(T)=k(T)  and  k(T)=j(T).

2.3 Compact operators and Riesz-Schauder theory

There is a class of bounded operators, called compact ( or completely continuous) oper-

ators, which are in many respect analogous to operators in finite-dimensional spaces. So in
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this section we reassume some of the basic properties of compact linear operators.

Definition 2.11. : A bounded operator T from a Banach space E into a Banach space F is said
to be compact if for every bounded sequence (x,) of elements of E the corresponding sequence
(Tx,) contains a convergent subsequence. This is equivalent to saying that the closure of T(Bg),
Bg the closed unit ball of E, is a compact subset of F.

Now we give a supplementary examples of compact operator

Example 2.16. : An important example of compact operators are integral operators.

Consider the Banach space Cla,b] of all continuous complex-valued functions on a bounded
closed interval [a,b] with the sup-norm

A continuous function k(s,t) defined on |a,b] x [a,b] defines an operator T on C|a,b] by

b

T = | K 0f ().

a
It follows from classical results of analysis that T is a compact operator.

The classical Fredholm?® integral equation is

/\f(s)—ka(s,t)f(t)dtzg(s) (a<s<b),

where g e Cla,b] is given, A isa parameter and f is unknown. Clearly, we can write the
equationas (AI-T)f =g.
This was the original motivation that led to the study of operators of the form Al —T where

T is compact, . The theory of these operators is sometimes referred to as the Riesz-Schauder theory.

Example 2.17. : Let H be a Hilbert space with an orthonormal basis (e;);=,. Operators T €
B(H) defined by

o0
Tel- = Z 0(1"]'6]' (] = 1);
j=1
where a; ;€ Csatisfy 3, ;| a;; >< oo, are called Hilbert-Schmidt. Clearly, 2 | aij 2=

2 | Te;|? ; this number does not depend on the choice of an orthonormal basis (e;). Hilbert-

Schmidt operators are an important example of compact operators.

Example 2.18. : The Volterra operator V : L?[0,1] — L2[0,1] is defined by

31t is named in honor of Erik Ivar Fredholm, Swedish mathematician, April 7, 1866- August 17, 1927.
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Ve - | Fw)dy.

V is an example of a compact operator.

Definition 2.12. : We say that T € B(E,F) is of finite rank if dimR(T) < .

The set of all compact (resp finite-rank) operators from E to F will be denoted by
K(E,F) and (resp. F(E,F)), respectively. If E = F, then we write K(E) =/K(E,E) and (resp
. F(E)=F(E,E) ) for short.

Remark 2.10. :

1. K(E,F) isa closed subspace of B(E,F).

2. F(E,F) isasubspace of B(E,F) and F(E,F)c K(E,F).

Theorem 2.9. : Let E and F be Banach spaces. Then, if T € K(E,F), then T is of finite rank if
and only if R(T) is closed .

»Proof:

Clearly, each finite-rank operator has closed range.

For the converse, let T:E — F be compact and R(T) closed. By the open mapping
theorem, there is a positive constant k with TBg > k.Bgr). Since T is compact, we

conclude that k.Bg(t) is compact. Hence dim R(T) < .
|

Let E and F be two Banach spaces and EQF be the algebraic completion of the tensor
product of E and F. The tensor product of T € B(E) and S € B(E) on EQF is the operator
defined as

(T®S)(D % ®p;) = >, Tx; ®Sy;,
i i
for each )}, x; ®y; € EQF.

Now let ueFand f €E’, we define

(u®f)(x)=f(x)u, forall xeE,

we can observe that u ® f is bounded linear manifold, with |[(u® f)(x)| = ||f] [u]|x]-
The operators T € B(E,F) of finite-rank , with rank(T) = 1 writes from the form T =

U f .
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Example 2.19. : Let E, F be Banach spaces, x' € E' and y € F. Denote by y®x’ : E — E the
operator defined by

(y@x)x ={(x,x)y (xeE).

Obviously, |y®x'| = |y|.|x'| and dimR(y®x’) = 1.
Finite-rank operators are precisely finite linear combinations of operators of this form.
Operators that can be expressed as Y.;° | y;®x! for some y; € F and x: e B with >, |y;]||x}] <
o are called nuclear. It is easy to see that nuclear operators are norm-limits of finite-rank opera-

tors and therefore they are compact. Nuclear operators acting on E form a non-closed two-sided
ideal.

The next theorem shows that the compactness of dual map.

Proposition 2.5. (Schauder theorem): If T € B(E,F) ,A € K, then:

T is compact operator if and only if T' is also compact operator.

»Proof:

Suppose that T is compact and let € > 0. We must show that there exists a finite subset
{¥1,-+¥p} < Bp such that for every y’€ Bp thereexistsr, 1 <r<p with |T'y'—T'y;| <e.

Since T is compact, there exists a finite subset {xi,...,x,,} < Bg such that min{|Tx —
Txjl|: 1 <j<n} <3 forevery x € Bg.

The set {((Txy,v'),...(Tx,,y")) : v’ € Bp} is a bounded subset of C”", therefore there
exists a finite subset {y,..,y,} of Bp such that for each y’ € By there exists r e {1,...,.p}
with the property

(Tx;, y'=ypl< 5 (1<j<n). (2.3)

We show that {y},...,y,} is the required subset of B
Let v’ € Bp . Find r € {1,...,p} with (2.3). Let x € Bg. Then thereisa je {1,..,n} such

that |[Tx —Tx;|| < § and we have

(6 Ty — (6 Ty < K —x, T'Y' |+ Kxj, T/ (v — 9y )] + [<xj — x, T'yp)|
= [{Tx —Txj,y")| + KTxj,y" =yl + [(Tx; — Tx, y;)| < .
Thus
IT'y" —T'y;| = sup|¢x, T’y = T'y;)| : xee Bg < &

and T is compact.
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Suppose now that T’ is compact. Then T” is compact and sois T =T/, since TBg =

P \E’
T”(Bg» N E) < T”Bgr, which is compact.

Example 2.20. : By Example2.3 and Example2.16, then

b
(T'x))(s) = f k(t,s)x(t) dt xe Cla,b],

a

is also compact operator.

In the sequel we will need the following important lemma.

Lemma 2.2. ([25], Lemma 10.2)(Riesz lemma): Let M be a proper closed subspace of a

normed space E. Then for every 0 <6 <1 there exists a vector x5 € E such that |xs]| =1 and

ly —x5| = 6 forally e M.

»Proof:

Let y € E such that y ¢ M. Set p = inf|x—y| andlet (x,) be a sequence such that
xeM
|x,—v| — p as n — 0. Since M is closed we have p > 0. Now, if 0 <6 <1 then p/o > p,

hence there exists z € M such that 0 < |z —y| < p/d. Setting y = Hzi—yH and x5 =y(y — 2)
we then obtain |x4|| = 1. Since (%)x +zeM and y > 0/p it then follows that

1
e = xs] = VH(;HZ) —yl==p=4

>

as desired.
||

Riesz* Lemma has many important consequences. One of the most important is that the

Bolzano>Weiestrass® theorem.

Theorem 2.10. (Bolzano-Weiestrass theorem) : Suppose that E is a normed vector space.
Then every bounded sequence contains a convergent subsequence precisely when the space E is

finite-dimension.

»Proof:
See [25]. Theorem 10.1 . p 58.

“Frigyes Riesz was Hungarian mathematician . 22 January 1880- 28 February 1956.
5Bernard Bolzano was a Bohemain mathematician. 5 October 178166 18 December 1848.
6Karl Theodor Wilhelm Weiestrass was a German mathematician . 31 October 1815- 19 February 1897.
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[ Theorem 2.11. : If Te K(E) and A e C\{0}, then R(AL —T) is closed.

»Proof:
We can suppose A =1 since AI-T = A(I — %T) and %T is compact. To show that
R(I—T) is closed, set S =I—T. We show that y, =Sx,, — vy implies y € R(S). Let

A, = inf |x, —ul.
" ueKerS” " H

Then for every n there exists u, € KerS such that |x, —u,| < 2A, and if we set v, =
x, —u, then y, =Sv, and |v,| < 21,. We claim that the sequence (v,) is bounded.
Suppose that (v,) is unbounded. Then it contains a subsequence, which will be denoted
again by (v,), such that |v,| — oo. If we set w, = H?v/_:H , it easily follows that Sw, — 0.
Since |w,| =1, the compactness of T implies the existence of a convergent subsequence of

(Twy,). Let (Tw,;) be such asequence and say that Tw,; — z. Clearly,

wy; = (I-T)wy; + Tw,j = Swyj + Tw,; — z.
Consequently, Sz =lim Sw,; =0, thus z € KerS. An easy estimate yields

X, — U, —2 1 Ay
[xn = (un + [val2)| = —
[val S [

al
and this is impossible, since w,; — z. Thus, (v,) is bounded and since T is compact

|wn — 2] = |

then (Tv,) contains a convergent subsequence (Tv,;). From v,; = Sv,; + Tv,; = y,; + Tv,;

we see that (v,;) converges to some v € E, so that

y=lim y, =lim y,; =lim v,; = SveR(S),

thus R(S) =R(AM —T) is closed.

Proposition 2.6. : Suppose that T and S are commuting bounded linear operators on the
Banach space E. If T —S is compact and T is onto, then S has finite descent.

»Proof:

For each nonnegative integer k, the range, R(Sk), has finite codimension and the map
induced by T on E/R(S*) is onto. Therefore this induced map is one-to-one, so that the
kernel KerT < R(SF). Since T is onto, there is a positive number & for which |Tx| >
S.dist(x,KerT) for all x in E. Suppose that x belongs to E and z belongs to R(S*);
then T(R(S*)) = R(SFT) = R(S¥) so thereisa y in R(S*) with Ty = z. Thus we have
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ITx — z| = | T(x — p)| > 6.dist(x — y,KerT) > 5.dist(x,R(S¥)), since KerT < R(S¥). Since this
holds for all z in R(S*), we obtain
dist(Tx, R(S¥)) > 6.dist(x, R(SF)),

Suppose S had infinite descent. Then there would be a bounded sequence {x,}withx, €
R(S) and dist(x,,R(S¥*1)) > 1. Let K =T —S and suppose m > n. Then Kx,, — Kx, =
(K+ (T —K)x,) — Tx,,. So that

|Kx,, — Kx,,| > dist(Tx,, R(S"™)) > 6.dist(x,, R(S" ™)) > o.

But this contradicts the compactness of K, so S must have finite descent.

Proposition 2.7. : Suppose that T and S are commuting bounded linear operators on the
Banach space E. If T — S is compact and T is bounded below, then S has finite ascent.

»Proof:
See [8] .Lemma 5.1 . p 332.

The next results show us the Fredholm alternative properties.

[ Lemma 2.3. : If T € K(E), E Banach space, then asc(A1 —T) < forall A # 0.

»Proof:

Fix A e C{} By contradiction, let us suppose that Ker(AI-T"!) is a proper subspace of
Ker(Al —T") for every ne IN. (where (Al —T?)=1)Applying Riesz’s lemma, we can infer
that for every n € IN there exists x, € Ker(AI — T") such that |x,| =1 and dist(x,, Ker(AI —
T"~!). Note that:

| AT T, = T | =AM Axy = (AL=T)x, + (AT =T))x,, — Axyy, ||
=[x, — (AT AL =T)x, = A"HAL = T)x,, + x,) 1= 5 -

For every n,m € IN, with ngm, since A~!(AI-T)x,, — A~} (AI-T)x,, + x,,, € Ker(A\I - T" 1)
This implies that no convergent subsequence of (T)x,),cn exists, which is a contradiction,

since Te K(E) and (x,),en is @a bounded sequence. We thus conclude that asc(AI—-T) < co.

[ Lemma 2.4. : If T € K(E), E Banach space, then dsc(A\I —T) < oo forall A # 0.
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»Proof:
In a completely similar way of Lemma2.3 proof, we can show that dsc(AI —T) < o.

Corollary 2.6. : If T € K(E), E Banach space, then asc(Al —T) = dsc(AI - T) < o for all]
A # 0.

»Proof:
The result follows immediately by Theorem 1.5.

[ Lemma 2.5. : If Te K(E) and A e C\{0}, then (A1 —-T) < 0. ]

»Proof:

We can suppose A =1 since AI-T = A(I —4T) and 3T is compact. If (x,) isa
bounded sequence in Ker(AI—T) we have Tx, = x,,. Since T is compact then there exists a
convergent subsequence of (Tx,) = (x,), so from Bolzano-Weiestrass theorem we deduce
that Ker(I—T) is finite-dimensional.

|
[ Corollary 2.7. : If Te KC(E) and A e C\{0}, then B(AI —T) < oo, and ind(AI-T) = 0. ]
»Proof:
The result follows immediately by Theorem 1.8 .
|

Theorem 2.12. : If Te K(E) and A e C\{0}, then
a(AI-T)=a(AM-T)

=B(AI-T) =p(AI-T).

»Proof:

By Proposition 2.1 and Proposition 2.11, then

a(Al-T)=BAM~-T) and BAM~-T)=a(AI-T).

By the preceding theorem, we have a(AI—T) = (Al —T),Hence

a(M=T)=a(AI-T') = B(AI-T) = B(AI-T).
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Remark 2.11. : If T € K(E), then ind(Al —T) = ind(AI-T') = 0.

Corollary 2.8. : If Te K(E) and A e C\{0}, then

a(AI=T") = a(AI—T™)

= B(AL=T") = B(AI - T™).

Remark 2.12. : If Te K(E), A e C\{0} and Ker(AI —T) = {0} then R(A\I-T)=E.

2.4 The Kato decomposition property

In this section, we will study two important invariant subspace . As in the previous sec-

tion, let E, F be tow Banach spaces, and T € B(E).

2.4.1 About analytic core and quasi-nilpotent part of an operator.

The following subspace is in a certain sense, the analytic counterpart of the algebraic core
C(T).

Definition 2.13. : Let E be a Banach space and T € B(E). The analytical core of T is the set

K(T) of all x € E such that there exists a sequence (u,) < E and a constant 6 > 0 such that
1. x=ug, Tu, 1 =u, foreveryncZ*;

2. |lu,|l < 8"|x|| forevery neZ".

We now introduce another important invariant subspace.

Definition 2.14. : Let T € B(E), E a Banach space. The quasi-nilpotent part of T is defined to
be the set

e . . n1/ny
Hy(T):={x€E : r{z_)rg) IT"x|*/"} = 0.

Remark 2.13. :
Clearly K(T) and Hy(T) are linear subspace of E, generally not closed.
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In the following theorems we collect some elementary properties of K(T) and Hy(T).

Theorem 2.13. : Let T e B(E), E a Banach space. Then:

1. K(T) is a linear subspace of E;

»Proof:

(1) It is evident that if x € K(T) then Ax € K(T) for every A € C. We show that if x,y €
K(T) then x+yeK(T).If xeK(T) there exists 6; > 0 and a sequence (u,) — E satisfying
the condition (1) and which is such that |u,| < 6]|x| for all n e Z". Analogously, since
y € K(T) there exists 6, > 0 and a sequence (v,) < E satisfying the condition (1) of the
definition of K(T) and such that |v,| < 0}|y| for every neIN.

Let 0 = max{01,9,}. We have

[t +vall < ol + llva] < 07 x| + 631w < 6" (x| + [[1)-

Trivially, if x +y = 0 there is nothing to prove since 0 € K(T). Suppose then x+7y # 0

and set

=l + Iyl
iyl

Clearly p>1,s0 yu> p" and therefore
[t + vl < (0)"pllx + 9| < (op)"|x + p| for all neZT,

which shows that also the property (2) of the definition of K(T) is verified for every sum
x + v, with x,y € K(T). Hence x +y € K(T), and consequently K(T) is a linear subspace of
E.

The proof (2) of is analogous to that of Theorem1.4, whilst (3) is a trivial consequence
of (2) and the definition of C(T).

Proposition 2.8. : For every T € B(E), E a Banach space, we have:
1. Ker(T™) < N*(T) < Hy(T) for every meN;

2. x€ Ho(T) < Txe Ho(T),

3. Ker(AI-T) nHy(T) =0 for every A # 0.
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»Proof:

(1). If T"x =0 then T"x =0 for every n = m.

(2). If x9 € Hy(T) from the inequality |T"Tx| < ||T|||T"x| it easily follows that Tx €
Hy(T). Conversely, if Tx e Hy(T) from

”Tn—lTx”l/n—l _ (HTanl/n)n/n—l,

we conclude that x € Hy(T).
(3). If x #0 is an element of Ker(AI —T) then T"x = A"x, so

Lim [ T"x |/ = Tim [ A | x| =| A
n—o n—0

and therefore x ¢ Hy(T).

Theorem 2.14. : Suppose that T € B(E). Then we have

1. If M is a closed subspace of E such that T(M) =M then M <X(T);

2. If C(T) is closed then C(T) = K(T).

»Proof:

(1) . Let Tg: M — M denote the restriction of T on M. By assumption M is a
Banach space and T(M) = M, so, by the open mapping theorem, T, is open. This means
that there exists a constant 6 > 0 with the property that for every x e M thereis ue M
such that Tu =x and |u| <d|x| .

Now, if x € M, define uy = x and consider an element u; € M such that

Tuy =ug and [uy | < 6fuq-
By repeating this procedure, for every neIN we find an element u, € M such that
Tuy =,y and [u, ]| < 6uy—1].
From the last inequality we obtain the estimate

|, < 8™|ugll = 6"||x| for every ne N,

so x € K(T). Hence M < K(T).

(2) . Suppose that C(T) is closed. Since C(T) = T(C(T)) the first part of the theorem

shows that C(T) < K(T), and hence, since the reverse inclusion is always true, C(T) = K(T).
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Theorem 2.15. ([4], Theorem 1.24): Let T € B(E), E a Banach space, be Kato. Then C(T) is
closed and
C(T) = K(T) = R*(T).

»Proof:

The semi-regularity” of T gives, by definition, KerT < R(T") for all n € N. Hence by
Proposition1.5 we have R*(T) = C(T). By Corollary2.4 T" is Kato for all n € IN, so
R(T") is closed for all ne N and hence R*(T) = (), _; R(T") is closed. By part (2) of
Theorem 2.14 then we conclude that K(T) coincides with C(T).

Theorem 2.16. : For every bounded operator T € B(E), E a Banach space, we have:

Ho(T) = K(T') and K(T) < Ho(T).

»Proof:
Consider an element u € Hy(T) and f € K(T’). From the definition of K(T’) we know
that there exists 6 > 0 and a sequence (g,), n€Z* of E' such that

8o = f/ T/gn+1 = &n and HgnH < 511”le
for every n e Z". These equalities entail that f = (T')"g, for every ne Z", so that
fu)= (T/)ngn(”) = gu(Tn,) for every ne z".

From that it follows that | f(u) |< |T"u| ||g,| for every ne Z* and therefore

| f(u) [< " |f| | T"u| forevery neZ. (2.4)

From u € Hy(T) we now obtain that lim|T"u['/" = 0 and hence by taking the n-th root
n—n

in (2.4) we conclude that f(u) = 0. Therefore Hy(T) <+ K(T).
The inclusion K(T) <t Hy(T’). is proved in a similar way.

2.4.2 The generalized Kato decomposition

We introduce an important property of decomposition for bounded operators which in-

volves the concept of Kato operators.

’The semi-regular is an identical term for kato operator
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Recall that spectral radius of T denoted r(T), is given by

r(T) := inf|T"|Y" = lim |T"|"/".
nelN n—C0

Definition 2.15. T € B(E) is said to be quasi-nilpotent if its spectral radius

r(T) := inf | T"|V" = lim |T"|V/" = 0.
nelN =g

Example 2.21. : An example of quasi-nilpotent element is T : (> — {* given by

X1 X2 Xn
T(x1,%x9,...) = (0, —,—, ..., —,...).

goes to zero as n increases. Therefore, r(T) :=

1
R Thus , since oy

2 272

With |T"|V/" <

ianT”Hl/” = 0.
nelN

Definition 2.16. : An operator T € B(E), E a Banach space, is said to admit a generalized Kato
decomposition, abbreviated as GKD, if there exists a pair of T-invariant closed subspaces (M,N)

such that E= M @ N, the restriction T|M is Kato and T|N is quasi-nilpotent.

Example 2.22. : Clearly, every Kato operator has a GKD M = E and N = {0}. and a quasi-
nilpotent operator has a GKD M = {0} and N = E, Kato type operators. In addition to essen-
tially Kato operators with N is finit-dimensional and Ty is .

Example 2.23. :Riesz operator. If T is a Riesz operator then T =T @®T,, with T is compact
and T, is quasi-nilpotent operator.

Quasi-polar and polar operator. If T € B(E) is said to be quasi-polar (resp: polar) operator if
there is a projection P commuting with T for which T has a matrix representation :

T = (Tol "1? ) . R(T)@®KerT —> R(T) @ KerT.
2
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Notes 2.1. : A relevant case is obtained if we assume in the definition above that Ty is nilpotent,
there exists d € N for which (T)y ) d =0. In this case T is said to be of Kato type of operator
of order d.

An operator is said to be essentially Kato if it admits a GKD (M,N) such that N is finite-
dimensional. Note that if T is essentially Kato then T|y is nilpotent, since every quasi-nilpotent
operator on a finite dimensional space is nilpotent.

Hence we have the following implications:
T Kato = T essentially Kato = T of Kato type = T admits a GKD.
Remark 2.14. : If (M,N) is a GKD for T € B(E). Then we have:
1. K(T) = K(T ) and K(T) is closed;

2. KerT pr = KerT n M = K(T) n KerT.

Theorem 2.17. ([4], Theorem 1.43 ): Assume that T € B(E), E a Banach space, admits a GKD
(M,N). Then (N+,M*) isa GKD for T'. Furthermore, if T is of Kato type then T’ is of Kato

type

»Proof:

Suppose that T hasa GKD (M, N). Clearly both subspaces N* and M*' are invariant
under T'. Let Py denote the projection® of E onto M along N. Trivially, Py,

is idempotent and from the equalities M = R(Py), N = KerPy; we obtain that

R(Pl,) = (KerPy)* = N* and KerPl, = [R(Py)]* = M.

Hence

E = R(P},) ®KerP), = N'® M.

Now, if Py :=I—Py then TPy = PyT is quasi-nilpotent and therefore also T'P; = P\, T’
is quasi-nilpotent, from which we conclude that the restriction TI AL 1s quasi-nilpotent.

To end the proof of the first assertion we need only to show that TT y. is Kato, that is
T/(N1) is closed and Ker(TTNl
From assumption T(M) = R(Py) is closed, and therefore, by Corollary ??, R(Py,) is

closed. From the equality T'P;, = P{, T’ it then follows that

)" < T/(N1) for all positive integer 1 e IN.

R((TPy)) = R(T'Py;) = T'(N7).

is closed. Furthermore, for all n € IN we have

8We said that Py, is projection or idempotent, if PA%I =Py .
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Ker(T, )" = Ker(T')" n Nt =R(T"* AN* = [R(T") + N]*.

From the equalities

Ker(TPy) = KerTpy + N < R(T") + N = R(T") + N,

we then conclude that

Ker(T/y1)" = [R(T") + N+ < [Ker(TPy)]* == R(T'P;) = T'(N1),

for all n e N, thus TINL is Kato. This shows that if T hasa GKD (M,N) then T’ has

the GKD (N+t,M%1). Evidently, if additionally Ty is nilpotent then Ty, is nilpotent, so
that T’ is of Kato type.

Remark 2.15. : If T € B(E) is quasi-nilpotent if and only if Hy(T) =E.

The next result describes the quasi-nilpotent part of an operator T which admits a GKD.

Corollary 2.9. ([4], Corollary 1.69): Assume that T € B(E), E a Banach space, admits a GKD
(M,N). Then
Hy(T) = Ho(T /M) ®Ho(T)n) = Ho(T /M) ®N.

»Proof:

We know that N = Hy(T/y). The inclusion Hy(T) = Hy(Tp) + Ho(T)n) is clear. In
order to show the opposite inclusion, consider an arbitrary element x € Hy(T) and let
x =u+v,with ueM and v e N. Bvidently N = Hy(T/y) < Ho(T). Consequently u =
x—v € Hy(T) n M = Hy(T;y) and hence Hy(T) < Ho(T/p) + Ho(T /). Clearly the sum
Hy(T)u) + N is direct since M n N = {0}.

2.5 Basics of closed operators on Banach spaces

Let E and F be Banach spaces (over the complex numbers). By a subspace of E or F
we shall always mean a linear subspace, not necessarily closed. Let T be a linear operator
(either bounded or not) with domain D(T) < E and range R(T) < F. This implies that D(T)

and R(T) are linear subspaces, but we do neither assume that D(T) is a closed subspace
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of E nor that D(T) is dense in E. The subspace G(T) = {(x,Tx):xe D(T)} of the product
space E x Fis called the graph of T.

Given the positive constants @ and p, the product space E x F is a Banach space with
respect to the norm ||(x,v)| = a|x| + f||y|- Evidently, the norm topology in E x F induced by
|(x,v)| is identical to the product topology in E x F. The following definition is well-known.

Definition 2.17. : The linear operator T with domain D(T) < E and range R(T) < F is said
to be closed whenever G(T) is a closed subspace of E x F. Equivalently, T it closed whenever it
follows from x, € D(T) for n=1,2,..,x, — x and Tx, — vy that xe D(T) and Tx =y.

The set of all closed operators from E to F will be denoted by C(E,F). Also we write
C(E,E) =C(E).
In particular, every T € B(E,F) is closed : B(E,F) c C(E,F).

Example 2.24. : (Differential Operator) Let E=F = C[0,1] and let C'[0,1] be the subspace
of E consisting of the functions with continuous first derivatives. Define the linear differential
operator T mapping C'[0,1] into Fby (Tx)(t) = x'(t), t € [0,1]. T is closed; for if x, — x and
Tx, — v, then {x,} converges uniformly to x and {x} converges uniformly to y on [0,1].
It follows from taking antiderivatives of x!, and y that x is in C'[0,1] and that Tx = x' =y
on [0,1]. Thus T is closed. However, T is unbounded, since the sequence {x,(t)} = {t,} has the
properties |Tx,| =mnand |x,|=1.

Remark 2.16. :

1. If T is injective and closed, then T~ is closed.
2. The null manifold of a closed operator is closed.
3. If D(T) is closed and T is continuous, then T is closed.

4. The continuity of T does not necessarily imply that T is closed. Conversely, T closed does
not necessarily imply that T is continuous. This statement can be verified by the following

example.

Example 2.25. : Let D(T) be any proper dense subspace of E =F and let T be the identity

map. T is obviously continuous but not closed.
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Theorem 2.18. : A closed operator T from E to F with domain E is bounded. In other words,
T € C(E,F) and D(T) = E imply T € B(E,F).

»Proof:
See [9]. Theorem 5.20. p 166.

The linear operator T; with domain D(T;) € E and range R(T;) < F is called an
extension of T if D(T) < D(T;) and Tyx = Tx for all x € D(Ty). If, in addition, T; is a

closed linear operator, then T; is called a closed linear extension of T.

Definition 2.18. : An operator T is called closable if it has a closed extensions . the smallest
closed extensions of T whose graph equals G(T) is denoted by T and called the closure of T .

Every closable has a closure.

Remark 2.17. : The product of closed ( resp: closable ) operator T, with bounded operator S give
a closed (resp : closable) operator TS, and D(TS) = { xeD(S) : TxeD(T) } . But the product

of two closed operator need not be closed operator .

Example 2.26. : Let E = C[0,1], T = f' with D(T) = C![0,1], and ¢ € C[0,1] such that
@ =0 on [0,1/2]. Define S € B(E) by Sf = @f forall f € E. Then the operator ST
with D(ST) = D(T) is not closed .To see this take functions f, € D(T) such that f, =1 on
[1/2,1] and f, — f € E with f ¢ C'[0,1]. Then STf, = ¢f! =0 convergesto 0, but f ¢ D(T).

Definition 2.19. :( The adjoint operator): Let the domain of T be dense in E. The Adjoint T’
of T is defined as follows.
D(T) = {yl eF ,y' T continuouson D(T)}. For y' € D(T’), let T be the operator which takes

v' € D(T') to v'T , where y'T is the unique continuous linear extension of v'T to all of E.
D(T') is a subspace of ¥/, and T’ is linear.
T'y’ is taken to be y'T rather than y'T in order that R(T’') be contained in E'.

Example 2.27. : Let E=F={(P, 1<p <w,andlet
u; =(1,0,0,...), u;=(0,1,0,...),......etc.

be the unit vectors in {P. Define T by
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D(T) = span{uy}.

T(x1,%2,...,%,,0,0,...) = (ij,xz, X300y Xy, 0, 0,...).
j

Suppose y!/ = (ay,ay,...) € D(T'). Then for k > 1,

| V' Tug |=| ark —ay [=| ay | k+ | a [>[ a1 |k —[3].

Since ||uy| = landy'T is bounded on D(T),a; = 0. Also, any element (0,by,b,,...) € €P' = (P
is in D(T'). Hence the domain of T' consists of all the elements in €P" which have zero as their

first term. Suppose T'y’' = (c1,¢y,...), where v’ = (0,ay,4a3,...) € D(T’). Then
e =TV up=y'Tup=a, k=2
and ¢ =0. Thus T'y' =y,
Example 2.28. : Let T:D(T) < L?[a,b] — L?[a,b] defined by

Tx =x, xe D(T),

where

D(T) := {x € L?[a,b] : x absolutely continuous, x(a) = 0and x' € L*[a, b]}

It can shown that D(T) is dense in L?*[a,b]. Taking

Yy = {y € L?[a,b] :vy absolutely continuous, y(b) =0 and y' e L*[a, b]}

we see that for x € D(T) and ye Y,

b - . b
<Tx,y>=f X (ty(t)dt = [y(t)x(t)]fi—f Y (t)x(t)dt = (x,2),

where z = —vy'. Thus, T'y = —y' with D(T'):=Y,,.

[ Theorem 2.19. ([28], II. 2.6 Theorem.): T’ is a closed linear operator in F'.

»Proof:

Suppose vy, — v’ and T'y, — x’. Then for each x € D(T), v, Tx — v'Tx and y,Tx =
T'y,x — x’x. Thus y'T = x’ on D(T). Hence, by the definition of T/, v’ € D(T’) and
T’y = x’. Therefore T’ is closed.
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Remark 2.18. : D(T') = ¥ if and only if T is continuous. If that is the case, then T’ is also

continuous and |T'|| = |T| .

We can see that, the notion of a closed linear operator is an extension of the notion of a
bounded linear operator. Therefore, most of concepts previously mentioned in section1.2

apply with closed linear operators. For further clarifications see [27] and [28].

Proposition 2.9. : Suppose that T, is a linear extension of T such that o > n =
dimD(T,)/D(T).

1. If T isclosed, then T, is closed;

2. If T has a closed range, then Ty has a closed range;

3. If T has an index, then ind(T;) = ind(T) + n.

»Proof:

(1) .By hypothesis, D(T;) = D(T)®N, where N is a finite-dimensional subspace. Hence,
G(T;) = G(T) + Z, where G(T) and G(T;) are the graphs of T and T, respectively, and
Z ={(n,Tin) : n e N}. Thus, if G(T) is closed, then G(T;) is closed, since Z is finite-
dimensional.

(2). If R(T) is closed, then R(T,) is closed, since

R(Ty) =R(T) + T (N)

and T{(N) is finite-dimensional.

(3). It is easy to see that it suffices to prove (3) for the case when n = 1. Suppose that.
D(Ty) = D(T) @span{x}, for some x € D(T;) Then T:X =TX®V, where V =span{Tx;}
when T;x¢ R(T) or V={0} when T;xeR(T).

If Tyx¢ R(T), then it is easy to verify that p(T) = B(T;) + 1 and that R(T) = R(Ty).
Therefore, ind(Ty) =ind(T)+ 1.

If Tixe R(T), then R(T) = R(T;) and there exists a z € D(T) such that Tz = T;x.
Hence, R(T) =R(T;)@®span{x —z}. Thus a(T)=a(T;)+1 and ind(T;) =ind(T) + 1.

Definition 2.20. : The linear operator S is said to be bounded with respect to T If
1. D(T)cD(S)cE and R(S) c F;

2. there exist positive constant «a and f, such that ||Sx| < a|x| + B|Tx| for all x < D(T).
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Definition 2.21. : The linear operator S is said to be a finite perturbation of T, if S is bounded
with respect to S and if the range R(S) is finite dimensional.

=~

Theorem 2.20. : Let T be a closed linear operator with domain D(T) in E and range R(T)
in F, and let S be a finite perturbation of T. Then T + AS is a closed linear operator for all A
such that

1. for each A the range R(T + AS) is closed if and only If the range R(T) is closed,

2. a(T+ AS) and B(T + AS) are constant except for a finite number of value of A.

»Proof:
See[27] Theorem 19.6. p 67.

Definition 2.22. : A closed linear operator with closed range is called also normally solvable.

Remark 2.19. : Let D(T) < D(S), and T is normally solvable and has an index. with |S| <
¥(T) then

* T + S is normally solvable;
* a(T+S)<a(T); B(T+S) <B(T).

* ind(T+S) =ind(T).



CHAPTER 3

FREDHOLM THEORY

We now introduce some important classes of operators in Fredholm theory. Let E and F
are Banach spaces. In the sequel, for every bounded operator T € B(E,F), we shall denote
by a(T) the nullity of T, defined as a(T) := dimKerT whilst the deficiency B(T) of T is
defined B(T):= codimR(T), with same definition in chapter 1.

3.1 Fredholm and semi-Fredholm operators and Perturba-

tions

Consider the Calkin! algebra B(E)/K(E) the quotient algebra of B(E) modulo the ideal
K(E) of all compact operators. If dim E < oo, then all operators are compact, and so
B(E)/K(E) is trivially null. Thus if the Calkin algebra is brought into play, then the space
E is assumed infinite-dimensional (i.e., dimE = o0). Since K(E) is a subspace of B(E),
then B(E)/K(E) is a unital Banach algebra whenever E is infinite-dimensional. Moreover,
consider the natural map (or the natural quotient map) 7 : B(E) — B(E)/K(E) which is
defined by

(T) = [T] = {s €B(E):S=T+K forsomeKe /C(E)} — T +K(E).
for every T € B(E). The origin of the linear space B(E)/K(E) is
[0] = K(E) € B(E)/K(E),
the kernel of the natural map = is

Ker(r) = {T € B(E): n(T) = [0]} — K(E) < B(E),

1John Williams Calkin, American mathematician. 11 October 1909- 5 August 1964.

70



3.1. FREDHOLM AND SEMI-FREDHOLM OPERATORS AND PERTURBATIONS 71

and 7 is a unital homomorphism. Indeed, since K(E) is an ideal of B(E),
(T+T)=(T+T)+K(E) = (T+K(E))+ (T + K(E)) = n(T + n(T'),

(TT) = (TT') + K(E) = (T + K(E)(T' + K(B)) = =(T)=(T'),

for every T,T' € B(E), and m(I) = [I] is the identity element of the algebra B(E)/K(E).

Furthermore, the norm on B(E)/K(E) is givenby | [T] | = inf KeK(E)<|T+K| <|T|,
KeK(E)
so that 7t is a contraction.

Now we defined the following sets.

Definition 3.1. : Given two Banach spaces E and F, the set of all upper semi-Fredholm operators
is defined by

®, (E,F) := {T € B(E,F): a(T) <o and R(T) closed },
The set of all lower semi-Fredholm operators is defined by
®_(EF):= {T e B(E,F): B(T) <0 and R(T) closed }
The set of all semi-Fredholm operators is defined by
®, (B, F):= D, (E,F) UD_(E,F),
The class ®(E,F) of all Fredholm operators from E into F is defined by
®(E,F):= D (E,F) n®_(E,F).
If E=F then ®,(EF), ®_(EF), D, (EF)and D(EF) are replaced, respectively by
®, (E), P_(E), P, (E)and D(E).
Remark 3.1. :

e If Te B(EF) and R(T) is closed, we say that T is a semi-Fredholm operator if either
a(T) <o or B(T) <w.

» If Te B(E,F) and R(T) is closed, we say that T is a Fredholm operator if either a(T) < o
and B(T) <.
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We again define the same previous concept, of the index that was studied in the previous

chapter.

Definition 3.2. : The index of a semi-Fredholm operator T € ®,(E,F) is defined by
ind(T) := a(T) — B(T).

Clearly, ind(T) is an integer or + (i.e: ind(T)eZ =7 U {+c0,—~x0} ).

We fellow that @, (E,F) and ®_(E,F) are open subsets of 5(E,F) and the index function

ind: Te®,(E) — ind(T)e Z=7 U {+w0,—x},

is continuous and therefore constant on the connected components of the open set @ (E,F).

Consequently , we have the function
a():Te® (E)—a(T)eZ=27u{x},

B():TeD_(E) — B(T)eZ =27 U {x}.

Remark 3.2. : If T € B(E,F) with closed rang, then we have

Te®d, (E,F)—D_(EF) < ind(T) =+,

Te®_(E,F)— D, (EF) < ind(T) = —x,

Te®(E,F) < ind(T) e Z.

Example 3.1. : The operator defined in Example 1.7 is a Fredholm, with zero index .

Example 3.2. :From the previous studies, we can provide these theoretical examples :
1. All operators which is invertible are Fredholm with zero index.

2. Bysection 2.1, if T € K(E) with A # 0, then we have R(Al —T) is closed and a(AI—T) =
B(AI-T) <o . Then Al —T is Fredholm operator, with ind(AI1 —T) = 0.
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In particularly. by Example 2.16 The classical Fredholm integral equation,

/\f(s)—fbk(s,t)f(t) dt=g(s) (a<s<b),

which we can write as (\I-T)f = g, gives a Fredholm operator of index 0 is a consequence

of the compactness of

Theorem 3.1. : Upper and lower semi-Fredholm operators are dual each other, and we have
Te®, (EF) < T e d_(EF),

Te®_(E,F) = T € @, (E,F),

Te®(EF) < T € ®(EF).

If Te D, (E), then ind(T') = —ind(T).

»Proof:

We have by Proposition2.1 that:
a(T)=B(T') and PB(T)=a(T).
So, the previous equivalences are verified, and ind(T’) = —ind(T).

Example 3.3. : Going back to Example 2.5 and Example 2.10, we can see that the right shift
and left shift operators are adjoint with each other, and Fredholm fulfills Theorem3.1 , then

ind(T;) =1 and ind(T,) =—1.

With T, and T;, we can build a Fredholm operator whose index is equal to an arbitrary

prescribed integer. Indeed if
T, 0 2 ;o p2 2 ;o p2
T= q TRl — "l
0 T,
then T is Fredholm, a(T)=q, B(T)=p, and hence ind(T) =q—p.
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Lemma 3.1. : Suppose that E, F and G are Banach spaces , let T € B(E,F) and S € B(F,G).

Then we have

1. If Te®_(E,F) and Se®_(F,G), then STe ®_(E,G) and ind(ST) = ind(T) + ind(S);

2. If TeD,(EF) and Se D, (F,G), then STe D, (E,G) and ind(ST) = ind(T) + ind(S).

»Proof:

(1). Let F < F and Gy < G be finite-dimensional subspaces such that R(T) +F, =F
and R(S)+Gg = G. Then G = Gy + S(F) = Gy + S(R(T)) + S(Fy) = R(ST) + (Go + S(Fy)),
where dim(G + SF() < . Thus STe ®_(E,G).

(2). If S,T are upper semi-Fredholm, then T’,S’ are lower semi-Fredholm and, by (1),
T’S’ is lower semi-Fredholm. Thus S, T is upper semi-Fredholm.

By Theorem 1.7 we have ind(ST) = ind(T) + ind(S).

Corollary 3.1. : Suppose that E, F and G are Banach spaces , let T € B(E,F)and S € B(F,G),
we have. If T € ®(E,F) and S € ®(F,G), then STe ®(E,G) and ind(ST) = ind(T) + ind(S).

»Proof:
The result follows from part (1) and (2) of Lemma 3.1.

Lemma 3.2. : Suppose that E, F and G are Banach spaces, let T € B(E,F) and S € B(F,G).
Then we have

1. If STe ®_(E,G) then T e d_(F,G);

2. If STe @, (E,G) then Se®, (F,G).

»Proof:
(1). We have R(S) o R(ST),so B(S) <B(ST) < .
(2). If ST is upper semi-Fredholm, then its adjoint (ST)" =T’S’ is lower semi-Fredholm,

so T’ is lower semi-Fredholm and T is upper semi-Fredholm.

Corollary 3.2. : Suppose that E, F and G are Banach spaces , let T € B(E,F) and S € B(F,G),
we have. If ST € ®(E,G) then S ®_(F,G) and T € O, (E,F).
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»Proof:

The result follows from part (1) and (2) of Lemma 3.2.
|

Remark 3.3. : If T e ©®_(E) (respectively, T € ®_(E)) then T" e @, (E) for every n € N
(respectively, T" € ®_(E)). Moreover ind(T") = n ind(T).

[ Proposition 3.1. If Te @, (E) then asc(T) =dsc(T’) and dsc(T) = asc(T’).

»Proof:
If Te®, (E)then T" € . (E), and hence the range of T" is closed for all n. Analogously,
also T has closed range, and therefore for every n €N,

KerT" = R(T")*,KerT" =1 R(T") =+ R(T™).

Obviously these equalities imply that asc(T) = dsc(T’) and dsc(T) = asc(T’).

Let M and N be two closed linear subspaces of a Banach space E and define, if
M # {0},
O(M,N) :=sup{dist(x, N');,xe M, |x| =1},

while 6(M,N) =0 if 6(M,N)={0}. The gap between M and N is defined as
O(M,N) := max{S(M,N),5(N, M)}.

It is clear that 0 < ©@(M,N) <1, while @(M,N) =0 precisely when M = N and
O(M,N) = ©(N, M). Moreover, @(M,N) = O (ML, N1). And if ©(M,N) < 1, then ei-
ther M and N are both infinite-dimensional or dimM = dim N < .

that S € B(E) and ||S| < ¢ implies T + S € ©_ (E). Moreover,

a(T+8S) < a(T), and if B(T) =0 then B(T+S) = oo.

Theorem 3.2. ([16], (4.2.1) Theorem): Let T € O, (E). Then there exists a number & > 0 such

~\

»Proof:

Ker(T) is finite dimensional, so there exists a closed subspace Q such that

E = Ker(T) ® Q.
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Then T,g =Tg (recall Ty denotes the restriction of T to Q) is one to one and has closed
range R(T), so Tél is continuous and therefore bounded. Hence there exists 6 > 0 such
that | Tx|| <7 x| forall xeQ.

Let ¢ = g If Se B(E) with [|Sx|| < ¢, we have
0 < |[Sx| <e x| =%|x| forall xeQ

From this we get

2
|(T+8)x| > | Tx| — S| >17Hx|!—ngH =717HXH: for all xeQ. (3.1)

So (T + S)(S1 exists and is continuous. Now T + 8 isone tooneon Q and R[(T+8)g]
is closed. We must show that a(T+S) <o and R(T +S) is closed. Let a(T) = p.
Suppose Ker(T +8) had p+1 linearly independent elements, x;, x5, x3,...,X,11, Then since
Ker(T+S)nQ = {0} we would have that x;,x5,x3,...,x,4; are linearly independent modulo
Q. Since E = KerT @ Q, it follows that E/Q is p dimensional, so there cannot exist p + 1
elements of E which are linearly independent modulo Q. This contradiction implies that
a(T+S) <a(T).

Now to show that R(T +8S) is closed. Since E = [Q @ Ker(T +S)] + Ker(T), there exists

a finite dimensional subspace K such that

E=[Q®Ker(T +S)|®Ker(T).

Therefore

R(T+S)=(T+S)K+(T+S)(Q@®Ker(T +8)).

Since (T +S)K is finite dimensional, it remains to show that (T +S)(Q@®Ker(T +8)) is
closed. But this reduces to showing that (T +S)g is closed and we noted this earlier.
Now to get that B(T) = (T +S) if B(T) = .

] 1
(T +8)x] = [sx] < elx| = 3]x| < 5|Tx| for all xeE,

and using (3.1) we get

318
ITx - (T +S)x] = ISx] < || || <%<T+s>xu for all xcE,

ElL]| <3 -1 forall, xe Q. So the above two inequalities give us an estimate of

Note that 2 <3 =2
the gap between R; =R[(T +8S)g] and R, =R(Tq) of ©(R|,Ry) < 3.

We get that

dimR{ = dimRy = B(T), since R, =R(T).
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Inasmuch as R(T+S) = R{®W, where W is a suitable finite dimensional subspace, we
see that B(T+S) =0 if B(T) = .

=~

Theorem 3.3. ([16], (4.2.2) Theorem): Analogously, if T € ®_(E) then there exists a number
€ >0 such that for every S € B(E) with |S|| <& we have T+ S e ®_(E,F) and

B(T+S)<B(T) and if a(T)= oo then a(T+S) = .

»Proof:
Use the relationships between T and T, and in the same way as the previous proof, we
find that the results are valid.

Remark 3.4. : The relation between minimum Modulus and upper, (resp :lower) semi-Fredholm

operators , as follows:

* If Te D, (EF), then

Y(T)=sup{s>0 : a(T+S)<a(T) for every S with S| <s}.

* If Te D_(E,F), then

Y(T)=sup{s>0 : B(T+S)<PB(T) for every S with |S| <s}.

We also have the following results products of operators.

Theorem 3.4. ([35], Theorem 5.31): If T € B(E,F), S € B(F,G) and ST € ®_(E,G), then
Sed_(F,G) .

»Proof:

Since dimR(ST)' < oo, there is a subspace G, such that dimG, < c© and G =
R(ST) ® Gy. Since R(S) > R(ST), we know that R(S) is closed and R(S)* < R(ST)" .
Thus, dimR(S)* < . Consequently, S € ®_(F,G).
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Theorem 3.5. ([35], Theorem 5.32): If T € B(E,F), S € B(F,G) and ST € ®_(E,G), then
Te®, (EF).

»Proof:
We merely note that T’S’ € ®_(E’,G’). Theorem 3.4 now implies that T’ € ®_(F,E’),
which means that Te @ (E,F).

We remind again that, two closed subspaces E;, E, of a Banach space E are called com-
plementary when E; nE, = {0} and E = E; @ E,. Either subspace is called a complement
of the other. We say that a subspace E; < E is complemented if it has a complement. Some
Banach spaces contain subspaces which are not complemented. We note, if E; is a closed
complemented subspace of a Banach space E, then there is a bounded projection P on E
with R(P) =E; .

Theorem 3.6. ([35], Theorem 5.34): If T € @ _(E,F) and R(T) is complemented in F, then
there is an T € B(E,F) such that ToT € ®(E).

»Proof:

Let P be a bounded projection from F to R(T). There is a closed subspace Ej; € E
such that
E=E ®KerT.

Then T has a bounded inverse T from R(T) to Ey.Let Ty = TP. Then T, < B(E,F),

and
I on Eo,
T,T =
0 on KerT.

Thus, ToT € ®(E).

Theorem 3.7. ([35], Theorem 5.35): If T € ®_(E,F) and KerT is complemented, then there is
an Tye B(F,E) such that TT;e O(F).

»Proof:

There is a finite dimensional subspace Fy € F such that

F=F,®R(T).
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Let P be the bounded projection onto R(T) which vanishes on F;, and define T, as

above. Then

Thus, TT, € ®(E).

Theorem 3.8. ([35], Theorem 5.36) : If T isin B(E,F), S isin B(F,G) and ST € ®(E,G),
then Te ®, (E,F), and Se ®_(F,G). Moreover, R(T) and KerS are complemented.

»Proof:
The first statement follows from Theorems 3.6 and Theorems 3.7. Consequently, there

is a closed subspace E;, < E such that

E=E ®KerT.

Let

F, = R(T)nKerS, E; =T '(F;)nE,.

Since E; < Ker(ST), dimE; < «(ST) < . Since T is one-to-one from E; onto F;, we

see that dimF; = dimE; < . Hence, there are subs paces F, c R(T),F3  KerS such that

R(T) ZFI@FQ, KerS ZFl@F3.

We also know that

G = R(ST)®G,,

where dimG( < w. Let G4 =R(S) n Gy. Then

R(S) =R(ST) Gy,

and there is a subspace G5 = G( such that Gy = G4 ® Gs5. Consequently

G=R(ST)®G,®Gs, =R(S)=R(ST)®Gy.

Let gi,..,9> beabasis for G,4. Then there are yy,...,, € F such that
Sy] =Z]',1 <j < n.

Let F,; be the subspace of F spanned by yy,...,y,. Then dimF; < dimG, < . We
note that
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F, nKerS = {0}, FynKerS={0}, F,nFy={0}.

Thus,
KerS n [F, ®F4] = {0}.

Since dim F; < oo, the subspace F, ®F, is closed. Let y be any element of F. Then
Sy e R(S) = R(ST)®Gy. Hence, there are z; € R(ST), z4 € G4 such that Sy = z, + z4. There
are v, €Fy, vy € F4 such that Sy, =z, Sy, = z4. Then

S(y—y2—va) =Sy —2, -2, =0.
Thus, (y —y, — y4 € KerS, and consequently
F=F,®F,®KerS.

This shows that KerS is complemented. Moreover,

F=F,®F,®F ®F; =F;®F, ®R(T),

showing that R(T) is also complemented.

Now we will define other Fredholm sets.

Definition 3.3. : The set of left invertible and right invertible operators are denoted by &;(E)
and &, (E), respectively. Note that T is invertible, if T is left and right invertible. The set of left
Fredholm operators is defined by

®;(E,F) = {TEB(E,F) such that R(T) is closed, complemented subspaces and a(T) < oo};
and the set of right Fredholm operators is defined by

®,(E,F) = {TEB(E,F) such that KerT is complemented subspaces and B(T) <oo}.

Thus, we have the following inclusions

@ (E,F) < O)(E,F) < . (E,F);

and
®(E,F) < @, (E,F) c ®_(E,F).

Clearly, if T € ®(E,F), then
ind(T) < co.
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If T € ®;(E,F)\®(E,F), then

ind(T) = —o0,

and, if T € ®,(E,F)\D(E,F), then
ind(T) = +c0.

In next theorem, It should be noted that in the characterization below the ideal F(E)
may be replaced by the ideal K(E) of all compact operators.

~\

Theorem 3.9. : ([4], Theorem 1.53 . p 33)(Atkinson characterization of Fredholm operators):
If Te B(E,F), then T € ®(E,F) if and only there exist Uy, U, € B(E,F) and finite-dimensional
operators K; € F(E), K, € F(F) such that

UlTZIE—Kl and TUZZIF—KQ

In particular, T € ®(E) if and only if T is invertible in B(E) modulo the ideal of finite-

dimensional operators F(E) .

In the following theories we will study the compact perturbations .

Lemma 3.3. : Let T € B(E,F) and K e K(E,F). Then the following statements hold

1. If Te D, (EF) then T+Ke D, (EF);

2. If Te ®_(E,F) then T+ Ke ®_(E,F).

»Proof:

(1). Let Te @, (EF) and let M; be a closed subspace of E such that codimM; < o
and inf{ |Tx|:xeMj,|x|=1}=c>0.Since K is compact, there exists a closed subspace
M, c E with codimM, < o and sup{|Tx|:xe M,,|x| =1} <5. Set M = M; n M,. Then
codimM < oo and inf{|[(T+K)x|:xeM,|x| =1} > inf{|Tx| — [Kx| : x e M, x| = 1} > 5.
Hence T+ Ke @, (EF).

(2). If Te ®_(E,F)and K e K(E,F), then T’ is upper semi-Fredholm and K’ is compact.
By (1), T'+ K’ is upper semi-Fredholm, and so T +K is lower. semi-Fredholm.

Theorem 3.10. : If Te ©(E,F) and Ke K(E,F), then T + K€ ®(E,F). Moreover

ind(T +K) =ind(T).
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»Proof:

By Lemma 3.3, ®(E,F), ® (E,F) and ®_(E,F) are invariant under compact perturba-
tions. Let T € ®(E,F). By Theorem 3.9, there exist Ue B(E,F) and K; € K(E) such that
UT =Ig+K;. ByLemma 3.1, ind(T)+ind(U) = ind(Ig+K;) = 0,s0 ind(T) = —ind(U). Fur-
ther, U(T+K) = Ig+(K; +UK), where K;+UK € K(E), and so ind(U)+ind(T+K) = 0. Hence
ind(T+K)=—ind(U) =ind(T).If Te D, (E,F)\O(EF),then T+Ke D, (E,F)\D(E,F), and
so ind(T+K) =indT = —0.

Example 3.4. :Let E={¢P, 1< p < o, the space of all sequences x = (x1,x,x3,...) with finite

norm 1
||xH — { (ZZO=1 ’xn |P)E lf 1< p <
p .
SuPn}l |xn ‘ lf p o0

we define the following operators on €P by

Tox = (O,xl,xz,x3,...),

Tix = (xp,x3,X4,...),

1 1
T = 2 AN SABs e )y
2x = (x; 2X2 3x3 )
1 1
Tix = (x5, =X3,=X4,...),
3% = (%, 2x3 3X4 )
1 1
Tix=(0,x1, =%y, =X3,...).
4x = (0,x; 2x2 3x3 )

We can see that KerT; consists of those elements of the form

(xl,O,...).

so that ind(Ty) = 1.

The operator T is a Fredholm operator with ind(Ty) = —1 because T, is injective and
R(Ty) =Eq. (Tg and Ty are left and right shift operators.)

Since the operators T,, T3 and T4 are compact, it follows therefore, that To+T; and T, +T;
are Fredholm operators with ind(Ty+ T;) = ind(Ty) = —1 and ind(T; +T;) =ind(T;) =1,
with i =2,3,4.

Proposition 3.2. : Let T € B(E), then the following assertions are equivalent:

1. TeD(E);

2. [T] is invertible element of Calkin algebra B(E)/KC(E) .




3.1. FREDHOLM AND SEMI-FREDHOLM OPERATORS AND PERTURBATIONS 83

»Proof:
(1) = (2) . Suppose that (1) is true, then there exist S € B(E), K;,K; € £(E) such that

ST=1+K,, and TS=I+K,.

Then we have
[S].[T] =[ST] =[I+K;]

= [T][K]
—1+0
~L

In the same way

[T].[S] =[TS] =[I+K;]

= [1][K;]
~1+0
~ 1.

Hence [T] is invertible in B(E)/K(E), with [T]~! = [S]
(2) = (1) . Suppose that (1) is true, then there exist S € B(E) such that

[T].[S] = [S].[T] =1L
Then we have

[ST—1I]=[TS—1] =0,

in another way we say that ST —1I and TS —1I are compact, then we have ST —1=K; and
TS —I =K,. Therefore

ST=I+K,, and TS=I+K,,

with K{,K, € L(E), then by Theorem 3.9 we conclude that T € ®(E).

~

Proposition 3.3. : Let T € B(E), then we have . If T € ®_(E) then there exists ¢ > 0 such
that A\ + T € ®(E) and a(Al —T) is constant on the punctured neighbourhood 0 <| A |< e.
Moreover

a(AMI-T) < a(T) for all |A|<eg, (3.2)

and
ind(A1-T)=ind(T) for all |A|<e.
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»Proof:
See [6], Theorem 1.64 .p 40.

|

Analogously;
Proposition 3.4. : Let T € B(E), then we have . If T € ®_(E) then there exists ¢ > 0 such
that A\ - T € ®_(E) and B(AL +T) is constant on the punctured neighbourhood 0 <| A |< e.
Moreover

BAI-T) < B(T) for all |A|<e, (3.3)
and
ind(A\1-T) =ind(T) for all |A|<e
»Proof:

See [6] Theorem 1.64 .p 40.

Definition 3.4. : Let T € @, (E), E a Banach space. Let ¢ > 0 asin (3.2) or (3.3). If T € @, (E),
the jump j(T) is defined by

j(T)=a(T)—a(M-T), 0<|A|<.
while, if T € ®_(E), the jump j(T) is defined by

j(T) = B(T) = pAAT=T),  0<[A]<.

Remark 3.5. : Clearly j(T) >0 and the continuity of the index ensures that both definitions of
j(T) coincide whenever T € ®(E), so j(T) is unambiguously defined. An immediate consequence
by Proposition3.3 , Proposition3.4 and Theorem3.1 is that if T € . (E) then j(T) = j(T').

In the sequel we shall denote by T, the restriction T\gre(r) of T to the invariant
subspace R™(T) of a linear space X.Let x =x+R*(T) be the coset corresponding to x in
the quotient space X = X/RP(T).If Y is a subset of X, we set }J:= {9:v e Y}. Obviously
Y coincides with the quotient [V +R*(T)]/R™(T).
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Let T/;O : X — X denote the quotient operator defined by

—~

Tooa?z'fx, xeX.

It is easily seen that T, is well defined.

In the next lemma we collect some elementary properties of T/;O .

~

Lemma 3.4. ([4], Lemma 1.56): Let T be a linear operator on a vector space X, and assume
that a(T) < oo or B(T) < . Then:

L —

1. N®(T,) = N°(T);

—~

2. R®(T,,) = {0}.

»Proof:

(1). We know that T(R®(T)) = R*(T). Let x¢e KerT,,. Then TxeR® (T) = T(R™(T)).
Consider an element u € R*(T) such that Tx = Tu. Clearly x —u € KerT,so x =u +v
for some v e KerT, x € KerT + R*(T) and hence x¢€ KerT + R*(T) = KerT. This shows the

inclusion KerT/;O < KerT. The opposite inclusion is obvious, so Ker’I/‘O\O — KerT. Similarly

Ker(T/';O)” — KerT" for every n e N, and from this the equality (1) easily follows.

—_—

(2). It is easy to check that R(T") = R(T") for all n e N, and from we obtain that
R®(T) = R*(T") = 0.

Lemma 3.5. ([4], lemma 1.57 ): Let T € @ (E), E a Banach space. Then:

1. Ty, is a Fredholm operator;

—~

2. T, is an upper semi-Fredholm operator.

»Proof:

(1). Since a(T) < «, from Proposition 1.5 and Proposition 1.12 we have p(T) =0,
and from the inclusion KerT., < KerT we conclude that KerT is finite-dimensional, hence
T, is a Fredholm operator

(2). From Lemma 3.4 we have KerT/; — KerT and hence a(T/;) < o . Moreover, it is
easy to see that R(T,) = R/(?) is a closed subspace of E, thus T,, € @, (E).

[ Theorem 3.11. : Let T e O (E), E a Banach space. Then j(T) =0 if and only if is Kato. ]
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»Proof:

Since R(T) is closed it suffices to show the equivalence
j(T)=0< N*(T) = R(T).
Assume first Te @, (E) and N*(T) < R®(T). Observe first that

a(AMI+T)=a(AM+Tx) for all AeC.

For A =0 thisis clear, since KerT € N*°(T) < R*(T) implies that KerT = KerT,. For
A # 0 we have, by part (2) of Corollary 1.7,

KerT € N*(AI+T) = R*(T),

so that Ker(AI+T) = Ker(AI +T).
Now, fromProposition 1.5 and Proposition 1.12 we know that B(T,) = 0 and hence
there exists ¢ > 0 such that B(AI+T,) =0 forall | A |<¢, see Lemma 2.8. From Lemma

3.4 we know that T, is Fredholm, so we can assume & such that

ind(AM1+Ty) =ind(Ty) for all |A|<e.

Therefore a (A + T,) = a(T,,) for all | A |< ¢ and hence a(Al+T) = a(T) for all
| A|< ¢, sothat j(T)=0.

Conversely, suppose that T € @, (E) and j(T) = 0, namely there exists ¢ > 0 such
a(AI+T) is constant for | A |< e. Then

a(Ty) <a(T)=a(AM+T)=a(Al+T,) for all0<|A|<e.

But T, is Fredholm by Lemma 3.4, and hence, see Proposition 3.3 and Proposition
3.4, we can choose ¢ > 0 such that a(AMl +T,) < a(Ty) for all | A |< ¢. This shows that
a(Ty) = a(T) and consequently, N°(T) < R*(T). Consider now the case that T € ®_(E)
and j(T) = 0. Then T’ € @, (E’) and j(T) = j(T’) = 0. From the first part of the proof we
deduce that N°(T’) € R*(T’). From Corollary 1.3 it follows that KerT" < R(T"") for all
n e N, or equivalently R(T")- < KerT for all n e IN. Since all these subspaces are closed
then R(T") = KerT for all n €N, so by Corollary 1.3 we conclude that N*(T) € R*(T).

[ Theorem 3.12. : If Te @, (E) then T is essentially Kato .

»Proof:
Let Te @, (E). If T is Kato then the pair (M,N), with M =E and N = 0, is a Kato
decomposition which verifies the desired properties. If T is not Kato then j(T) > 0, by
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Theorem 3.11 and hence N°(T) < R*(T). Let P = Z}:& T f ®T" I~y with ye KerT"
but y ¢ R(T) and f € KerT™ . be the non-zero finite-rank projection . P commutes
with T. The restriction T|KerP is semi-Fredholm and j(Tg.rp) = j(T) — 1. Continuing this

process a finite number of times reduces the jump of the residual operator to zero.
]

Remark 3.6. : We have already noted that if T € @, (E) then Al —T is still semi-Fredholm
near 0. By Theorem 3.12 every semi-Fredholm operator is of Kato type and therefore, there exists
a punctured open disc D, centered at 0 for which A1 — T is semi-regular for all A € D, . From
Theorem 3.11 we then conclude that if a semi-Fredholm operator has jump j(T) > 0 then there
is an open disc D, centered at 0 for which j(T)=0 forall A eD.{0}.

Let us begin by trying to enlarge the set ©®(E,F) of Fredholm operators to include un-
bounded ones, and going back to the concepts of the previous chapter (section 2.5) . We
can attempt to define unbounded Fredholm operators. If you recall, in , we used the closed
graph theorem (or its equivalent, the bounded inverse theorem) on a few occasions. Thus,
it seems reasonable to define Fredholm operators in the following way: Let E, F be Banach

spaces. Then the set ®(E,F) consists of linear operators from E to F such that
1. D(T) is dense in E;
2. T is closed;
3. a(T) < owo;
4. R(T) is closed in F;

5. B(T) < .

And the most classes bounded Fredholm theorems are valid for this expanded set of un-

bounded Fredholm operators.

Example 3.5. :we have that for function taking values in Banach space of dimension n, the deriva-
tive (Tx)(t) = x'(t) : C*([0,1]) — C*=1([0,1]) is a surjective Fredholm operator with index n,
but imposing the boundary condition f(0)= f(1)=0 produces an injective Fredholm operator

{f e CH(0,1]) | £(0) = F(1) = o} Y1) ¢k (0,17),
with index —n.

Remark 3.7. : shows that, in a Banach space, a Fredholm operator is normally solvable.
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3.2 Some operators related to Fredholm operators

In this section, we will define some of the operators that emerged from the emergence of

Fredholm operators , or related to them.

Definition 3.5. : A Weyl operator is a Fredholm operator with null index (equivalently, a semi-

Fredholm operator with null index). Let
W(E) = { Te®(E) :ind(T)=0 }
Definition 3.6. : A bounded operator T € B(E) is said to be upper semi-Weyl if T € ,(E) and

ind(T) < 0. T € B(E) is said to be lower semi-Weyl if T € ®_(E) and ind(T) > 0. The set
of all upper semi-Weyl operators will be denoted by W, (E), while the set of all lower semi-Weyl

operators will be denoted by W_(E), and we write that

W+(E)={ Te®, (E) :ind(T) <0 }

and

w_(E):{ Te® (E) :ind(T) >0 }

Hence

W(E) = W, (E) nW_(E).

Example 3.6. : Let defined the following operator
U o0
T = P — ol
0 U

Where U is the unilateral shift (U =T; or U =T, resp: U =T, or U’ =T, ). Evidently
T is Fredholm and ind(T) = ind(U) +ind(U’) = 0. Which says that T is weyl operator In the

same time is upper semi-Weyl and lower semi-Weyl.

Because weyl operators are also Fredholm operators then the most properties of section

3.1 are valid and we write this note
Notes 3.1. :
a- T is weyl operator if and only if T’ is also weyl.

b- If dimE < o, then W(E) = B(E).
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c- the Fredholm Alternative can be rephrased as:

KeK(E) and A #0 — M —KeW(E).

d- every nonzero multiple of a Weyl operator is again a Weyl operator,

TeW(E) — ATeW(E) for every A#0.

e- Every nonzero scalar operator is a Weyl operator. In fact, the product of two Weyl operators

is again a Weyl operator,

T,Se W(E) = TSeW(E).
Thus integral powers of Weyl operators are Weyl operators

TeW(E) = T"eW(E) for every neN,.
f- Since T e B(E) and for every compact K e IC(E),

TeW(E) = T+KeW(E).

Example 3.7. : Let E=¢P, 1 <p < oo, and we consider the operator

Tx = (0,x3,%, X5, X4, X7, Xg, .. )-

We have KerT = {(x1,0,...)} and R(T) = {(0,x1,%,,X3,%4,...)} and ind(T)=0.So T is
Weyl operator. we know that the operator K given by

1 1
Kx = (xq, Exz, §x3,...),

is compact, than the operator T + K is Weyl operator.

Let A(T):={nelN:m=>nmeN = R(T") nKerT < R(T™) n KerT}.

The degree of stable iteration is defined as dis(T) := infA(T) if A(T) # &, while
dis(T) = o if A(T) = (.
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Definition 3.7. : T € B(E) is said to be quasi-Fredholm of degree d if there existsa d € N
such that:

1. dis(T) =d,
2. R(T") is a closed subspace of E for each n>d,

3. R(T) + KerT? is a closed subspace of E.

By OF(d) we denote the class of all quasi-Fredholm operators of degree d.

Theorem 3.13. : If T e B(E) then the following implication hold:

Te®, (E)=— T quasi — Fredholm.

»Proof:
See [5] . Theorem 1.96. p 64.

Remark 3.8. : If Te QF(d) if and only if T' € QF (d).

Definition 3.8. : An operator T € B(E), E a Banach space, is said to be B-Fredholm, (re-
spectively, semi B-Fredholm, upper semi B-Fredholm, lower semiB-Fredholm), if for some
integer n >0 the range R(T") is closed and T" is a Fredholm operator (respectively, semi-

Fredholm, upper semi-Fredholm , lower semi-Fredholm).

Example 3.8. : It is easily seen that every nilpotent operator, as well as any idempotent bounded
operator, is B-Fredholm. Therefore the class of B-Fredholm operators contains the class of Fred-

holm operators as a proper subclass.

Definition 3.9. : Let T € B(E) be semi B-Fredholm and let n € IN be such that T" is a Fredholm
operator. Then the index ind(T) of T is defined as the index of T" .

The upper semi-Fredholm operators (respectively, the lower semi-Fredholm operators)
are exactly the upper semi B-Fredholm operators (respectively, the lower semi B-Fredholm

operators) for which we have a(T) < o (respectively, (T) < ).
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Theorem 3.14. ([5], Theorem 1.114): Let T € B(E). Then we have:

1. T is upper semi B-Fredholm and «(T) < oo if and only if T € @, (E);

2. T is lower semi B-Fredholm and B(T) < oo if and only if T e ®_(E).

»Proof:

(1). If T is upper semi B-Fredholm then there exists an n € IN such that R(T") is closed
and T" is upper semi-Fredholm. Since a(T) < o then a(T") <o hence T" is upper
semi-Fredholm. From the classical Fredholm theory then T is also upper semi-Fredholm.
The converse is obvious.

Part (2) may be proved in a similar way.

[ Corollary 3.3. : If T € B(E) is injective and upper semi B-Fredholm then T is bounded below. ]

Remark 3.9. : Every semi B-Fredholm operator is quasi- Fredholm.

Definition 3.10. : A Browder operator is a Fredholm operator with finite ascent and finite de-
scent. Let I3(E) denote the class of all Browder operators from B(E):

B(E) = {Te®(E): asc(T) <o and dse(T) < };

equivalently, according to Theorem 1.5:

B(E) = {Te®(E): ase(T) = dsc(T) < };

We say that also an operator T is upper semi-Browder if it is upper semi-Fredholm and

has finite ascent , denoted by

B, (E) = {T e®, (B): asc(T) < oo}.

Similarly, T is lower semi-Browder if it is lower semi-Fredholm and has finite descent ,
denoted by

B_(E) = {T e®_(E): dsc(T) < oo}.
Remark 3.10. : by Theorem 3.1 and Proposition 3.1 , we can conclude that :

T is upper semi-Browder < T’ is lower semi-Browder;
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T is lower semi-Browder < T’ is upper semi-Browder;
T is Browder < T’ is Browder.

Example 3.9. : By Example 1.3 and Example 1.4, the right shift operator is upper-semi-

Browder and the left shift operator is lower-semi-Browder, but they are not Browder.

Proposition 3.5. ([19], Proposition 8): Let T € B(E). Then:

1. T is upper semi-Browder if and only if R(T) is closed and dimN *(T) < wo;
2. T is lower semi-Browder if and only if codim R*(T) < oo;

3. T is Browderif and only if dimN*(T) <o and codim R*(T) < o.

»Proof:

(1). If T is upper semi-Browder, then R(T) is closed and k = a(T) < . Since T is
upper semi-Fredholm, we have dimN ®(T) = dimKerT* < 0.

Conversely, if R(T) is closed and dimN ®(T) < o, then T is upper semi-Fredholm.
Further, KerT c KerT? ... ¢ N®(T), and so there exists k with KerTk+! = KerTk. Hence
a(T) < oo.

The remaining statements can be proved similarly.

Lemma 3.6. ([19], Lemma 9): Let T € B(E). be upper semi-Browder and Kato. Then T is

bounded below. If T is lower semi-Browder and Kato, then T is onto.

»Proof:

Suppose that there exists a non-zero vector x, € KerT. Since KerT < R(T), there exists
x; € E such that Tx; = xo. Further, x; € KerT? = R(T) and we can construct inductively
vectors x; € E satisfying Tx; = x;_;(i = 1). [t is easy to show that the vectors x; are linearly
independent and x; € N, a contradiction with Proposition3.5.

The second statement can be proved by duality.
]

The following theorem shows that the relation between quasi-nilpotent part, analytic

core , semi Fredholm and Browder operators, With A, is isolated point of o(T).
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=~

Theorem 3.15. : Let Ay be an isolated point of o(T). Then the following assertions are equiva-

lent:
1. Aol — T e @, (E);
2. Aol —Te B(E);
3. Ho(AI —T) is finite-dimensional;

4. K(AoI —T) is finite-codimensional.

»Proof:
See [6], Theorem 2.66 . p 86.

Proposition 3.6. ([34], Proposition 3.7.1): Let T € B(E) be an arbitrary operator on a Banach
space E, and let M E be a T-invariant closed linear subspace of finite codimension in E. Then

T is a Fredholm operator on E if and only if T\ is a Fredholm operator on M. Moreover, in

this case, ind(T) = ind(T\ ) -

»Proof:

Choose a projection P € B(E) with range M, and observe that I — P projects onto the
finite-dimensional space KerP. Since T(I—P) is a finite-rank operator,and T = TP+T(I-P)
, it follows that T is a Fredholm operator precisely when TP is Fredholm, and that, in this
case, ind(T) = ind(TP). Moreover, it is readily seen that

Ker(TP) = Ker(T\ ) ®KerP  and R(T) = (T\ p()(M).

Consequently, TP and T,y are simultaneously Fredholm operators, and, when they

are, they will have the same index.

We saw in the previous chapter that Kato type operators admit a generalised Kato de-
composition and Kato proved that a bounded Fredholm operator is of Kato type, then semi-
Fredholm operators also admit a generalised Kato decomposition. We saw also that Weyl

operators are Fredholm with zero index then it have a generalised Kato decomposition .

Browder operator admit a generalised Kato decomposition, if T is Browder operator,

then T=T;®T, with T; isinvertible and T, is nilpotent operator.
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Quasi-Fredholm operator. In Hilbert spaces, this class coincide with Kato type operators,
when there exist a pair of closed subspaces (M,N) of H such that H = M®N and
T(M) <=M and Ty is Kato operator, T(N) = N and T\y is nilpotent operator. the pair
(M,N) is said to be Kato decomposition of T.the same decomposition exists also for quasi-
Fredholm operators on Banach spaces under the additional assumption that the subspaces
R(T?) nKerT and R(T) + KerT¢ are complemented .

3.3 Essential Fredholm , Browder and Weyl spectrum

We assume in this section that E is an infinite-dimensional Banach space (for finite-dimensional
spaces all results would be trivial). In Section 3.1 we showed that the sets of all Fredholm,

upper (lower) and left (right) semi-Fredholm operators in E form regularities.

An element a in a unital algebra A left invertible if there is an element a, in A (a left
inverse of a) such that ay,a = 1 where 1 stands for the identity in A and it is right invertible
if there is an element a, in A (a right inverse of a) such that a4, = 1. An elementain A
is invertible if there is an element @ —1 in A (the inverse of a) such that a 'a=aa~! = 1.
Thus ain A is invertible if and only if it has a left inverse a4, in A and a right inverse a,
in A , which coincide with its inverse a~! in A (since a, = apa a, = a;)

Recall that the corresponding spectra - the essential spectrum, essential approximate point
spectrum, essential surjective spectrum and left (right) essential spectrum , — were defined
by
0o (T) = {/\ eC:AI-T¢ cD(E)},
0uf(T) = {A eC: M -T¢ <D+(E)},
o1/ (T) = {A €eC:M-T¢ cp,(E)},
01.(T) = {/\ eC:AI-T is not left essentially invertible},

0,0(T) = {/\EC:/\I—T is not right essentially invertible}.

the Weyl spectrum defined by:

0,(T) := {Ae C: Al —T¢W(E)},

the upper semi-Weyl spectrum defined by
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0 (T) := {A €eC:AI-T¢ W+(E)},

and the lower sem-Weyl spectrum defined by

01(T) := {Ae C: Al —T¢W,(E)}.

Of course, also the classes of Browder operators generate spectra.

The Browder spectrum defined by

oy (T) := {Ae C:AI-T¢ B(E)},

the upper semi-Browder spectrum defined by

0, (T) 1= {/\EC AL-T¢ B+E)},

and the lower semi-Browder spectrum defined by

a1y (T) 1= {A € C: M — mathbfT ¢ B_(E)}.

Proposition 3.7. : Let T € B(E). Then 0,f(T) < 01,(T), 017(T) < 04¢(T), 0¢f(T) = 07,(T) U
Gre(T> = auf(T) o Glf(T)'

»Proof:

All statements with the exception of the last one are trivial.

It is easy to find an example of operator for which o, (T) # 077(T)

Example 3.10. : Let T be defined on €* by

Tx = (x1,0,x5,0,x3,0,...),

obviously, T is injective with closed range of infinite-codimension, so that 0 € oj7(T) but

0 ¢ qu(T)-

Definition 3.11. : Let T € B(E). The essential spectral radius of T is defined by r,(T) =
max| A[: A€ 0,¢(T) and the essential norm by |T|, = inf|T +T||: T € K(E).
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Clearly, |T|, is the norm of the class T + IC(E) in the Calkin algebra B(E)/K(E), and
o.f(T) is the spectrum of the class T + K(E) in this algebra.

Proposition 3.8. : Let T € B(E). Then we have that:

Oef(T) c o(T).

»Proof:
If Te B(E) and A €K, suppose that A¢ o(T), then there exist S € B(E) such that

S(AI-T) = (AMI—-T)S.
Hence

[SLIAL—T] = [S(AI-T)] = [1] = I

and

[AI—T].[S] = [(AI-T)S] = [1] = L.

Then we have
[S].(AI—[T]) = (ML —[T)).[S] =L

Thus, we proved that A ¢ 0,¢(T), so the proof is complete and o,¢(T) = o(T).
|

Remark 3.11. : Clearly all spectra o.¢, 0,5, 017, 01, and oy, are invariant with respect to

compact perturbations. Thus

o.f(T) = ﬂ{a(T +K):Ke IC(E)};

auf(T)Cﬂ{auf(T+K .Ke K(E }
o1 (T) = ({ors (T +K) : Ke K(E) };
ale(T)cﬂ{ole(TJrK .KeK(E }
are(T)cﬂ{am(TJrK K c K(E }

Example 3.11. : Going back to Example3.7, we have 0, (T +K) = 0, (T).
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The results of the following theorem easily follows from duality.

Theorem 3.16. ([6], Theorem 4.1 ): Let T € B(E). Then we have:
1. 0,(T) = 0,(T"),
2. 0yw(T) = 01 (T'), and 01,(T) = 0y, (T').

Moreover,
Ou/(T) = Ouw(T) V Ulw<T)'

Theorem 3.17. ([6], Theorem 4.3 ): Let T € B(E). Then we have:
1. 0p(T) = 0p(T'),
2. 0p(T) = 01 (T'), and 0(T) = 0,(T').

Moreover,

0p(T) = 04p(T) L 0(T).

Now let us defined some of the spectre classes, accompanying the various concepts stud-

ied above, through this note.

Notes 3.2. : Let T € B(E), E a Banach space:

a- The Kato spectrum : ok(T){/\ eC : M~—T is not Kato},
b- The essentially Kato spectrum : oek(T){/\ eC : M —T is not essentially Kato},

c- The Kato-type spectrum : okt(T){/\ €eC : MI-Tis not Kato type},

d- The generalaised Kato spectrum :

ogk(T){/\ eC : M—T does not admit a generalized Kato decomposition},
e- The Saphar spectrum : osa(T){)\ eC : M-—T is not Saphar},
f- The essentially Saphar spectrum :oesa(T){A e C: M —T is not essentially Saphar},
g- The descent spectrum : od(T){/\ eC : dsc(AMI-T) = oo},
h- The ascent spectrum : oa(T){/\ eC : asc(AI-T) = oo},

i- The approximate point spectrum : oap(T){)\ eC : A —T is not bounded below},
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j- The surjectivity spectrum:asrj(T){/\e(E : AI-T is not surjective,}.
k- The upper B-Fredholm spectrum:asrj(T){/\e(E : AI-T is not upper B—Fredholm,}.
I- The lower B-Fredholm spectrum:(fsr]-(T){/\e(E : AMI-T is not lower B—Fredholm,}.

m- The B-Fredholm spectrum : og,; (T){/\ eC : M —T is not B—Fredholm, }



BIBLIOGRAPHY

[1] D. Kitson, Ascent and descent for sets of operators. -Studia Mathematica, 191, 151-161,
(2009).

[2] R K. Giri. S. Pradhan, On the Properties of ascent and descent of composition operator on
Orlicz Spaces.Mathematical sciences and application E-Notes 5(1), 70-76, (2017).

[3] M. Benharrat, Comparison between the different definitions of the essential spectrum and

applications.thesis.univ-Oran 1, (2013).

[4] P. Aiena, Fredholm and local spectral theory, with application to multipliers. Kluwer Acad.
Publishers (2004).

[5] P. Aiena, Fredholm and Local Spectral Theory 1I, With Application to Weyl-type Theorems,
© Springer Nature Switzerland AG (2018).

(6] P. Aiena, Semi-Fredholm operators perturbation theory and localized SVEP , Caracas,
Venezuela, (2007).

[7] CS. Kubrusly, Spectral Theory of Bounded Linear Operators, © Springer Nature Switzerland
AG (2020).

[8] S. Grabiner, Uniform ascent and descent of f bounded operators J. Math. Soc. Japan, 34(2),
317-337, (1982).

[9] T. Kato, Perturbation theory for linear operators., Springer-Verlag, New York, (1966).

[10] J. Aref, Spectral Theory and Applications of Linear Operators and Block Operator Matrices.©
Springer International Publishing Switzerland (2015).

[11] ]J. Aref, Linear operators and their essential pseudospectra. © by Apple Academic Press,
(2018).

[12] R. Harte, Invertibility and singularity for bounded linear operators. Courier Dover Publi-
cations, (2016).

99



BIBLIOGRAPHY 100

[13] A. Tajmouati. A. El Bakkali. M. Karmouni, On algebraic and analytic cores.International
Journal of Mathematical Analysis Vol. 8 , no. 47, 2303 - 2309,(2014).

[14] S. Grabiner. ]. Zemanek, ascent descent and Ergodic properties of linear operators. J.operator
theory 48, 69-81,(2002).

[15] A. Sandovici. H. de Snoo . H. Winkler, Ascent, descent, nullity, defect, and related notions for
linear relations in linear spaces.Linear Algebra and its Applications 423, 456—497 ,(2007).

[16] S R. Caradus. W E. Pfaffenberger and B. Yood, Calkin algebras and algebras of operators on
Banach spaces, Lecture Notes in Pure and Appl. Math., vol. 9, Dekker, New York, (1974).

[17] S.R. Caradus, Operators with finite ascent and descent, Pacific |. Math. 18, 437-449,
(1966).

[18] S. Grabine, Ascent, descent and compact perturbations., Proc. Amer. Math. Soc. 71, 1,
79-80, (1978).

[19] V. Muller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras.
Second Edition. Birkh " auser Verlag, Basel, (2007).

[20] A. Ammar, A. Jeribi, spectral theory of multivalued linear operators, © Apple Academic
Press, I (2022).

[21] A E. Taylor, theorems on ascent, descent, nullity and defect of linear operators. Math. Ann.
163, 18-49,(1966).

[22] A E. Taylor. D C. Lay, Introduction to Functional Analysis. Second Edition. John Wiley and
Somns, Inc, (1980).

[23] M A. Kaashoek, Ascent, descent, nullity and defect: a note on a paper by A.E. Taylor,Math.
Ann. 72 ,105-115,(1967).

(24] D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184,
197-214, (1970).

[25] H. Heuser, Functional Analysis., Wiley Interscience, Chichester. (1982).

[26] A A. Albanese. L. Lorenzi. E M. Mangino. A. Rhandi, 25th Internet Seminar on Spectral
Theory for Operators and Semigroups November 3, (2021).

[27] M A. Kaashoek, Closed linear operators on Banach spaces. DRUKKERI] WED. G. VAN
SOEST N.V. AMSTERDAM (1963).

[28] S. Goldberg, Unbounded linear operators., Mc Graw-Hill, New York, (1966).

[29] S.Canez, Notes on dual spaces . Math 334. (2014).



BIBLIOGRAPHY 101

[30] J B. Conway, A Course in Functional Analysis Second Edition. © Springer-Verlag New York,
Inc,(1990).

[31] M T. Nair, Some topics in advanced functional analysis a crash course.(2012).

[32] M. Mbekhta, Sur la theorie spectral local et limite des nilpotent Proceedings of the American
Mathematical society. (1990).

[33] A. Tajmouati. Y. Zahouan. M. Karmouni, Quasi-Fredholm and Saphar spectra for Cy-quasi-
semigroups.Advances in Operator Theory ,5,1325-1339, (2020) .

[34] K B. Laursen. M M. Neumann. An introduction to local spectral theory, Oxford university
Press, (1980).

[35] M. Schechter, Principles of functional analysis., Academic Press, New York London, (1971).

[36] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators.,
J. Anal. Math. 6, 261-322, (1958).

[37] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et
spectraux., Glasgow Math. J. 29, 159-75, (1987).

[38] M. Mbekhta, Résolvant généralisé et théorie spectrale., ]. Operator Theory 21, 69-105,
(1989).

[39] V. Muller, On the regular spectrum., J. Operator Theory 31, 363-80, (1994).



CONCLUSION

The main thrust of this thesis is in the spirit of the Fredholm theory and operator |

heory; its aime to give a survey of various characteristic perturbation properties of different

otions of Fredholm and semi Fredholm operators , we also provided a detailed study of the
Kernel , the range , the nullity , the deficiency , ascent and descent of an operator in order
to build a coherent and integrated work. And we have seen that we have to study the theory
of operators with closed range , and the most classes of operators that enter into the same
context. We give also a survey of various characteristic of different notions of essential
spectrum of different class operator ( Fredholm, semi-Fredholm, weyl, Browder and quasi-

redholm ...ect).
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