
FOUNDATIONS OF MATHEMATICAL ANALYSIS

Dr. Lakhdar Meziani

Batna University, 05000 Batna, Algeria



Author
Lakhdar Meziani
Batna University, 05000 Batna
Algeria
mezianilakhdar@hotmail.com

Editor
Muhammad Imran
Government College University,
Faisalabad, Pakistan
drmimranchaudhry@gcuf.edu.pk

Copyright © 2021 (PISRT)
PTOLEMY INSTITUTE OF SCIENTIFIC RESEARCH AND TECHNOLOGY (PISRT)
HTTPS://PISRT.ORG/

ISBN updated soon

By the authors; licensee PSRP, Lahore, Pakistan. Licensed under the Creative Commons Attribution-
NonCommercial 3.0 Unported License (the “License”). You may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://creativecommons.
org/licenses/by-nc/3.0. Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

First printing, March 20

http://creativecommons.org/licenses/by-nc/3.0
http://creativecommons.org/licenses/by-nc/3.0


Ptolemy Scientific Research Press https://pisrt.org/

TO MY
Teachers

3



Contents

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 BASICS IN SET THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Set Operations 10
1.2 Graphs, Binary Relations, Functions 11

1.3 Exercises 12

1.4 Binary Relations Properties 12

1.5 Exercises 14

1.6 The Real Number System 14

1.7 Exercises 15

1.8 Cardinals 15

1.9 Exercises 17

2 TOPOLOGICAL STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Topological Spaces 18

2.2 Exercises 22

2.3 Continuous Functions 23

2.4 Exercises 26

4



Ptolemy Scientific Research Press https://pisrt.org/

2.5 Separation Axioms 26

2.6 Exercises 28

2.7 Connected Spaces 29

2.8 Exercises 31

3 METRIC SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Metrics 33

3.2 Exercises 36

3.3 Cauchy Sequences-Complete Spaces 37

3.4 Exercises 38

3.5 Uniformly Continuous Functions 39

3.6 Exercises 40

3.7 Countable Bases-Separable Spaces 41

3.8 Exercises 42

3.9 Baire Spaces 42

3.10 Exercises 44

4 COMPACT SPACES AND LOCALLY COMPACT SPACES . . . . . . . . . . . . . 45

4.1 Compact Spaces 45

4.2 Exercises 47

4.3 Compact Metric Spaces 48

4.4 Exercises 49

4.5 Continuous Functions on Compact Spaces 49

4.6 Exercises 50

4.7 Product of Compact Spaces 51

4.8 Exercises 52

4.9 Locally Compact Spaces 52

4.10 Exercises 53

4.11 Compactification 54

5



Ptolemy Scientific Research Press https://pisrt.org/

5 BANACH SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Normed spaces 55

5.2 Exercises 60

5.3 Linear Bounded Operators 62

5.4 Exercises 65

5.5 Normed Spaces of Finite Dimension 67

5.6 Exercises 68

5.7 Linear Bounded Operators in Banach Spaces 68

5.8 Exercises 71

5.9 Duality in Norm Spaces, Weak Topologies 72

5.10 Exercises 76

6 HILBERT SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Hermitian Forms 78

6.2 Orthogonality 80

6.3 Orthonormal Bases 82

6.4 Dual Space 85

6.5 Exercises 86

7 TOPOLOGICAL VECTOR SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Compatible Topology on a Vector Space 88

7.2 Complete Topological Vector Spaces 91

8 TOPOLOGICAL VECTOR SPACES OF FINITE DIMENSION . . . . . . . . . . . 93

9 THE SPACE C (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.1 Stone-Weirstrass Theorem 95

9.2 Arzela -Ascoli Theorem 97

10 SEMI GROUPS OF LINEAR BOUNDED OPERATORS . . . . . . . . . . . . . . . . . 98

10.1 C0 Semigroups 98

10.2 The Hille-Yosida Theorem 99
10.3 The Lumer Phillips Theorem 99

10.4 Complement: Uniformly Continuous Semigroups 100

6



Ptolemy Scientific Research Press https://pisrt.org/

11 MARKOV SEMI GROUPS AND TRANSITION FUNCTIONS . . . . . . . . . . 101

11.1 Transition Functions 102

11.2 Markovian Generators 103

11.3 Application 106

12 C0 SEMI GROUP OF CONTRACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Articles 112
Books 112

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7



INTRODUCTION

The purpose of this book is to make available to the student some fundamentals of mathematical
analysis. Specifically, it is intended to make such fundamentals available in a form that meets their
need in many applications like real analysis, integration, measure theory, and representation theory.
The principal point of view is to develop the basic structures of analysis, under which one can
appropriately go on further in the domain of functional analysis.

The book is intended to be essentially self contained and accessible to advanced undergraduates
students intended to Master degree courses. Its prerequisites are main standards from basics algebra
and real analysis. In writing this book, we care about doing things as little abstract as possible. So,
to make easy the access to the main concepts, each section of each chapter is illustrated by simple
examples and exercises, which are mostly applications to concrete problems.
References of treatises on the domain are given at the end. We hope that the book will reach the
objectives assigned and especially will be useful to the teachers.

In this introduction we give some landmarks to make the contents easy to use.
Chapter 1 contains some basics of set theory: Binary relations, Real number system, and Cardinals
are the main topics of the chapter. The important fact is that the set of real numbers is totally
ordered, from which it follows a characterization of the supremum and infimum for subsets. The
end of the chapter is devoted to the important property of countability and to some outstanding
examples of countable sets. Chapter 2 introduces topological structures and their morphisms, which
are the continuous functions. Insistence is made on the construction processes of a topology on
a given set. Essentially two processes are described: topology generated by means of a family
of sets and topology generated by means of a family of functions. This in turn is applied to the
construction of the product topology on the product of an arbitrary family of sets. [11]

The notion of separation is of a particular importance in topology. Two types of separated
topological spaces are considered: Hausdorff spaces and Normal spaces. The importance of the
normal spaces is that one can define on them non trivial continuous functions by Urysohn Lemma.
The prototype of separated topological spaces are undoubtedly the metric spaces.
Chapter 3 is intended to metric spaces. A metric on a set makes the construction of a topology easy,

8
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with the geometric notions of balls. The continuity of functions is expressed in terms of sequences
limits. Separable spaces, Complete spaces and Baire spaces are among the most frequently used
classes of metric spaces in applications.
Chapter 4 contains basic facts about Compact spaces and Locally compact spaces. The properties
of compact spaces are remarkable: for example any Compact space is normal, and a metric compact
space is separable. Locally compact spaces are well adapted for special areas for example in
integration theory. The prototype of locally compact space is the Euclidean space Rn.
Chapter 5 is a relatively detailed introduction to Banach spaces and their linear operators. Funda-
mental theorems used in functional analysis are given: the Open Mapping Theorem, the Closed
Graph Theorem, the Banach-Steinhaus Theorem. Moreover, duality and weak∗ topologies in
Banach spaces are considered in some details. Note also the outstanding Alaoglu theorem.
Chapter 6 is devoted to Hilbert spaces. The extension of the primitive form of the inner product
and the notion of orthogonality to infinite dimensional vector spaces, undoubtedly constitute the
foundations of the Hilbertian geometry.
Three important facts have to be emphasized in this context:

1. The existence of orthonormal base in any non trivial Hilbert space X , which allow to classify
X as a space of type l2 (A) .

2. The orthogonal projection of a vector on a subspace of X and the approximation which
follows.

3. The identification between a Hilbert space X and its dual X∗ by Riesz Theorem.
Chapter 7 may be considered as an introduction to topological vector spaces with some basic
properties. The notion of completeness, we will deal with, is of particular importance. This will be
done through the concept of generalized Cauchy sequences.
Chapter 8 contains topological vector spaces of finite dimension with two fundamental Theorems
about the Euclidean space Rn : Tychonov Theorem and Riesz Theorem.
Chapter 9 concerns the important space C(X) of continuous functions on a set X with two outstand-
ing properties:

1. The Stone-Weirstrass Theorem which gives conditions under which a subalgebra A⊂C (X)
is dense in C (X) .

2. The Arzela-Ascoli Theorem which gives conditions under which the closure A of a subset
A⊂C (X) is compact.
Chapter 10 is intended to the special class of bounded operators on a Banach space X called C0
semigroup in this context the Hille-Yosida theory of semigroups of operators will be useful. The
operators we consider here are acting on the Banach space C (X) of real continuous functions on the
metric compact space X with the uniform norm ‖ f‖= sup{| f (x)| ,x ∈ X}. This class of operators
is particularly useful in the theory of partial differential equations.

Chapter 11 deals with the concept of markov semigroups and their Characterization by means
of the notion of transition function also called markovian kernel [4], In this context the Hille-Yosida
theory of semigroups of operators will be useful. The operators we consider here are acting on the
Banach space C (X) of real continuous functions on the metric compact space X with the uniform
norm ‖ f‖= sup{| f (x)| ,x ∈ X} .
Chapter 12 contains some properties of the important class of C0 semigroup of contractions and
closed operators on Banach spaces.

9



1. BASICS IN SET THEORY

1.1 Set Operations
In this chapter we give some basics from set theory and also some fundamental properties of the
real number system.

Definition 1.1.1. Let X be a set. We denote by P (X) the power set of X that is, the family of all
subsets of X . If A,B ∈P (X) let us define:

A∪B = {x ∈ X : x ∈ A or x ∈ B} (union of A and B)
A∩B = {x ∈ X : x ∈ A and x ∈ B} (intersection of A and B)
Ac = {x ∈ X : x /∈ A} (complement of A)

Definition 1.1.2. The cartesian product A×B of two sets A, B is the set of all ordered pairs (a,b)
with components a ∈ A, b ∈ B.
If (x,y) ,(a,b) are in A×B then we have: (x,y) = (a,b)⇐⇒ x = a and y = b.

Let us point out the following properties:

Proposition 1.1.3. Let A,B,C be subsets of X , then we have:

A∪B = B∪A
A∩B = B∩A

A∪ (B∪C) = (A∪B)∪C
A∩ (B∩C) = (A∩B)∩C

A∩ (B∪C) = (A∩B)∪ (A∩C)
A∪ (B∩C) = (A∪B)∩ (A∪C)

(A∪B)c = Ac∩Bc

(A∩B)c = Ac∪Bc

Proof: Straightforward

In the sequel we will extend these operations to arbitrary families of sets.

10 Chapter 1. BASICS IN SET THEORY
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1.2 Graphs, Binary Relations, Functions

Definition 1.2.1. A graph between two sets X and Y is defined by a subset G of the cartesian
product X ×Y . Any graph G on X ×Y defines a binary relation R between the two sets X and Y
any pair (x,y) ∈ G, reads y is R−related to x, and may be denoted by xRy.
In particular a binary relation on a set A is a subset of A×A.
The domain of a graph G is the set D = {x ∈ X : ∃y ∈ Y,(x,y) ∈ G}. Similarly, the range of G is
C = {y ∈ Y : ∃x ∈ X ,(x,y) ∈ G} .

Definition 1.2.2. (a) We say that a graph G on X×Y is a functional graph if for each x ∈ X , there
is at most one y ∈ Y such that (x,y) ∈ G.
(b) Any functional graph G defines a function (or a mapping) f from X into Y according to the
following:

f : X −→ Y, x ∈ X , y = f (x)

where y ∈ Y , is the unique element such that (x,y) ∈ G. Since we will deal mainly with functions
f : X −→ Y rather than graphs, we agree to consider X as the domain, and to call the set Y the
codomain of the function. The range of a function f : X −→ Y is the range of its graph and can be
written as

Range ( f ) = { f (x) : x ∈ X} .

(c) If f : X −→ Y and g : Y −→ Z are functions, the composition g ◦ f : X −→ Z is defined by
(g◦ f )(x) = g( f (x)) , x ∈ X .

Definition 1.2.3. Let f : X −→ Y be a function,
(a) f is one-to-one (or injective) if it satisfies: ∀a,b ∈ X , f (a) = f (b) =⇒ a = b
(b) f is onto (or surjective) if ∀y ∈ Y, ∃x ∈ X , such that y = f (x) .
(c) f is bijective if it is one-to-one and onto.

Proposition 1.2.4. Let f : X −→Y be a bijective function, then there exists a function f−1 : Y −→ X
such that:

∀y ∈ Y,
(

f ◦ f−1
)
(y) = y and ∀x ∈ X ,

(
f−1 ◦ f

)
(x) = x

f−1 is called the inverse function of the bijection f .

Proof. Let y ∈ Y, then there is x ∈ X such that y = f (x), as f is onto and such x is unique because
f is one-to-one. Define f−1 : Y −→ X by f−1 (y) = x. So we have f−1 (y) = x⇐⇒ .y = f (x). It is
clear that f−1 is well defined and satisfies the property announced.�

Definition 1.2.5. Let X be a set, and let P (X) be the power set of X . If I is any nonempty set, a
function f : I −→P (X) defines a family {Ai, i ∈ I} of subsets of X , with Ai = f (i) ∈P (X). For
such family we perform the union and the intersection by:
∪
i

Ai = {x : ∃i ∈ I, x ∈ Ai}
∩
i

Ai = {x : ∀i ∈ I, x ∈ Ai}

Axiom of choice 1.2.6. Let {Xi, i ∈ I} be a family of nonempty sets, then there is a function
ϕ : I −→ ∪

i
Xi such that ϕ (i) ∈ Xi. The function ϕ permits to choose in each set Xi an element

xi = ϕ (i).
If one is concerned with a finite family of sets Xi, i = 1,2...n, such choice function is easily defined.

1.2 Graphs, Binary Relations, Functions 11
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Definition 1.2.7. Let {Xi, i ∈ I} be a family of sets and let F be the set of all functions, f : I −→∪
i
Xi

such that f (i) ∈ Xi for each i ∈ I. If none of the Xi is empty, the set F is not empty, by the Axiom
of choice, and defines the direct product of the sets Xi. It will be denoted by Π

i
Xi. So each x ∈ Π

i
Xi

can be written as x = (xi), with xi = f (i) ∈ Xi, ∀i ∈ I. If we have Xi = X , ∀i ∈ I, for some set X ,
the direct product is denoted by Π

i
Xi = X I .

As for the equality in Π
i
Xi, it is defined by:

x = (xi) ,y = (yi) ∈Π
i
Xi, x = y ⇐⇒ xi = yi, ∀i ∈ I.

1.3 Exercises

1. Let f : X −→ Y be a function. Prove that:
(a) f is surjective iff there is a function s : Y −→ X such that f ◦ s = IY

where IY : Y −→ Y is the identity function of Y.
(b) f is injective iff there is a function r : Y −→ X such that r ◦ f = IX

where IX : X −→ X is the identity function of X .

2. Let f : X −→ Y be a function. If A⊂ X and B⊂ Y
put f (A) = { f (x) , x ∈ A}, and f−1 (B) = {x ∈ X : f (x) ∈ B} . f (A) is the direct image of A, and
f−1 (B) is the inverse image of B.
Prove that:
(a) A⊂ f−1 ( f (A)), with equality if f is injective.
(b) f

(
f−1 (B)

)
⊂ B, with equality if f is surjective.

3. Let f : X −→ Y , g : Y −→ Z be bijective functions. Show that g ◦ f is bijective and we have
(g◦ f )−1 = f−1 ◦g−1.

4. Let f : X −→ Y , be a function and {Ai, i ∈ I} a family of subsets of X . {Bi, i ∈ I} a family of
subsets of Y . Prove the following properties:

(a) f−1
(
∪
i
Bi

)
= ∪

i
f−1 (Bi), f−1

(
∩
i
Bi

)
= ∩

i
f−1 (Bi)

(b) f
(
∪
i
Ai

)
= ∪

i
f (Ai)

(c) f
(
∩
i
Ai

)
⊂ ∩

i
f (Ai), with equality if f is injective

(d)
(
∪
i
Ai

)c

= ∩
i
Ac

i ,
(
∩
i
Ai

)c

= ∪
i
Ac

i . (De Morgan’s Law)

1.4 Binary Relations Properties

Definition 1.4.1. Let R be a binary relation on a set X , with graph G (see definition 1.2.1), whose
domain is X .

R is reflexive: if ∀x ∈ X , (x,x) ∈ G
R is symmetric: if ∀x,y ∈ X ,(x,y) ∈ G =⇒ (y,x) ∈ G
R is transitive: if ∀x,y,z ∈ X ,(x,y) ∈ G and (y,z) ∈ G =⇒ (x,z) ∈ G
R is anti symmetric: ∀x,y ∈ X , and x 6= y, if (x,y) ∈ G =⇒ (y,x) /∈ G.

Definition 1.4.2. Let R be a binary relation on a set X , whose graph is G. We say that R is an
equivalence relation if it is reflexive, symmetric and transitive.

For each x ∈ X , the equivalence class of x is the set

12 Chapter 1. BASICS IN SET THEORY
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Cx = {y ∈ X : (x,y) ∈ G}

The quotient of the set X by the equivalence relation R is the set

X/R = {Cx,x ∈ X}.

Definition 1.4.3. If R is an equivalence relation on a set X , with quotient X/R, we define the
canonical mapping p : X −→ X/R, by p(x) =Cx, x ∈ X .

Proposition 1.4.4. Let R be an equivalence relation on a set X , then we have:
(a) For each x,y ∈ X , either Cx =Cy, or Cx∩Cy = /0
(b) X = ∪

x
Cx, i.e the classes Cx form a partition of X

(c) The canonical mapping p : X −→ X/R, is onto
Proof. (a) If Cx ∩Cy 6= /0, there is z ∈ Cx ∩Cy, then (x,z) ∈ G and (z,y) ∈ G, so, by transitivity
(x,y) ∈ G. But in this case Cx =Cy

(b) is trivial
(c) comes from the definition of the canonical mapping p.�

Definition 1.4.5. Let R be a binary relation on a set X . The relation R is called an ordering on X if
it is reflexive, transitive and antisymmetric.
An ordering R on X is total if for each x,y ∈ X , either xRy or yRx is true, otherwise R is said to be
partial.

Example 1.4.6.
(a) The field R of the real numbers is totally ordered by the usual ordering:

x,y ∈ R, x≤ y (for the construction of the field R , see [5] ).
We will study this ordering in some details later.
(b) The power set P (X) of any set X is partially ordered by the inclusion:

A,B ∈P (X), A⊂ B.
(c) The ring Z of the integers is partially ordered by the division R :

x,y ∈ Z, xRy ⇐⇒ x divides y.
In the sequel we make the convention to denote an ordered set by (X ,≤).

Definition 1.4.7. Let A be a subset of an ordered set (X ,≤) and let a ∈ X . a is an upper bound
(resp. a lower bound) of A if x ≤ a (resp. a ≤ x), ∀x ∈ A. We say that A is bounded above (resp.
bounded below) if it has an upper bound (resp. a lower bound). A is bounded if it is bounded above
and below.

Definition 1.4.8. Let A be a subset of an ordered set (X ,≤) and let a ∈ X .

We say that a is a supremum of A if it is an upper bound and if for any upper bound b of A we have
a≤ b. In other words, a is a smallest upper bound. We denote a supremum by a = supA.
If supA ∈ A, we say that supA is a maximal element of A.

We say that a is an infimum of A if it is a lower bound and if for any lower bound b of A we have
b≤ a. In other words, a is a greatest lower bound. We denote an infimum by a = infA.
If infA ∈ A, we say that infA is a minimal element of A.

Definition 1.4.9. A chain in an ordered set (X ,≤) is a totally ordered subset of X . A maximal chain
in X is a chain which is not contained in any other chain of X .

Proposition 1.4.10. Zorn’s lemma
Let (X ,≤) be an ordered set in which every chain has an upper bound in X .
Then X has at least one maximal element.

1.4 Binary Relations Properties 13
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Proposition 1.4.11. Hausdorff Maximal Principle
Every ordered set (X ,≤) contains a maximal chain.
The Hausdorff maximal principle states that, in any partially ordered set, every totally ordered
subset is contained in a maximal totally ordered subset.

Theorem 1.4.12. The following principles are equivalent:
(a) Zorn’s lemma
(b) Hausdorff Maximal Principle
(c) Axiom of choice

1.5 Exercises

5. Fix m ∈ Z, m 6= 0, and consider the relation R on Z.
p,q ∈ Z, pRq ⇐⇒ ∃k ∈ Z, p = q+m.k.
Prove that R is an equivalence relation and find the class Cq of any q ∈ Z.

6. A totally ordered set (X ,≤) is said well ordered if every non empty subset A⊂ X has a minimal
element.
(1) Prove that N, equipped with its usual ordering, is well ordered.
(2) The induction principle
Let P(n) ,n ∈ N, n≥ 1, be a statement depending on n. Suppose that:
(a) P(1) is true
(b) If P(n) is true then P(n+1) is true
Prove that P(n) is true for every n≥ 1.
Hint: Consider the set E = {n≥ 1 : P(n) is false}, assume E 6= /0 and use the fact that N is well
ordered to get a contradiction.

7. Let G be a group and H ⊂ G be a subgroup of G. Let R be the relation on G defined by:

x,y ∈ G, xRy ⇐⇒ x.y−1 ∈ H,
(
y−1 is the inverse of y

)
Prove that:
(a) R is an equivalence relation on G
(b) For x ∈ G, the class of x is the set Hx = {h.x : h ∈ H.}

1.6 The Real Number System

Theorem 1.6.1. There exists a totally ordered field R, containing the set Q of rational numbers as a
subfield and having the following properties: [7]

(1) Every subset A⊂ R bounded above, has a supremum in R
(2) The equation x2 = 2 has a solution in R
(see for the proof )

Let us recall that Q does not possess these properties and R is in some sense the completion of Q.
Let us quote the following important facts about the field R:

Proposition 1.6.2. (a) Archimedian Property: For any x,y > 0, there is an
integer n≥ 1 such that nx > y.
(b) The set Q of rational numbers is dense in R.

Proposition 1.6.3. Let A⊂ R be bounded above and let α = supA, then:
(a1) α is an upper bound for A

14 Chapter 1. BASICS IN SET THEORY
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(a2) ∀ε > 0, ∃x ∈ A : α− ε < x≤ α

the property (a2) comes from the fact that α is the least upper bound for A.

Similarly, if A is bounded below and if β = infA, then:
(b1) β is a lower bound for A
(b2) ∀ε > 0, ∃x ∈ A : β ≤ x < β + ε

where (b2) comes from the fact that β is the greatest lower bound for A.

Remark 1.6.4. Taking ε =
1
n
,n≥ 1 in (a2)− (b2), it is easy to construct two convergent sequences

an,bn in A such that an −→ α and bn −→ β .

1.7 Exercises

8. Let f : X −→ R be a function from a set X 6= /0 into R such that f (X) is bounded,with
a = sup f (X) and b = inf f (X).

Prove that there are two sequences an,bn in X such that lim
n

f (an) = a and lim
n

f (bn) = b.

9. Prove that For any x,y ∈ R, there is an integer n ∈ Z such tat nx > y.
Hint: use Proposition 1.6.3 (a) for x < 0 < y and x < y < 0.

10. Let A,B be subsets of R and let us define the subsets:
A+B = {a+b : a ∈ A,b ∈ B}
A−B = {a−b : a ∈ A,b ∈ B}
−A = {−a : a ∈ A}
Assume that A and B are bounded. Prove that:
inf(−A) =−supA, sup(−A) =− infA
sup(A+B) = supA+ supB, sup(A−B) = supA− infB
inf(A+B) = infA+ infB, inf(A−B) = infA− supB

11. Consider the set R\Q of irrational numbers. Prove that:

(a) r ∈Q and v ∈ R\Q=⇒ r.v ∈ R\Q and
1
v
∈ R\Q

(b) ∀x,y ∈ R,x < y =⇒∃w ∈ R\Q : x < w < y
((b) means that R\Q is dense in R)
[take v ∈ R,v > 0, so vx < vy; if r ∈Q and vx < r < vy, the number w =

r
v

is in R\Q by (a) and works]

1.8 Cardinals

Let X be a set with power set P (X) .

Definition 1.8.1. The sets E,F ∈P (X) are called equipotent if there is a bijection f : E −→ F
from E onto F. We denote this relation by E ≈ F.
It is easy to check that the binary relation ≈ is an equivalence relation on P (X). The equivalence
class of E is called the Cardinal of E and denoted by Card(E) .

Definition 1.8.2. Let n be a positive integer and let En be a set with n elements:
(a) A set E is finite if there is n such that E ≈ En and we have

Em ≈ En ⇐⇒ m = n.
(b) A set E is infinite if for each finite subset F ⊂ E, the set E\F is not empty.

1.7 Exercises 15
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(c) A set E is infinite countable if there is a bijection f : N−→ E from N onto E. If f (n) = xn, we
have E = {x1,x2, ...,xn, ...}.
(d) A set E is uncountable if for each countable subset F ⊂ E, the set E\F is not empty.
(e) A set E is at most countable if it is finite or infinite countable.
Example: The set Z of integers is countable. Indeed, define the bijection f : N−→ Z by:

f (2n+1) = n and f (2n) =−n

Proposition 1.8.3. Let E be a countable infinite set and let A⊂ E be an infinite subset of E. Then
A is countable.

Proof: Put E = {x1,x2, ...,xn, .....}, and define the sequence n1,n2, ....of integers by:
n1 = inf{n≥ 1,xn ∈ A} ,
n2 = inf{n > n1,xn ∈ A} ,
n3 = inf{n > n2,xn ∈ A} .... and more generally nk = inf{n > nk−1,xn ∈ A} .

Then we have 1≤ n1 < n2 < n3 < ... < nk < ..., and A = {xn1 ,xn2 , ...,xnk , ...} .
The function f : N −→ A, given by f (k) = xnk , k ≥ 1 is a bijection, as may be seen from the
construction of the sequence (nk) . So A is countable.�

Corollary 1 Every subset A⊂ N is at most countable.

Corollary 2 Let E be a set. If there is an injective function f : E −→ N, then E is countable.
Indeed f (E)⊂ N is countable and equipotent to E.

Proposition 1.8.4. Let E be a set. If there is a surjective function f : N−→ E, then E is countable.

Proof: Let x ∈ E, then Ax = f−1 (x) ⊂ N is not empty and since N is well ordered (see exercise
6), infAx = ϕ (x) exists and ϕ (x) ∈ f−1 (x). So we have f ◦ϕ (x) = x, and then the function ϕ is
injective from E into N(see exercise1), by corollary 2 above E is countable.�

Theorem 1.8.5. The Cartesian product N×N is countable.

Proof: Define the function f : N−→ N×N by giving f (1) = (1,1) and
if f (n) = (1,k), then f (n+1) = (k+1,1)
if f (n) = (r,k), with r 6= 1 then f (n+1) = (r−1,k+1)
( f (2) = (2,1) , f (3) = (1,2) , f (4) = (3,1) , f (5) = (2,2) ....)

it is not difficult to check that the function so defined is bijective.�

Corollary If E1,E2 are infinite countable sets, then the cartesian product E1×E2 is countable.
More generally if E1,E2, ...,En is a finite family of infinite countable sets, then the product E1×
E2× ...×En is countable.

Proof: Let f : E1 −→ N, g : E2 −→ N, and h : N×N−→ N be bijective functions and let us define
ϕ : E1×E2 −→ N×N by ϕ (a,b) = ( f (a) ,g(b)). It is clear that the functions ϕ and h ◦ϕ are
bijective, this yields that E1×E2 is countable. For n sets use induction method (exercise 6).�

This corollary is not true for infinite product of sets, as is shown by the following example:
Example 1.8.6: Let E be the infinite product set E = {0,1}N. We prove that E is uncountable.
It is enough to prove that for any infinite countable set A ⊂ E, the set E\A is nonempty. Let
A = {a1,a2, ...,an, ...} be such countable set. Since an ∈ E, put an = (an1,an2, ...,anm, ...), where
anm = 0 or 1. Now define b in {0,1}N by b = (y1,y2, ...,yn, ...), where yn = 1−ann. Then it is clear
that b 6= an for every n, so b ∈ E\A.

Theorem 1.8.7. Let En, n ∈ N be a sequence of countable sets, then the union E = ∪
n

En, is
countable.
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Proof: By Proposition 1.8.4, it is enough to construct a surjective function from N onto E. Let
f : N−→ N×N be the bijection of Theorem 1.8.5, and let f j be a bijection from N onto E. Define
ϕ :N×N−→ E, by ϕ (i, j) = f j (i). The function ϕ is surjective, indeed if x∈ E there is j ∈N such
that x∈ E j and since f j is a bijection, there is i∈N with x = f j (i). Now the function ϕ ◦ f :N−→ E
is surjective, so E is countable.�

1.9 Exercises

12. Prove that the power set P (N) of N is uncountable.
[consider the function f : P (N)−→ {0,1}N, given by f (A) = (xn)
with xn = 1 ⇐⇒ n ∈ A, show that f is a bijection and use example 1.8.6]

13. Let P0 (N) be the family of finite subsets of N.
Prove that P0 (N) is countable.

1.9 Exercises 17



2. TOPOLOGICAL STRUCTURES

2.1 Topological Spaces

Definition 2.1.1. Let X be a set and let τ be a family of subsets of X . We say that τ defines a
topology on X if the following conditions are satisfied:

(1) The subsets X and /0 are in τ

(2) The union of every subfamily of sets in τ , is in τ

(3) The intersection of every finite subfamily of sets in τ , is in τ .
The sets in such family τ are called open sets. The set X equipped with τ is called a topological
space.

Examples 2.1.2. (a) For any set, X put τ = {X , /0}. This is a topology with X , /0 as the only open
sets. It is called the trivial topology and denoted by τ0.

(b) The family τ = P (X) of all subsets of X defines a topology called the discrete topology and
denoted by τ1. Every singleton {x} is open in τ1.

(c) Let X = R and define τ by: G ∈ τ ⇐⇒ G = ∪
α∈A

Iα , where {Iα ,α ∈ A} is a family of open

intervals. Then τ satisfies the conditions of Definition 2.1.1. Indeed, (1) ,(2) are immediate, to see
(3), let G1,G2, ...,Gn, be a finite family in τ , with Gi = ∪

αi∈Ai
Iαi , i = 1,2, ...,n.

So we have G1∩G2∩ ...∩Gn = ∪
(α1,..,αn)∈A1×..×An

Iα1 ∩ ..∩ Iαn , and Iα1 ∩ ..∩ Iαn is either empty or

an open interval.

(d) In the euclidean space X = Rn, we define an open rectangle as a set of the form R = I1× I2×
..× In, where Ik ,k = 1,2, ...,n, are open intervals of R. Define τ as follows: G∈ τ ⇐⇒ G = ∪

α∈A
Rα

where {Rα ,α ∈ A} is a family of open rectangles.
It is not difficult to check that such τ defines a topology on Rn, called the euclidean topology.

Definition 2.1.3. Let (X ,τ) be a topological space and let B ⊂ τ be a subfamily of open sets. We
say that B is a base for τ if every open set in τ can be written as a union of open sets in B.

18 Chapter 2. TOPOLOGICAL STRUCTURES
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Examples 2.1.4. (a) The family of open intervals (resp. the family of open rectangles) is a base for
the topology of R in 2.1.2.(c) (resp. For the Euclidean topology of Rn).

(b) In every topological space (X ,τ), the family τ is a base for τ.

Proposition 2.1.5. Let (X ,τ) be a topological space and let B ⊂ τ be a subfamily of open sets.
Then B is a base iff it satisfies the following condition:

For every G ∈ τ and every x ∈ G, there is B ∈B such that x ∈ B⊂ G.

Proof: If B is a base and if G ∈ τ , there is a family {Bi, i ∈ I} ⊂B such that G = ∪
i
Bi; so if x ∈G,

∃i with x ∈ Bi ⊂ G. To see the converse let G ∈ τ , then, by the condition, for each x ∈ G, there is
Bx ∈B such that x ∈ Bx ⊂ G. But in this case we have G = ∪

x∈G
Bx, consequently, B is a base.�

Definition 2.1.6. Let (X ,τ) be a topological space and let A ⊂ X . Let x ∈ A, we say that A is a
neighborhood of x if there is an open set G ∈ τ such that x ∈G⊂ A. If A is a neighborhood of x, we

call x an interior point of A. We denote the set of all interior points of A by
o
A and call it the interior

of A.

Proposition 2.1.7. Let (X ,τ) be a topological space and let A⊂ X . then:
(a) A is open ⇐⇒ A is a neighborhood of each of its points.

(b) The interior set
o
A is open for each A.

Proof: (a) The part =⇒ is trivial. Conversely, if A is a neighborhood of each of its points, for each
x ∈ A there is an open set Gx such that x ∈ Gx ⊂ A. But in this case A = ∪

x∈A
Gx, and any union of

open sets is open, so A is open.

(b) Let x∈
o
A, there is G∈ τ such that x∈G⊂ A, so each y∈G is in

o
A and then G⊂

o
A, consequently,

o
A is open by Proposition 2.1.5 and the fact that τ is a base for τ.�
Since any neighborhood contains an open neighborhood, we will consider in the sequel only open
neighborhoods.
Definition 2.1.8. A family V (x) of neighborhoods of a point x in a space (X ,τ), is said to be a
base at x if for every neighborhood V of x there is U ∈ V (x) such that U ⊂V .
As examples one can cite:
1. In a discrete space (X ,τ1), the family V (x) of finite subsets containing x is a base at x.
2. In Rn endowed with the euclidean topology, the family of open rectangles containing x is a base
at x.

Proposition 2.1.9. Let B be a family of open sets in a space (X ,τ).
Then B is a base for τ iff B satisfies the following condition:

For each x ∈ X the family B (x) = {B ∈B : x ∈ B} is a base at x.

Proof: Suppose that B is a base for τ and let x ∈ X . If V is a neighborhood of x, there is an
open set U with x ∈U ⊂V . By Proposition 2.1.5., there is B ∈B such that x ∈ B⊂U and then
x ∈ B⊂V , so B ∈B (x) and B (x) is a base at x. Conversely, suppose that B (x) is a base at x for
each x and let G be an open set, then for each x ∈ G, there Bx ∈B (x) with x ∈ Bx ⊂ G, because G
is a neighborhood of x. So we deduce that G = ∪

x∈G
Bx consequently, B is a base for τ.�

Definition 2.1.10. ( Comparison of topologies )
Let τ and σ be two topologies on the same set X . We say that τ is thinner than σ (or that σ is coarser than τ)

if σ ⊂.
We can easily check that this binary relation is a partial ordering on the family T (X) of all
topologies on X , denoted by τ ≺ σ .

2.1 Topological Spaces 19
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Examples 2.1.11. (a) Let {τα : α ∈ A} be a family of topologies on X , and put τ = ∩
α∈A

τα , then

we have τ ≺ τα for all α. In other words, τ is a lower bound for the family {τα : α ∈ A}. We will
see that the family has also an upper bound.
(b) Let τ0 be the trivial topology and τ1 the discrete topology on X , then for every τ ∈T (X) we
have τ0 ≺ τ ≺ τ1, in other words τ0 is minimal and τ1 is maximal in T (X) .

Theorem 2.1.12. (Topology generated by a family of sets)
Let F be a family of subsets of a set X . Then, among all topologies on X containing F there

is a smallest one, called the topology generated by F and denoted by τ (F ). This topology can be
described explicitly as follows:
Let I be the family formed by X , /0 and all finite intersections of elements in F , then τ (F ) is
exactly the family of all unions of elements of I. In other words, I is a base for τ (F ) .

Proof: Let ς = {σ ∈T (X) : F ⊂ σ}, then ς is not empty since τ1 = P (X) ∈ ς . By example
2.1.11.(a), we have τ (F ) = ∩

σ∈ς
σ . To prove that τ (F ) has the descripton given in the theorem.

Let us point out that the family Ĩ of all unions of elements of I is itself a topology, as may be
easily checked. Note that I⊂τ (F ) and so Ĩ⊂ τ (F ). Finally, from the trivial inclusion F ⊂ I
we deduce that τ (F )⊂ Ĩ and then τ (F ) = Ĩ as wanted.�

Definition 2.1.13. A family F of subsets of X is a subbase for a topology τ on X if τ = τ (F ) .
The following theorem gives a condition on F for being a base of τ (F ) .

Theorem 2.1.14. Suppose that the family F satisfies the following condition:
If F1,F2 are in F and if x ∈ F1∩F2, there is F ∈F such that x ∈ F ⊂ F1∩F2.
Then F is a base of τ (F ) .

Proof: With the notations of Theorem 2.1.12, it is enough to prove that every B ∈ I can be written
as the union of elements of F . By Proposition 2.1.5, it is enough that for each x ∈ B there is F ∈F
such that x ∈ F ⊂ B. But if B ∈ I there exist F1,F2, ...,Fn ∈F , such that B = F1 ∩F2 ∩ ...∩Fn.
For n = 2 the condition of the Theorem provides F ∈F such that x ∈ F ⊂ B. For arbitrary n use
induction.�

Examples 2.1.15. (a) Let (X ,τ) ,(Y,σ) be two topological spaces, and consider on the product
Z = X×Y the class of subsets F = {A×Y,X×B : A ∈ τ,B ∈ σ}. Then the family I of Theorem
2.1.12 is given by I = {A×B : A ∈ τ,B ∈ σ}. The topology τ (F ) on Z is called the product
topology of τ and σ which is denoted by τ⊗σ . The family I is a base for τ⊗σ .

(b) Let X = C [0,1] be the set of all continuous functions f : [0,1] −→ R. For each f ∈ X

and each ε > 0, put V ( f ,ε) =

{
g ∈ X :

∫
[0,1]
| f −g|< ε

}
, where the integral is a Riemann one.

Now consider the family: V = {V ( f ,ε) : f ∈ X ,ε > 0}. Using Theorem 2.1.14, we show
that V is a base for a topology on X . We have to check the condition of the Theorem for
the family V . Let f ,g ∈ X , and ε,ε

′
> 0; if h ∈ V ( f ,ε)∩V

(
g,ε

′
)

, we prove the existence

of ε
′′
> 0 such that V

(
h,ε

′′
)
⊂ V ( f ,ε)∩V

(
g,ε

′
)

. In order to do it, put α =
∫

[0,1]
| f −h| and

β =
∫

[0,1]
|g−h|, then taking ε

′′
= Min

(
ε−α,ε

′−β

)
, we get V

(
h,ε

′′
)
⊂V ( f ,ε)∩V

(
g,ε

′
)

; in-

deed if ϕ ∈V
(

h,ε
′′
)

then
∫

[0,1]
| f −ϕ| ≤

∫
[0,1]
| f −h|+

∫
[0,1]
|h−ϕ|< α +ε−α = ε , so ϕ ∈V ( f ,ε).

Similarly,
∫

[0,1]
|g−ϕ| ≤

∫
[0,1]
|g−h|+

∫
[0,1]
|h−ϕ|< β + ε

′−β = ε
′
, whence ϕ ∈V

(
g,ε

′
)
.
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(c) Let {τα : α ∈ A} be a family of topologies on a set X . We have seen in Example 2.1.11(a) that
τ = ∩

α∈A
τα , is an infimum for the given family. We show that it has also a supremum denoted by

∨
α

τα . In fact ∨
α

τα is the topology generated by the union ∪
α

τα . It is the smallest topology σ such
that τα ≺ σ ,∀α , see 2.1.10 and 2.1.12.

Definition 2.1.16. ( Topological subspace )
Let (X ,τ) be a topological space and let A ⊂ X be a subset of X . Let us define the family

τA of subsets of A by τA = {G∩A,G ∈ τ}. Then it is easy to check that τA satisfies the axioms
(1)-(2)-(3) of Definition 2.1.1 and so it defines a topology on A, called trace topology of τ on A.
The set A endowed with τA is called topological subspace of (X ,τ). Any open set U of τA is of the
form U = G∩A, for some G ∈ τ , that is the trace of an open set G ∈ τ on A. Such U is not open in
X , however we have:

Proposition 2.1.17. The following statements are equivalent:
(a) Any open set in A,τA, is open in (X ,τ)

(b) The subset A is open in (X ,τ)

The proof is left to the reader.

Definition 2.1.18. Closed sets
A subset F of a topological space (X ,τ) is closed if the complement Fc is open.

Examples 2.1.19. (a) In the discrete space (X ,τ1) every subset is closed.
(b) The half line (−∞,a] is closed in R endowed with the euclidean topology.
(c) The interval (0,1] is not closed (Why?)
(d) If X = {a,b} and if τ = { /0,{a} ,X}, then {a} is not closed since {a}c = {b} /∈ τ.

Proposition 2.1.20. In a topological space (X ,τ), the closed sets satisfy the following properties:
(1)

′
X and /0 are closed.

(2)′ The intersection of any family of closed sets is closed. (3)′ The union of any finite family
of closed sets is closed.

Proof: These are the dual properties of the axioms (1)-(2)-(3) of Definition 2.1.1.�

Definition 2.1.21. The closure of a set A in (X ,τ) is the smallest closed set in X containing A. It
will be denoted by A. To justify this definition, consider the family ℑ = {F : F closed, A⊂ F},
then ℑ is not empty since X ∈ ℑ and we have A = ∩

F∈ℑ

F. Let us point out that a set A is closed iff

A = A.

Theorem 2.1.22. Let A be a subset of (X ,τ) and let x ∈ X , then the following statements are
equivalent:

(a) x ∈ A.
(b) V ∩A 6= /0, for every open neighbohood V of x.

Proof: If (a) is not satisfied, we have x ∈V = ∪G, the union being over all open G⊂ Ac, but such
V is an open neighbohood of x with V ⊂ Ac, so (b) is not satisfied. Conversely, if (b) is not satisfied,
there is an open neighbohood V of x with V ∩A = /0, this yields A⊂V c and A⊂V c, because V c is
closed, so x /∈ A, and (a) is not satisfied.�

Definition 2.1.23. (a) Let A be a subset of (X ,τ). A point x ∈ X is a limit point (or a cluster point)
of A if for every open neighbohood V of x, V ∩ (A\x) 6= /0. We denote by A

′
the set of all limit

points of A.
(b) A point x ∈ A is an isolated point if there is an open neighbohood V of x such that V ∩A = {x}.
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Examples 2.1.24. Let R endowed with the euclidean topology and consider the subset A ={
1
n
,n≥ 1

}
. It is not difficult to check that every point of A is isolated and that A

′
= {0} .

Theorem 2.1.25. For every subset A of (X ,τ), we have A = A∪A
′
.

Proof: We have A⊂ A and A
′ ⊂ A, so A∪A

′ ⊂ A. On the other hand if x ∈ A, then either x ∈ A or
x /∈ A. In the case x /∈ A, we have x ∈ A

′
since for every open neighborhood V of x, V ∩ (A\x) 6= /0,

by Theorem 2.1.22. So in either case x ∈ A =⇒ x ∈ A∪A
′
�

2.2 Exercises

14. Let X be an infinite set. Prove that the family τ = { /0; A⊂ X : Ac finite} defines a topology on
X .

15. Let X be a partially ordered set by the relation ≺. We consider the family τ of subsets G
satisfying the condition:

If x ∈ G then every y≺ x is in G.
Prove that τ defines a topology on X .

16. Let X =C [0,1] be the set of all continuous functions f : [0,1]−→ R. For each f ∈ X and each

ε > 0, put V ( f ,ε) =

{
g ∈ X :

∫
[0,1]
| f −g|< ε

}
, where the integral is a Riemann one. Now consider

the family: V ={V ( f ,ε) : f ∈ X ,ε > 0}, and the family U ={U ( f ,ε) : f ∈ X ,ε > 0}, where

U ( f ,ε) =
{

g : Sup
x
| f (x)−g(x)|< ε

}
. Prove that V and U are bases of two topologies on

C [0,1] . The case of V is considered in Example 2.1.15(b). Prove that τ (V )< τ (U ) .

17. Prove that for any subsets A,B of a topological space (X ,τ), we have:

(a) X\A =
o

X\A
(b) A∪B = A∪B
(c) A∩B⊂ A∩B(

b
′
) o

A∩B =
o
A∩

o
B(

c
′
) o

A∪
o
B⊂

o
A∪B

Prove that for any family {Aα : Aα ⊂ X , α ∈ I} we have:
(d) ∩

α
Aα ⊂ ∩

α
Aα(

d
′
)

If ∪
α

Aα is closed then, ∪
α

Aα = ∪
α

Aα

18. We define the boundary ∂A of a subset A in a topological space (X ,τ), by:

∂A = A∩X\A

Let us observe that if x∈ ∂A, then for every neighborhood V of x we have V ∩A 6= /0 and V ∩X\A 6=
/0.

(a) Prove that ∂A = /0 iff A is open and closed.

(b) Show that if ∩∂B = /0, then
o

A∪B =
o
A∪

o
B.

(c) A = A∪∂A.

19. (a) Prove that the subset A is dense in X iff
o

X\A = /0
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(b) If A,B are open sets dense in X then A∩B is dense in X .

20. Let (X ,τ) ,(Y,σ) be two topological spaces, and consider on the product X×Y the topology
τ⊗σ (see Example 2.1.15). Prove that for any A ∈ τ and B ∈ σ we have:

(a) A×B = A×B

(b)
o

A×B =
o
A×

o
B

(c) ∂ (A×B) =
(
∂A×B

)
∪
(
A×∂B

)
2.3 Continuous Functions

Let f : X −→Y be a function. If B⊂Y the inverse image of B is defined by f−1 (B)= {x ∈ X : f (x) ∈ B}
(see Exercise 1.3.2) [8]

Proposition 2.3.1. Let f : X −→ Y be a function, then we have:
(a) For every topology σ on Y , the family f−1 (σ) =

{
f−1 (B) : B ∈ σ

}
is a topology on X .

(b) For every topology τ on X , the family
{

B⊂ Y : f−1 (B) ∈ τ
}

is a topology on Y.

Proof: It is a consequence of the inverse image properties given in Exercise 1.3.4�

Definition 2.3.2. Let (X ,τ) ,(Y,σ) be two topological spaces and let f : X −→ Y be a function.
(a) The function is said to be continuous if f−1 (σ)≺ τ , that is f−1 (G) ∈ τ , for every G ∈ σ .
(b) The function is said to be continuous at the point x ∈ X if for every open neighbohood V ( f (x))
of f (x) there is an

open neighbohood U (x) of x such that f (U (x))⊂V ( f (x)) .

Examples 2.3.3. (a) If f : X −→Y is the constant function, we have f−1 (σ) = {X , /0} ⊂ τ , so f is
continuous.

(b) If A is a subset of (X ,τ), endowed with the trace topology τA then the canonical injection
i : A−→ X is continuous since we have

i−1 (G) = G∩A ∈ τA, for every G ∈ τ.

(c) Let (X ,τ) be a topological space. If R is an equivalence relation on a set X , with quotient X/R,
and if p : X −→ X/R is the canonical mapping
(see Definition 1.4.2), the family σR =

{
B⊂ X/R : p−1 (B) ∈ τ

}
is a topology on X/R (Proposition

2.3.1.(b)), and p is continuous from (X ,τ) into X/R,σR.

(d) A function f : X −→ Y from (X ,τ) into (Y,σ) is continuous iff the inverse image f−1 (F) of
any closed set F of Y is closed in X . This comes from the relation f−1 (Y\A) = X\ f−1 (A), valid
for every subset A⊂ Y.

Theorem 2.3.4. A function f : X −→ Y from (X ,τ) into (Y,σ) is continuous iff it is continuous at
each point x of X .

Proof: Suppose f is continuous from (X ,τ) into (Y,σ), and let x ∈ X . Let V ( f (x)) be an
open neighborhood of f (x), then U (x) = f−1 (V ( f (x))) is open in X , containing x and satisfies
f (U (x))= f

(
f−1 (V ( f (x)))

)
⊂V ( f (x)). Consequently, f is continuous at x. Conversely, suppose

f continuous at each point x of X and let G be open in Y with f−1 (G) 6= /0. Then G is an open
neighborhood of f (x), so there is an open neighborhood U (x) of x such that f (U (x))⊂ G. We
deduce that U (x)⊂ f−1 ( f (U (x)))⊂ f−1 (G) and i−1 (G) is a neighborhood of each of its points,
by Proposition 2.1.7(a), f−1 (G) is open.�

Proposition 2.3.5. Let f : X −→Y be continuous from (X ,τ) into (Y,σ) and g : Y −→ Z continuous
from (Y,σ) into (Z,ρ), then the composition g◦ f : X −→ Z is continuous from (X ,τ) into (Z,ρ) .
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Proof: We have (g◦ f )−1 (ρ) = f−1
(
g−1 (ρ)

)
⊂ f−1 (σ)⊂ τ where the first inclusion comes from

the continuity of g and the second from the continuity of f .�

Proposition 2.3.6. Let f ,g : X −→ R be continuous functions from (X ,τ) into R endowed with
the euclidean topology. Then the following functions are continuous:

f +g : X −→ R , ( f +g)(x) = f (x)+g(x)
f .g : X −→ R , ( f .g)(x) = f (x) .g(x)

For the proof we need the following lemma:
Lemma: A function is continuous iff for every α ∈ R the sets f−1 ]α,∞[ and f−1 ]−∞,α[ are open
in X .

Comes from the fact f−1 ]α,β [ = f−1 ]α,∞[∩ f−1 ]−∞,β [ and that
]α,∞[ , ]−∞,β [ , are open.

Proof of 2.3.6: We have ( f +g)−1 (]α,∞[) = ∪
β∈R

(
f−1 (]α−β ,∞[)∩g−1 (]β ,∞[)

)
and

( f +g)−1 (]−∞,α[) = ∪
β∈R

(
f−1 (]−∞,α−β [)∩g−1 (]−∞,β [)

)
, so the sets

( f +g)−1 (]α,∞[) and ( f +g)−1 (]−∞,α[) are open.�

Definition 2.3.7. An homeomorphism from the space (X ,τ) onto the space (Y,σ) is a bijection
f : X −→ Y such that f and its inverse f−1 are both continuous.
For example, the function f : R −→ ]−1,1[ given by f (x) =

x
1+ |x|

is a homeomorphism with

f−1 : ]−1,1[−→ R given by f−1 (x) =
x

1−|x|
.

Definition 2.3.8. A function f : X −→ Y is said to be open if the image f (G) of any open set G
of X is open in Y . The function is said to be closed if the image f (F) of any closed set F of X is
closed in Y .

Proposition 2.3.9. Let f : X −→ Y be a bijection. The following properties are equivalent:
(a) f is an homeomorphism from the space (X ,τ) onto the space (Y,σ).
(b) The function f is continuous and open.
(c) The function f is continuous and closed.

If τ,ω are two topologies on X then τ = ω iff the identity mapping IX : X −→ X is an homeomor-
phism.
Proof: Left as an exercise.�

Remark 2.3.10. (a) A property of a space Y which is inherited from a space X by homeomorphism
is called a topological invariant. As an example, consider the following property of X :
(S) ∀x,y ∈ X , if x 6= y there is an open neighbohood U of x and an

open neighbohood V of y such that U ∩V = /0
Now let f : X −→ Y be an homeomorphism. We prove that the space Y has property (S). Let
u,v ∈ Y with u 6= v, there is x,y ∈ X , with x 6= y and u = f (x), v = f (y); let U,V be open sets in
X such that x ∈U,y ∈ V and U ∩V = /0. Then f (U) , f (V ) are open in Y and satisfy u ∈ f (U),
v ∈ f (V ), f (U)∩ f (V ) = /0, so property (S) is a topological invariant.
The property (S) will be studied in details later.
(b) We have to emphasize that not every property of a space can be tranfered to another space
by homeomorphism, as is shown by the following example: let f : [0,1[ −→ R, be given by
f (x) =

x
1− x

, where [0,1[ is endowed with the trace topology of R, then it is clear that f is an

homeomorphism with inverse f−1 (x) =
x

1+ x
. Now consider the property of Cauchy for sequences
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of numbers. This property is not preserved by the homeomorphism f since xn = 1− 1
n

is Cauchy

in [0,1[, but f (xn) = n−1 is not Cauchy in R.

Theorem 2.3.11. (Topology generated by a family of functions)
Let {Xα ,τα ,α ∈ A} be a family of topological spaces and let X be a set. For each α ∈ A, let

fα : X −→ Xα be a function. Then there exists on X a topology denoted by τ ( fα ,α ∈ A) , such that
each function fα is continuous from the space (X ,τ ( fα ,α ∈ A)) into the space (Xα ,τα). Moreover,
τ ( fα ,α ∈ A) is the smallest topology on X with this property. It is called the topology generated
by the family of functions { fα ,α ∈ A} .

Proof: Put F =
{

f−1
α (Bα) ,Bα ∈ τα ,α ∈ A

}
. The family F generates the topology τ (F ) for

which it is a subbase (Theorem 2.1.12). We prove that the topology τ (F ) is the needed topology.
First each function fα is continuous from (X ,τ (F )) into (Xα ,τα) since C ⊂F ⊂τ (F ). On the
other hand if σ is a topology on X making all the functions fα continuous, we have
f−1
α (τα)⊂ σ ,∀α ∈ A, so we deduce τ (F )⊂ σ .�

Proposition 2.3.12. Let g be a function from a space (Y,σ) into the space (X ,τ ( fα ,α ∈ A)), then
g is continuous if and only if fα ◦g : Y −→ Xα is continuous for every α ∈ A.

Proof: If g is continuous, then fα ◦ g, as a composition of continuous functions, is continu-
ous for every α ∈ A. Conversely, suppose that fα ◦ g is continuous for every α , this implies
g−1

(
f−1
α (τα)

)
⊂ σ for each α and then g−1 (F ) ⊂ σ , where F is the generating family of

τ ( fα ,α ∈ A). Consequently, if B ∈ τ ( fα ,α ∈ A), we can write B = ∪
λ∈Λ

Iλ , where each Iλ is a finite

intersection of elements in F (see Theorem 2.1.12). From the fact that σ is a topology, we deduce
easily that g−1 (τ ( fα ,α ∈ A))⊂ σ and g is continuous.�

Proposition 2.3.13. Let {Xα ,τα ,α ∈ A} be a family of topological spaces and form the cartesian
product X = Π

α
Xα of the sets Xα (see Definition 1.2.7). Let πβ : X −→ Xβ be the β−coordinate

projection given by πβ ((xα)) = xβ . Then there is a smallest topology on X making all the
projections πβ continuous. Such topology, denoted by ⊗

α

τα , is called the direct product of the

topologies τα ,α ∈ A. Moreover, a function g from a space (Y,σ) into the space
(

X ,⊗
α

τα

)
is

continuous iff the composition πα ◦g : Y −→ Xα is continuous for every α ∈ A.

Proof: It is a straightforward application of Theorem 2.3.11 and Proposition 2.3.12 with X = Π
α

Xα

and fα = πα , ∀α.�

Remark 2.3.14. (a) For Bα ∈ τα with α ∈ {α1,α2, ...,αn}, the set

π−1
α1

(Bα1)∩π−1
α2

(Bα2)∩ ...∩π−1
αn

(Bαn) is called elementary open set of
(

Π
α

Xα ,⊗
α

τα

)
. One can

check that the elementary sets form a base for ⊗
α

τα , and so every open set in ⊗
α

τα contains an

elementary open set. Let us observe that
π−1

α1
(Bα1)∩π−1

α2
(Bα2)∩ ...∩π−1

αn
(Bαn) = Bα1×Bα2× ...×Bαn× Π

α /∈{α1,α2,...,αn}
Xα .

(b) If A = {1,2, ...,n}, all the elementary open sets of
(

n
Π

α=1
Xα ,

n
⊗

α=1
τα

)
are of the form B1×B2×

...×Bn, Bi ∈ τi.
As an example it is easy to see that the euclidean topology of Rn is τ⊗ τ⊗ ...⊗ τ , where τ is the
euclidean topology of R.
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2.4 Exercises

21. Let (X ,τ) be the topological space of Exercise 15. Prove that a function f : X −→ X is
continuous if and only if f preserves the order in X , that is: x≺ y =⇒ f (x)≺ f (y) .

22. Let (X ,τ) be a topological space. If R is an equivalence relation on the set X , with quotient
X/R, and if p : X −→ X/R is the canonical mapping
(see Definition 1.4.2), the family σR =

{
B⊂ X/R : p−1 (B) ∈ τ

}
is a topology on X/R (Proposition

2.3.1.(b)), and p is continuous from (X ,τ) into (X/R,σR).
(a) Prove that σR is the smallest topology on X/R making p continuous from (X ,τ) into (X/R,σR).
(b) Prove that p is an open function iff p−1 (p(U)) is open in X for every open set U ⊂ X .

23. Let {Xα ,τα ,α ∈ A} be a family of topological spaces and for each α let fα : X −→ Xα be a
function from a space (X ,τ) into (Xα ,τα). Define the function f : X −→Π

α
Xα by f (x) = ( fα (x)) .

Prove that f is continuous from (X ,τ) into
(

Π
α

Xα ,⊗
α

τα

)
if and only if each function fα is

continuous from (X ,τ) into (Xα ,τα) .

2.5 Separation Axioms

This section deals mainly with two important classes of topological spaces which are the Hausdorff
spaces and the normal spaces. These spaces are frequently used in many applications.

Definition 2.5.1. ( Hausdorff space )
A topological space (X ,τ) is a Hausdorff space if it satisfies the following separation axiom:

For all x,y ∈ X with x 6= y, there is an open neighborhood V (x) of x and an open neighborhood
V (y) of y such that V (x)∩V (y) = /0.

Examples 2.5.2. (a) The space Rwith the euclidean topology is a Hausdorff space. Indeed if
x 6= y, put d = 1

2 |x− y| and take 0 < h < d, then the open intervals V (x) = ]x−h,x+h[ and
V (y) = ]y−h,y+h[ satisfy V (x)∩V (y) = /0. Likewise we can prove that the space Rn is a
Hausdorff space.

(b) Every discrete topological space (X ,τ1) is a Hausdorff space.

(c) Let X be an infinite set endowed with the topology τ = { /0,A⊂ X : Ac finite}, then (X ,τ) is not
a Hausdorff space.

Proposition 2.5.3. The following properties are equivalent:
(a) (X ,τ) is a Hausdorff space.
(b) For every x ∈ X , if y 6= x there is an an open neighborhood V (x) of x such that y /∈V (x).
(c) For each x ∈ X , we have x = ∩

V∈V (x)
V , where V (x) is the family of open neighborhoods of x.

(d) The diagonal set ∆ = {(x,x) : x ∈ X} is closed in the product space (X×X ,τ⊗ τ).

Proof: (a) =⇒ (b) if y 6= x there is an open neighborhood V (x) of x and an open neighborhood
V (y) of y such that V (x)∩V (y) = /0. So V (x)⊂ X\V (y) and then V (x)⊂ X\V (y) since X\V (y)
is closed; this yields y /∈V (x).

(b) =⇒ (c) let x ∈ X , by (b) for each y 6= x there V (x) ∈ V (x) such that y /∈ V (x), but then
y /∈ ∩

V∈V (x)
V for all y 6= x, this proves that ∩

V∈V (x)
V reduces to the point x only.

(c) =⇒ (d) we prove that ∆c is open. Let (x,y) ∈ ∆c, so y 6= x; as x = ∩
V∈V (x)

V , there is an

open neighborhood V (x) of x such that y ∈ X\V (x), then put V (y) = X\V (x). We get an open
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neighborhood V (y) of y such that V (x)∩V (y) = /0. Consequently, we have (x,y) ∈V (x)×V (y)⊂
∆c, this shows that ∆c is open.

(d) =⇒ (a) if x 6= y then (x,y) ∈ ∆c and there are open sets U,V in X such that: U ×V ∈
τ⊗ τ,U×V ⊂ ∆c and (x,y) ∈U×V ; but then x ∈U,y ∈V and U ∩V = /0, whence (a) .�

Proposition 2.5.4. Let f : X −→ Y be an homeomorphism between (X ,τ) and (Y,σ). Then (Y,σ)
is Hausdorff if and only if (X ,τ) is Hausdorff.

Proof: Left to the reader.�

Theorem 2.5.5. (a) Every subspace of a Hausdorff space is Hausdorff.

(b) The product space
(

Π
α

Xα ,⊗
α

τα

)
is Hausdorff

if and only if each factor (Xα ,τα) is Hausdorff.

Proof: (a) Let (A,τA) be a subspace of a Hausdorff space (X ,τ) and let x,y be in A with x 6= y.
Since (X ,τ) is Hausdorff, there is V (x) and V (y) such that V (x)∩V (y) = /0. But V (x)∩A and
V (y)∩A are in τA and disjoint , so (A,τA) is Hausdorff.
(b) Suppose (Xα ,τα) Hausdorff for each α and let x = (xα) ,y = (yα) be in Π

α
Xα with x 6= y, so

xα 6= yα for some α . Since (Xα ,τα) is Hausdorff, there are open sets V (xα), V (yα) such that
V (xα)∩V (yα) = /0. By the continuity of πα , this implies that π−1

α (V (xα)) and π−1
α (V (yα)) are

disjoint open neighborhoods of x and y respectively. This shows that
(

Π
α

Xα ,⊗
α

τα

)
is Hausdorff.

Conversely, let z = (zα) be fixed in Π
α

Xα and consider the set

Z (α) =
{

x =
(
xβ

)
∈Π

α
Xα : xβ ∈ Xβ ,xβ = zβ ∀β 6= α

}
, endowed with the trace topology of ⊗

α

τα .

Then it easy to check that Z (α) is homeomorphic to the space (Xα ,τα); since Z (α) is Hausdorff
by part (a) of the theorem, we deduce from Proposition 2.5.4 that (Xα ,τα) is Hausdorff.�

Theorem 2.5.6. In a Hausdorff space (X ,τ) we have:
(a) Every finite set is closed.
(b) Let x be a limit point of a subset A⊂ X , then for every open neighborhood V of x the set V ∩A
is infinite. [9], [10]

Proof: (a) From Proposition 2.5.3 (c) each point of X is closed.
(b) Suppose there is a finite open neighborhood V of x such that V ∩ (A\x) = {x1,x2, ...,xn}. By
(a) the set {x1,x2, ...,xn}c is open and contains x; this implies that W =V ∩{x1,x2, ...,xn}c is an
open neighborhood of x such that W ∩ (A\x) = /0, this is a contradiction with the fact that x is a
limit point of A (see Definition 2.1.23).�
Now we consider a separation property more severe than the Hausdorff one:
Definition 2.5.7. ( Normal space )
A topological space (X ,τ) is said to be normal if it is a Hausdorff space satisfying the following
property:
For any closed sets F,G such that F ∩G = /0, there are open sets U,V with

F ⊂U,G⊂V and U ∩V = /0.

Examples 2.5.8. (a) Every discrete space (X ,τ1) is normal.
(b) The spaces R and Rn endowed with the euclidean topology are normal and more generally we
will see in chapter 3 that every metric space is normal.

Theorem 2.5.9. In a topological space (X ,τ) the following properties are equivalent:
(a) The space X is normal.
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(b) Let F be closed and U open such that F ⊂U , then there is an open set V such that F ⊂V ⊂
V ⊂U.

Proof: (a) =⇒ (b) If F is closed and U open such that F ⊂U , then Uc is closed and F ∩Uc = /0.
By (a) there are open sets V,W such that F ⊂V,Uc ⊂W , and V ∩W = /0. Then we have V ⊂W c

and as W c is closed, also V ⊂W c, so we deduce that F ⊂V ⊂V ⊂W c ⊂U , this proves (b) .
(b) =⇒ (a) Let F,G be closed such that F ∩G = /0, so F ⊂ Gc and Gc is open. By (b) there is an
open set U such that F ⊂U ⊂U ⊂ Gc. But the complement V = X\U of U is open, contains G
and satisfies U ∩V = /0, so X is normal.�

Theorem 2.5.11. (a) Let f : X −→ Y be an homeomorphism between (X ,τ) and (Y,σ). Then
(Y,σ) is normal if and only if (X ,τ) is normal.
(b) Every closed subspace (A,τA) of a normal space (X ,τ) is normal.

Proof: (a) Straightforward.
(b) Let (X ,τ) be normal and let (A,τA) be a closed subspace. Let F,G, be closed sets in A with
F ∩G = /0. Then since A is closed, F,G, are closed in X , so by normality of X there are open sets
U,V in X such that F ⊂U,G⊂V and U ∩V = /0. Now put U1 =U ∩A,V1 =V ∩A; then U1,V1 are
open in A and satisfy F ⊂U1,G⊂V1 and U1∩V1 = /0, this proves that (A,τA) is normal.�

The importance of the normal spaces is undoubtedly due to the following results whose proofs
can be found in [2] .

Theorem 2.5.12. (Urysohn Lemma)
Let (X ,τ) be normal space, then for every disjoint closed sets F,G, there is a continuous function
f : X −→ R such that :

(1) 0≤ f (x)≤ 1, for all x ∈ X .
(2) f (x) = 0, for all x ∈ F.
(3) f (x) = 1, for all x ∈ G

Theorem 2.5.13. (Tietze)
Let (X ,τ) be normal space and let (A,τA) be a closed subspace. Then any continuous function
f : A −→ R can be extended to a continuous function on all over X . In other words, there is a
continuous function g : X −→ R such that g(x) = f (x) ,∀x ∈ A.

2.6 Exercises

24. Consider the following separation axioms on a space X :
T1 : If x 6= y, there is an open set containing y but not x.
T2 : Hausdorff axiom (Definition 2.5.1).
T3 : T1 and the following:
If F is closed and x /∈ F , there are disjoint open sets U,V with x ∈U and F ⊂V.
T4 : T1 and the following:
For any disjoint closed sets F,G, there are disjoint open sets U,V with F ⊂U,G⊂V .

(a) Prove that X satisties T1 iff each x is closed.
(b) Prove that T4 =⇒ T3 =⇒ T2 =⇒ T1.
(c) Let X be an infinite set with the topology τ = { /0;A⊂ X : Ac finite} .

Prove that (X ,τ) is not Hausdorff and it satisfies the axiom T1.

25. Let (X ,τ) and (Y,σ) be topological spaces with (Y,σ) Hausdorff
and f ,g : X −→ Y be continuous functions.
(a) Put on Y ×Y the product topology σ ⊗σ and prove that the function
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ϕ : X −→ Y ×Y given by ϕ (x) = ( f (x) ,g(x)) is continuous and deduce that
the set {x ∈ X : f (x) = g(x)} is closed in X .
(b) Let D be a set dense in X . Prove : f = g on D =⇒ f = g on X .
(c) Consider the function h : X×Y −→ Y ×Y , given by h(x) = ( f (x) ,y)
and prove that the graph Γ = {(x,y) ∈ X×Y : f (x) = y} of the function f
is closed in (X×Y,τ⊗σ).

26. Prove the equivalence of the following properties:
(1) (X ,τ) is a normal space
(2) For any disjoint closed sets F,G, there are open sets U,V with F ⊂U,G⊂V and U ∩V = /0.
(3) For any disjoint closed sets F,G, there is an open set U with F ⊂U and U ∩G = /0.

27. Let (X ,τ) be a normal space, and let F1,F2, ...,Fn be closed
sets in X with

n
∩
1

Fi = /0. Prove that there are open sets V1,V2, ...,Vn

such that Fi ⊂Vi and
n
∩
1
Vi = /0. [use Theorem 2.5.9(b) and induction]

28. Let (X ,τ) be a normal space, and let U1,U2, ...,Un be open
sets in X with X =

n
∪
1
Ui. Prove that there are n continuous functions

f1, f2, ..., fn : X −→ [0,1] such that
n
∑
1

fi (x) = 1,∀x ∈ X and

fi (x) = 0,∀x ∈ X\Ui, i = 1,2, ...,n.
[Hint: First take open sets V1,V2, ...,Vn such that Vi ⊂Ui and X =

n
∪
1
Vi (Exercise 27.). Next use

Urysohn Lemma to get a continuous function gi associated to the disjoint closed sets Vi,X\Ui. Then

we have
n
∑
1

gi (x)> 0 ∀x ∈ X .

Finally, take fi (x) =
gi (x)

n
∑
1

gi (x)
].

2.7 Connected Spaces

Definition 2.7.1. A topological space (X ,τ) is said to be connected if it cannot be written as a
union of two non empty disjoint open sets.
A subset A⊂ X is connected if the subspace (A,τA) is connected. By the definition of the topology
τA, A is connected if A is not contained in the union of two open sets whose intersections with A
are disjoint and non-empty.

Examples 2.7.2. (a) Every discrete space (X ,τ1) containing more than one point is not connected.
(b) Take X = {0,1} and τ = { /0,0,X}, then (X ,τ) is connected.
(c) We will see later that the set R endowed with the usual topology is connected.
(d) The set Q of rational numbers is not connected. Indeed the open sets of Q

U =
{

x : x >
√

2
}
∩Q, V =

{
x : x <

√
2
}
∩Q, are disjoint and Q=U ∪V.

Proposition 2.7.3. The following properties are equivalent:
(a) The space (X ,τ) connected.
(b) X and /0 are the only subsets of X which are open and closed.
(c) Every continuous function from X into the discrete space {0,1} is constant.

Proof: (a) =⇒ (b) If there is G⊂ X , G open and closed and G 6= X , /0, we would have X = G∪Gc,
so X would not be connected.
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(b) =⇒ (c) If there is f : X −→ {0,1} continuous and not constant, then f−1 (0) and f−1 (1) are
open and closed different from X , /0, and satisfy f−1 (0)∩ f−1 (1) = /0, X = f−1 (0)∪ f−1 (1) .
(b) =⇒ (c) If (X ,τ) is not connected, there is U,V disjoint and open with X = U ∪V ; in this
case the function f : X −→ {0,1} given by f (x) = 1 for x ∈U , and f (x) = 0 for x ∈ V = Uc is
continuous and not constant.�

Proposition 2.7.4. Let f : X −→ Y be an homeomorphism between (X ,τ) and (Y,σ). Then (Y,σ)
is connected if and only if (X ,τ) is connected.

Proof: Left to the reader.�

Theorem 2.7.5. Let f : X −→Y be a continuous function from (X ,τ) into (Y,σ). If X is connected,
then f (X) is connected.

Proof: If f (X) is not connected there would exist a function g : f (X)−→ {0,1} continuous and
not constant. In this case the function g◦ f : X −→ {0,1} is continuous and not constant, so by
Proposition 2.7.3(c), X would not be connected.�

Theorem 2.7.6. In the space R the only connected subsets with more than one point are the
intervals.

Proof: Let A⊂ R be connected. Suppose that A is not an interval, then there is a ∈ A, b ∈ A, and
c /∈ A such that a < c < b. In this case the sets A∩{x : x < c} and A∩{x : x > c} are open in A
disjoint and their union is A, this is a contradiction since A is assumed connected.
Conversely, let A be an interval of R. Suppose that A is not connected, then A =U ∪V , where U,V
are non empty disjoint open sets in (A,τA). Let a ∈U,b ∈V , we can assume a < b and form the set
{x ∈U : [a,x]⊂U}. This set is not empty since a ∈U and it is bounded above by b; consequently,
α = Sup{x ∈U : [a,x]⊂U} exists and we have a≤ α ≤ b. Since A is an interval and since a,b
are in A we deduce that α ∈ A. On the other hand, for ε > 0 the set ]α− ε,α + ε[∩A is an open
neighborhood of α in (A,τA), and from the definition of supremum (Proposition 1.6.3) we get
{x ∈U : [a,x]⊂U}∩ ]α− ε,α + ε[∩A 6= /0. This implies that U ∩ ]α− ε,α + ε[∩A 6= /0, and then
α ∈UA, where UA is the closure of U in (A,τA). Since U = A\V , U is also closed in A and then
UA =U , so we deduce that α ∈U ; since U is open in (A,τA), there is an open set G in R such that
U = G∩A. Since A is an interval and since G is a union of open intervals, there is ε > 0 such that
]α− ε,α + ε[⊂U , but then we would have [a,α + ε[⊂U and this leads to a contradiction with
the definition of α . So A is connected and achieves the proof.�

The following corollary is known as the intermediate value theorem:

Corollary: Let f : X −→ R be a continuous function. If X is connected, then for any a,b in f (X)
and any c in [a,b] there is x ∈ X such that f (x) = c.

Proof: f (X) is connected in R by Theorem 2.7.5, so it is an interval by 2.7.6, and this yields
[a,b]⊂ f (X) if a,b are in f (X) .�

Proposition 2.7.7. Let A⊂ X be connected, then the closure A is connected

Proof: We use Proposition 2.7.3(c). Let f : A−→ {0,1} be continuous, then the restriction fA of f
to A is continuous, so it is constant. We deduce that f is constant on A (see Exercise 25(b)).�

Proposition 2.7.8. Let (Aα) be a family of connected subsets in the space X , such that ∩
α

Aα 6= /0,
then ∪

α
Aα is connected.

Proof: Let f : ∪
α

Aα −→ {0,1} be continuous, then the restriction fAα
of f to Aα is continuous, so

it is constant since Aα is connected. If x0 ∈ ∩
α

Aα , we have f (x) = f (x0) ,∀x ∈ Aα , and this true for
each α . This implies that f is constant on ∪

α
Aα , so ∪

α
Aα is connected.�
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In what follows we will see that any not connected space can always be written as a union of
connected subsets, called connected components according to the definition:

Definition 2.7.9. Let (X ,τ) be a topological space and let x ∈ X . The connected component of
x is defined as the union of all connected subsets containing x. It will be denoted by C (x). By
Proposition 2.7.8 C (x) is connected and it is the largest connected subset containing x.
A topological space is totally disconnected C (x) = x for all x ∈ X .

Examples 2.7.10. (a) If X is connected, we have C (x) = X for all x ∈ X .
(b) If X is a discrete space, X is totally disconnected.
(c) The set Q of rational numbers is not discrete, but it is totally disconnected. In fact every
connected subset C of Q reduces to a one point; indeed if such C contains two points x < y,
then for z irrational with x < z < y, the non empty disjoint open sets U = C∩{u ∈Q : u > z},
V =C∩{u ∈Q : u < z}, would satisfy C =U ∪V contradicting the connectedness of C.

Proposition 2.7.11. C (x) is closed in X for every x.

Proof: By Proposition 2.7.7, the closure C (x) is connected. Since C (x) is maximal we have
C (x)⊂C (x), so C (x) =C (x) .�

Theorem 2.7.12. Let (X ,τ) be a topological space
(a) Any two connected components are either equal or disjoint.
(b) The binary relation on X given by xRy ⇐⇒ y ∈C (x) is an equivalence relation whose classes
are the connected components of X .
(c) The quotient space (X/R,σR) is totally disconnected (see Example 2.3.3 for the construction of
(X/R,σR)).

Definition 2.7.13. A topological space (X ,τ) is said to be locally connected if its topology τ has a
base formed of open connected sets.

Remark 2.7.14. A topological space can be locally connected without being connected, as is shown
by a discrete space. On the other hand a connected space need not be locally connected. However
we have:

Proposition 2.7.15. A topological space (X ,τ) is locally connected if and only if the connected
components of open sets are open.

Proof: Suppose X locally connected and let B be a base of open connected sets. Let U be an
open set and C a connected component of U . If x ∈C then x ∈U , and since B is a base there is
B ∈B such that x ∈ B⊂U ; but C is the connected component of x and B is connected, so we have
x ∈ B⊂C, this proves that C is open. Conversely, if the connected components of open sets are
open, the family B ={C (x) ,x ∈ X} is obviously a topological base for X .�

2.8 Exercises

29. Let X be an infinite set with the topology τ = { /0;A⊂ X : Ac finite} .
Prove that (X ,τ) is connected.

30. Let A ⊂ X be a connected subset of X . If the subset B satisfies A ⊂ B ⊂ A, prove that B is
connected.

31. Let f : X −→ Y be a continuous function from (X ,τ) into (Y,σ). Suppose X connected and Y
totally disconnected. Prove that f is constant

(by Theorem 2.7.5 f (X) is connected.)
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32. Let f : X −→ Y be a continuous function from (X ,τ) into (Y,σ). Prove that f (C (x)) ⊂
C ( f (x)) ,∀x ∈ X . If f is a homeomorphism, prove that f defines a one-to-one correspondence
between the connected components of X and the connected components of Y.

33. A topological space (X ,τ) is said path connected or pathwise connected if for every a,b ∈ X
there is a continuous function f : [0,1] −→ X such that f (0) = a, f (1) = b (we say that a,b are
connected by a continuous path). Prove that every path connected space is connected [Hint: Fix
a ∈ X , then each x ∈ X connected to a by a continuous path γax = f ([0,1]), which is a connected
subset of X by Theorem 2.7.5. The conclusion comes from the fact that X = ∪

x∈X
γax and Proposition

2.7.8].

34. In the space R2 endowed with the euclidean topology, let Γ be the set given by Γ ={
(x,y) : 0 < x≤ 1,y = sin

1
x

}
(a) Prove that Γ is connected (consider the continuous function ϕ : ]0,1]−→R2,ϕ (x)=

(
x,sin

1
x

)
).

(b) Prove that Γ = Γ∪ ({0}× [−1,1]) .
(c) Prove that Γ is connected but not locally connected (If G is the open set of Γ given by G = Γ∩(
R×

]
−1

2
,
1
2

[)
, then the connected component of the point x =

(
0,

1
4

)
of G is {0}×

]
−1

2
,
1
2

[
,

which is not open in Γ).

35. A topological space may be connected but not path wise connected

(In the set Γ of Exercise 33, the points (0,0) and
(

0,
1
π

)
are not connected by a continuous path).
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3. METRIC SPACES

3.1 Metrics

This chapter may be considered as a motivation to the study of the topological structures presented
in chapter 2. Metric spaces contain convenient concepts which are suitable for the treatment of
convergent sequences and continuous functions.

Definition 3.1.1. Let X be a non empty set; a metric (or distance) on X is a function d : X×X −→R
which satisfies the following conditions:∀x,y,z in X

(a) d (x,y)≥ 0, d (x,y) = 0 ⇐⇒ x = y
(b) d (x,y) = d (y,x), (symmetry)
(c) d (x,y)≤ d (x,z)+d (z,y), (triangle inequality)

The set X endowed with a metric d is called a metric space and will be denoted by (X ,d) .

Examples 3.1.2. (a) Let X be a non empty set, define d by d (x,x) = 0 and d (x,y) = 1 if x 6= y, d
is the metric called the discrete metric.
(b) If X = Rn, the euclidean metric is defined by:

d (x,y) =
√

n
∑
1
(xi− yi)

2, x,y ∈ Rn, x = (x1, ...,xn) ,(y1, ...,yn)

If n = 1, we get d (x,y) = |x− y|, which is the usual metric on R.
To see triangle inequality, let x = (x1,...,xn) ,y = (y1,...,yn) ,z = (z1,...,zn) be in Rn, write: (xi− yi) =
(xi− zi)+(zi− yi) then use the inequality√

n
∑
1
(αi +βi)

2 ≤
√

n
∑
1

α2
i +

√
n
∑
1

β 2
i

valid for every finite sequence of real numbers α1, ...,αn and β1, ...,βn.
(c) Let E be a non empty set and consider the set B(E) of all continuous functions f : E −→ R,
such that Sup

x∈X
| f (x)|< ∞. It is easy to check that B(E) is a vector space on R. If f ,g ∈ B(E), put

d ( f ,g) = Sup
x∈X
| f (x)−g(x)|, then it is straightforward that d defines a metric on B(E) .

(d) Let C [0,1] be the vector space of all continuous functions f : [0,1]−→ R. If f ,g ∈C [0,1], put

33
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d ( f ,g) =
∫ 1

0 | f −g| (Riemann integral), then using the properties of Riemann integral it is easy to
check that d ( f ,g) is a metric on C [0,1] .

Definition 3.1.3. Let (X ,d) be a metric space. If x ∈ X and α > 0, we define the open ball centered
at x with radius α by the set:

B(x,α) = {y ∈ X : d (x,y)< α} .

Likewise, we define the closed ball centered at x with radius α by the set:

C (x,α) = {y ∈ X : d (x,y)≤ α} .

The sphere centered at x with radius α is the set:

S (x,α) = {y ∈ X : d (x,y) = α} .

The family of all open balls in a metric space (X ,d) constitutes a base of a topology on X
according to:

Theorem 3.1.4. Let (X ,d) be a metric space. Let B = {B(x,α) ,x ∈ X ,α > 0} be the family of
all open balls of X . Then B is a base for the topology τ (B) generated by B.

Proof: We already know that B is a subbase for the topology τ (B) (see Chap. 2, Definition 2.1.13).
To prove that it is indeed a base, we prove that it satisfies the condition of Theorem 2.1.14, Chap.
2. To do this let B(x,α) ,B(x,β ) be open balls with non empty intersection and let z ∈ B(x,α)∩
B(x,β ); put ρ = Min(α−d (x,z) ,β −d (y,z)), then we have B(z,ρ)⊂ B(x,α)∩B(x,β ). Indeed
if u ∈ B(z,ρ), d (z,u) < ρ and d (x,u) ≤ d (x,z)+d (z,u) < d (x,z)+α−d (x,z), so d (x,u) < α

and u ∈ B(x,α).
Likewise, d (y,u)≤ d (y,z)+d (z,u)< d (y,z)+β −d (y,z)< β and then u ∈ B(y,β ); this proves
that B(z,ρ)⊂ B(x,α)∩B(x,β ). So, B is a base for the topology τ (B).�
In the sequel we denote the topology τ (B) by τ (d) .

Corollary: G ∈ τ (d) ⇐⇒ ∀x ∈ G ∃α > 0 : B(x,α)⊂ G.

Definition 3.1.5. A topological space (X ,τ) is metrizable if there is a metric d on X such that
τ = τ (d) .

Definition 3.1.6. The metrics d and ρ on X are equivalent if τ (d) = τ (ρ) . Let us point out that the
definition does not signify d and ρ determine the same open balls. However, we have:

Proposition 3.1.7. The metrics d and ρ on X are equivalent if and only if
for each x ∈ X and each ε > 0 :

(1) ∃α1 = α1 (x,ε)> 0 : ρ (x,y)< α1 =⇒ d (x,y)< ε

(2) ∃α2 = α2 (x,ε)> 0 : d (x,y)< α2 =⇒ ρ (x,y)< ε

Proof: We know from Proposition 2.3.9 of Chap. 2 that τ (d) = τ (ρ) iff the identity mapping
IX : X −→ X is a homeomorphism. Properties (1) ,(2) are the expression of this fact (see section 3
below about continuity in metric spaces).�

Proposition 3.1.8. In Rn, the following formulas define two metrics equivalent to the euclidean
metric:

δ (x,y) = Max
1≤i≤n

|xi− yi|

γ (x,y) =
n
∑
1
|xi− yi|

Proof: First it is clear that δ ,γ are metrics on Rn. The equivalence property results easily from the
following inequalities:
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1√
n

Max
1≤i≤n

ai ≤
1√
n

√
n
∑
1

a2
i ≤ Max

1≤i≤n
ai

Max
1≤i≤n

ai ≤
n
∑
1

ai ≤ nMax
1≤i≤n

ai

which are valid for all positive numbers a1, ...,an.�

When a metric space (X ,d) is equipped with the topology τ (d), all the concepts introduced in
chapter 2, like closure, interior, limit point, are well defined in (X ,τ (d)) . As an example, let us
prove that the closed ball C =C (x,α) is a closed set in (X ,τ (d)). Let y ∈ X\C, then d (x,y)> α

and if 0 < β < d (x,y)−α , we get by the triangle inequality: d (y,z)< β =⇒ d (x,y)> α , which
proves that B(y,β )⊂ X\C, so X\C, is open by the corollary of Theorem 3.1.4.

Proposition 3.1.9. The topological space (X ,τ (d)) is Hausdorff.

Proof: Let x,y ∈ X ,x 6= y; take 0 < α <
1
2

d (x,y), then the open balls B(x,α) and B(y,α) are two
disjoint open neighborhoods of x and y respectively.�

Proposition 3.1.10. Let A⊂ X be a subset of a metric space (X ,d) and let x be a limit point of A.
Then for every α > 0 the intersection B(x,α)∩A is infinite.

Proof: Apply Definition 2.1.23 Chap.2.�

Definition 3.1.11. ( Metric subspace )
Let A⊂ X be a subset of a metric space (X ,d). The restriction dA : A×A−→R of the metric d

to A×A is obviously a metric on A and the metric space (A,dA) so defined is a metric subspace of
the metric space (X ,d).

Proposition 3.1.12. Let (A,dA) be a metric subspace of the metric space (X ,d). If x ∈ A and
α > 0, consider the open ball BA (x,α) in (A,dA), centred at x with radius α , given by BA (x,α) =
{y ∈ A : dA (x,y)< α}. Then we have BA (x,α) = B(x,α)∩A, for every x ∈ A and α > 0, where
B(x,α) is the open ball in (X ,d). Conversely, for any open ball B(x,α) in (X ,d) the set B(x,α)∩A,
if non-empty, is the union of open balls in (A,dA) .

Proof: Left to the reader.�

Theorem 3.1.13. Let (A,dA) be a metric subspace of the metric space (X ,d). Then the topology
τ (dA) defined on A by the metric dA is identical to the trace topology induced by τ (d) on A.

Proof: Let UA be an open set in τ (dA), then (Theorem 3.1.4.), UA = ∪
x∈UA

BA (x,αx). From

Proposition 3.1.12, BA (x,αx) = B(x,αx)∩A, so we get UA = ∪
x∈UA

B(x,αx)∩A = G∩A, where

G = ∪
x∈UA

B(x,αx) is open in (X ,τ (d)) , therefore UA ∈ τ (d)∩A = (τ (d))A . Conversely, if U is

open in the trace topology of τ (d) on A, U = G∩A, for some G ∈ τ (d). But then G = ∪
x∈G

B(x,αx),

where the B(x,αx) are open balls in (X ,τ (d)) and this yields U = ∪
x∈G

(B(x,αx)∩A). From Propo-

sition 3.1.12, each B(x,αx)∩A is the union of open balls in (A,dA), so U itself is the union of such
balls and this gives U ∈ τ (dA) .�

Definition 3.1.14. (a) Let A⊂ X be a subset of a metric space (X ,d). The diameter of A is defined
by δ (A) = sup

(x,y)∈A×A
d (x,y). The set A is bounded if δ (A) < ∞ and the metric d is bounded if

δ (X)< ∞.
If there is x0 ∈ X such that M = sup

y∈A
d (x0,y)< ∞, A is bounded and δ (A)≤ 2M.

(b) The distance from x ∈ X to the subset A is defined by d (x,A) = inf
y∈A

d (x,y) .
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Proposition 3.1.15. In a metric space (X ,d), the formula ρ (x,y) =
d (x,y)

1+d (x,y)
defines a bounded

metric equivalent to d.

Proof: The function t −→ t
1+ t

and its inverse t −→ t
1− t

are increasing on their domains and

we have u =
t

1+ t
⇐⇒ t =

u
1−u

. So d (x,y) =
ρ (x,y)

1−ρ (x,y)
and Proposition 3.1.7 gives the

equivalence of ρ and d.�

3.2 Exercises

For all the usual topological concepts (interior, closure, boundary) the reader is referred to Chapter
2, Ssections 1,2.

35. Let R2 be equipped with the euclidean metric. Determine
o
A,A,∂A, for each of the following

sets:
L = (0,0)∪{(x,y) : α < d ((0,0) ,(x,y))< β}, for 0 < α < β

M = Z2

N = {(x,y) : y≥ x} .

36. Let X be a set endowed with the discrete metric d (Example 3.1.2 (a)).
(a) Prove that τ (d) is the discrete topology on X .
(b) Determine B(x,α) and C (x,α) for α = 0,α = 1.
Deduce that C (x,α) is not in general the closure of B(x,α) .

37. Let Rn be equipped with the Euclidean metric.
(a) Prove that the closure of the open ball B(x,α) is the closed ball C (x,α).
(b) Prove that the boundary of B(x,α) is the sphere S (x,α) .

38. Let E be a bounded subset of R with x = SupE,y = In f E. Prove that x,y ∈ E.

39. Let (Xi,di) , i = 1, ...,n, be n metric spaces. On the product X = X1× ...×Xn, we define for
x = (x1, ...,xn) ,y = (y1, ...,yn):

d (x,y) =
√

n
∑
1

d2
i (xi,yi)

ρ (x,y) = Max
1≤i≤n

di (xi,yi)

γ (x,y) =
n
∑
1

di (xi,yi)

(a) Prove that these formulas defines three equivalent metrics on the product X .

(b) Prove that τ (d) = τ (ρ) = τ (γ) =
n
⊗
i
τ (di), where

n
⊗
i
τ (di) is the product topology of the

topologies τ (di) on X .

40. A pseudometric on a set X is a function d0 : X × X −→ R which satisfies the following
conditions:∀x,y,z in X

(a) d0 (x,y)≥ 0, d0 (x,x) = 0
(b) d0 (x,y) = d0 (y,x), (symmetry)
(c) d0 (x,y)≤ d0 (x,z)+d0 (z,y), (triangle inequality)

(1) Prove that the family B0 of all open balls B(x,α) = {y ∈ X : d0 (x,y)< α}
is a base for the topology τ (B0) generated by B0 and denoted by τ (d0) .
(2) Prove that (X ,τ (d0)) is Hausdorff if and only if d0 is a metric.
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(3) Define on X the binary relation R by: xRy ⇐⇒ d0 (x,y) = 0
(a) Prove that R is an equivalence relation on X
(b) Define D : X/R×X/R−→ R by the recipe:
D(Cx,Cy) = d0 (x,y), where Cx,Cy are the equivalence classes of x,y.
Prove that D defines unambiguously a metric on X/R.
(c) If X is endowed with topology τ (d0), prove that the canonical map
p : X −→ X/R is continuous , open, and closed.

41. Let (X ,d) be a metric space and fix c > 0.
(a) Define ρc by ρc (x,y) = Min{c,d (x,y)}, x,y ∈ X
Prove that ρc is a bounded metric equivalent to d.
(b) Prove that d (x,A) = 0 ⇐⇒ x ∈ A.

3.3 Cauchy Sequences-Complete Spaces

Definition 3.2.1. Let (X ,d) be a metric space and let (xn) be a sequence in X .
We say that:

(a) (xn) converges to the limit x if lim
n

d (xn,x) = 0.

(b) (xn) is a Cauchy sequence if lim
n,m

d (xn,xm) = 0.

Let us point out that:
(a) means: ∀ε > 0 ∃N ≥ 1 : ∀n≥ N, d (xn,x)< ε

(b) means: ∀ε > 0 ∃N ≥ 1 : ∀n,m≥ N, d (xn,xm)< ε

Proposition 3.2.2. Let (xn) be a sequence in (X ,d), then:
(a) If xn converges, the limit x is unique.
(b) If xn converges, xn is Cauchy.

Proof: (a) If xn converges to x and to y then for every n we have
d (x,y)≤ d (x,xn)+d (xn,y)−→ 0,n−→ ∞, so d (x,y) = 0 and x = y.

(b) Suppose lim
n

xn = x then for every n,m

d (xn,xm)≤ d (xn,x)+d (x,xm)−→ 0,n,m−→ ∞.�

The converse of point (b) is not true in general: take X = ]0,1] with the usual metric and xn =
1
n

,

then xn is Cauchy but does not converge in ]0,1]. This observation leads to the following definition.

Definition 3.2.3. A metric space (X ,d) is said to be complete if every Cauchy sequence of X
converges to a point of X . A subset A⊂ X is complete if the metric subspace (A,dA) is complete.

Example 3.2.4. (a) R and Rn are complete for the Euclidean metric.
(b) Let E be a non empty set and consider the set B(E) of all continuous functions f : E −→ R,
such that Sup

x∈X
| f (x)|< ∞, equipped with the metric

d ( f ,g) = Sup
x∈X
| f (x)−g(x)|, (see Example 3.1.2 (c)). B(E) is complete since the convergence

d ( fn, f )−→ 0 with respect to the metric d is equivalent to the uniform convergence of fn to f .

Proposition 3.2.5. Let A be a subset of a metric space (X ,d). Then A is closed if and only if for
every convergent sequence xn of A, the limit of xn is in A.

Proof: Suppose A closed and let xn be a sequence of A convergent to x ∈ X . If x is in the open
set X\A, there is ε > 0 such that B(x,ε) ⊂ X\A. This implies that B(x,ε) does not contain any
element xn of the sequence of A, contradicting the fact that x is the limit of xn, so we have x ∈ A.
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Conversely, suppose that for every convergent sequence xn of A the limit of xn is in A. We prove that

A is closed by showing A = A. If z ∈ A, then for every n, the set Zn = B
(

z,
1
n

)
∩A is non-empty.

For each n choose zn in Zn, then zn is a sequence in A converging to z, so z ∈ A and A = A.�

Theorem 3.2.6. Let (X ,d) be a complete metric space and A⊂ X .
Then A is complete if and only if A is closed.

Proof: Suppose A complete. If x ∈ A, the argument used in the above proof shows the existence
of a sequence xn in A converging to x. So xn is Cauchy in A and since A is assumed complete, we
get x ∈ A, this yields A = A, and A is closed. Conversely, suppose A closed and let xn be Cauchy
in A; then xn is Cauchy in X , so it converges to some x in X , since X is complete. By the above
proposition x ∈ A since A is closed and this proves that A is complete.�

Definition 3.2.7. Let f : X −→Y be a function from (X ,d) into (Y,ρ), we say that f is an isometry
if ρ ( f (x) , f (y)) = d (x,y) ,∀x,y ∈ X .

Theorem 3.2.8. (Completion of a metric space)
Let (X ,d) be a metric space. There exists a complete metric space (X∗,d∗) and an isometry

ϕ : X −→ X∗ such that ϕ (X) is dense in X∗. Moreover, (X∗,d∗) is unique in the sense that if
(Y ∗,ρ∗) is an other complete metric space satisfying the above property, there is an isometry ψ

from (X∗,d∗) onto (Y ∗,ρ∗) .

Theorem 3.2.9. Let (An) be a sequence of closed subsets in a complete metric space (X ,d) such
that A1 ⊃ A2 ⊃ ..., and δ (An)−→ 0,n−→ ∞, where δ (An) =diameter of An. Then ∩

n
An = {x} for

some x ∈ X .

Proof: For each n choose xn ∈ An; if m ≥ n, we have xn,xm ∈ An and d (xn,xm) ≤ δ (An) −→
0,n−→ ∞, so the sequence xn is Cauchy in X . Since X is complete xn converges to some x ∈ X .
Now for every m≥ 1, we have xn ∈ Am,∀n≥ m, but the set Am is closed, so we deduce that x ∈ Am

(Proposition 3.2.5) and then x∈∩
n

An. If z∈∩
n

An we would have d (x,z)≤ δ (An) ,∀n, which implies

d (x,z) = 0 that is z = x, and this shows that ∩
n

An = {x} .�

3.4 Exercises

42. Let xn be a sequence in a metric space (X ,d). Prove that:
xn Cauchy =⇒ every subsequence xnk of xn is Cauchy.
xn converges to x =⇒ every subsequence xnk of xn. converges to x

43. Prove that if xn is Cauchy in the metric space (X ,d), the set
E = {x1,x2, ...} is bounded, that is δ (E)< ∞.

44. Let xn be a Cauchy sequence in a metric space (X ,d) .
Prove that xn contains a subsequence xnk satisfying:

d
(
xnk+1 ,xnk

)
<

1
2k , for each k ≥ 1.

45. Let (X ,d) be a metric space. Prove that:
(a) The intersection of every family of complete subspaces of (X ,d)
is a complete subspace.
(b) The union of every finite family of complete subspaces of (X ,d) .
is a complete subspace.
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3.5 Uniformly Continuous Functions

For topics on continuous functions in general topological spaces, the reader is refered to section 3
of chapter 2. In this section we deal with limit processes in metric spaces.

Definition 3.5.1. Let f : X −→ Y be a function from (X ,d) into (Y,ρ).
We say that f has the limit y0 ∈ Y at x0 ∈ X if :
∀ε > 0,∃α = α (x0,ε)> 0 : x ∈ X , d (x,x0)< α =⇒ ρ ( f (x) ,y0)< ε

which we denote by lim
x→x0

f (x) = y0.

We say that f is continuous at x0 if lim
x→x0

f (x) = f (x0) .

It is useful that this limit process can be handled with sequenences:

Theorem 3.5.2. The following are equivalent:
(a) lim

x→x0
f (x) = y0

(b) For every sequence xn in X converging to x0, the sequence yn = f (xn)
in Y converges to y0.

Proof: Assume (a) satisfied, then
∀ε > 0,∃α > 0 : x ∈ X , d (x,x0)< α =⇒ ρ ( f (x) ,y0)< ε.

Let xn be converges to x0, so there is N ≥ 1 such that n≥ N =⇒ d (xn,x0)< α and this implies
ρ ( f (xn) ,y0)< ε , that is f (xn) converges to y0. This yields (b) .
Suppose that (a) is not satisfied then ∃ε > 0 : ∀α > 0,∃x with d (x,x0)< α and ρ ( f (x) ,y0)≥ ε.

Taking α =
1
n

, we get xn such that d (xn,x0)<
1
n

, and ρ ( f (xn) ,y0)≥ ε,∀n. This gives a sequence

xn converging to x0, without convergence of f (xn) to y0, so (b) is not satisfied.�

Corollary: The function f : X −→Y is continuous at x0 ∈ X if and only if for every sequence xn in
X converging to x0, the sequence f (xn) converges to f (x0) .

Definition 3.5.3. Let f : X −→ Y be a function from (X ,d) into (Y,ρ) is said to be uniformly
continuous on X if:
∀ε > 0,∃α = α (ε)> 0 : ∀x,x′ ∈ X , d (x,x′)< α =⇒ ρ ( f (x) , f (x′))< ε.

Examples 3.5.4. (a) For each z ∈ X , the function x −→ d (x,z) is uniformly continuous on X .
Indeed ∀x,y ∈ X we have:

d (x,z)≤ d (x,y)+d (y,z) ,
d (y,z)≤ d (y,x)+d (x,z) .

This yields |d (x,z)−d (y,z)| ≤ d (x,y), and the uniform continuity of the function x−→ d (x,z) is
satisfied with α (ε) = ε.

(b) More generally for A⊂ X , the function x−→ d (x,A), where d (x,A) is the distance between x
and A, is uniformly continuous on X . (d (x,A) = inf

y∈A
d (x,y)). To see this, take x,y ∈ X and z ∈ A,

then we have:
d (x,A)≤ d (x,z)≤ d (x,y)+d (y,z)
=⇒ d (x,A)≤ inf

z∈A
(d (x,y)+d (y,z)) = d (x,y)+d (y,A)

d (y,A)≤ d (y,z)≤ d (y,x)+d (x,z)
=⇒ d (y,A)≤ inf

z∈A
(d (y,x)+d (x,z)) = d (y,x)+d (x,A)

This yields |d (x,A)−d (y,A)| ≤ d (x,y), and the uniform continuity of the function x−→ d (x,A)
is satisfied with α (ε) = ε.

There is a useful class of uniformly continuous functions f : X −→ Y given by:
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Definition 3.5.5. f : X → Y is called Lipschitz function if there exists a real constant K ≥ 0 such
that, for all x,x′ ∈ X ,ρ ( f (x) , f (x′))≤ K.d (x,x′) .
Any such K is refereed to as a Lipschitz constant for the function f . If 0≤ K < 1 function is called
a contraction.
Uniform continuity of a Lipschitz function is easy to prove.

Note: In theory of differential equations, Lipschitz continuity is the central condition of the Picard–
Lindelof theorem which guarantees the existence and uniqueness of the solution to an initial value
problem. The contraction type is used in the Banach fixed point theorem (see Chapter 5).
Uniform continuity is useful in handling Cauchy sequences, contrary to simple continuity (see
Remark 2.3.10 (b) Chapter 2).

Proposition 3.5.6. Let f : X −→ Y be a function from (X ,d) into (Y,ρ).
If f is uniformly continuous, then the image by f of a Cauchy sequence in X is a Cauchy sequence
in Y.

Proof: Since f is uniformly continuous, we have:
∀ε > 0,∃α = α (ε)> 0 : ∀x,x′ ∈ X , d (x,x′)< α =⇒ ρ ( f (x) , f (x′))< ε.

Let xn be a Cauchy sequence in X then ∃N ≥ 1 : ∀n,m ≥ N, d (xn,xm) < α and this implies
ρ ( f (xn) , f (xm))< ε , so f (xn) is Cauchy in Y.�

Corollary: Let f : X −→ Y be a bijection such that f and f−1 are uniformly continuous. Then xn

is Cauchy in X if and only if f (xn) is Cauchy in Y .
In particular (Y,ρ) is complete if and only if (X ,d) is complete.

3.6 Exercises

46. Prove that for every subset A of a metric space (X ,d), we have A = {x ∈ X : d (x,A) = 0} .

47. For any closed sets F,G in a metric space (X ,d) such that F ∩G = /0, define the function

f : X −→ [0,1] by f (x) =
d (x,F)

d (x,F)+d (x,G)
. Prove that the sets U = {x : d (x,F)< d (x,G)} ,V =

{x : d (x,G)< d (x,F)} are open with U ∩V = /0 and F ⊂U,G⊂V . Deduce that any metric space
is normal.

48. (a) Let F be closed in (X ,d), put Un =

{
x : d (x,F)<

1
n

}
, n≥ 1.

Prove that Un is open for each n and F = ∩
n

Un.

(b) Let G be open in (X ,d), put Vn =

{
x : d (x,G)≥ 1

n

}
, n≥ 1.

Prove that Vn is closed for each n and G = ∪
n

Vn.

49. Let (X ,d) be a connected metric space containing more than one point.
Prove that X is infinite uncountable.
[Fix z∈ X , the function x−→ d (x,z) is not constant and realize a surjection from X onto an interval
of R].

50. Let (X ,d) be a metric space and put on the product X ×X the metric ρ ((x,y) ,(x′,y′)) =
d (x,x′)+d (y,y′). Prove that the function (x,y)−→ d (x,y) is uniformly continuous on the space
(X×X ,ρ) .

51. Let f : X −→X be a contraction of a metric space (X ,d) with constant 0<K < 1 (see Definition
3.5.5). Fix x in X and define the sequence xn by:
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x0 = x and xn = f (xn−1), for all n≥ 1.
(a) Prove that xn is Cauchy.
(b) If X is complete prove that xn to an α satisfying f (α) = α.

(c) Prove that α is the unique solution of the equation f (t) = t, t ∈ X .
So α is independent of the initial point x.

3.7 Countable Bases-Separable Spaces

Definition 3.7.1. A topological space (X ,τ) is separable if there is a countable subset D⊂ X dense
in X . The space X is second countable if it has a countable base that is if the topology τ has a base
formed by a sequence of open sets.

Examples 3.7.2. (a) Every countable discrete space is separable and has a countable base.
(b) The space R with the usual topology is separable since the set Q of rationals is countable and
dense.

For metric space we have the following fundamental:

Theorem 3.7.3. Let (X ,d) be a metric space. The following are equivalent:
(a) X is separable.
(b) The topology τ (d) induced by d on X has a countable base.

Proof: Assume (a) and let D = {x1,x2, ...} be a dense sequence in X . Then the countable family of

open balls given by
{

B
(

xn,
1
m

)
,n,m≥ 1

}
is a base for the topology τ (d). Indeed it is enough

to prove that for each x ∈ X and each α > 0 there is n,m≥ 1 such that x ∈ B
(

xn,
1
m

)
⊂ B(x,α)

(see Theorem 3.1.4). Let m≥ 1 such that
1
m

<
α

2
, by the density of D there is n≥ 1 such that xn ∈

B
(

x,
1
m

)
which gives x ∈ B

(
xn,

1
m

)
. On the other hand, if y ∈ B

(
xn,

1
m

)
, we have d (xn,y)<

1
m

and d (x,y)≤ d (x,xn)+d (xn,y)<
1
m
+

1
m

< α , so y ∈ B(x,α), that is B
(

xn,
1
m

)
⊂ B(x,α).

Assume (b) and let B = {B1,B2, ...} be a countable base for τ (d). In each Bn of B choose xn,
then it is clear that the sequence {x1,x2, ...} is dense in X .�

Proposition 3.7.4. Let X ,Y be topological spaces and let f : X −→Y be a function. Suppose that f
is onto, then we have:
(a) If f is continuous and X separable then Y is separable.
(b) If f is continuous open and X has a countable base then Y has a countable base.

Proof: (a) Let D = {x1,x2, ...} be a dense sequence in X . We have
Y = f (X) = f

(
D
)
⊂ f (D), where the inclusion comes from the continuity of f . Since f (D) is

countable, Y is separable.
(b) Let B = {B1,B2, ...} be a countable base for X . Since f is open, f (Bn) is open in Y for every n.
We prove that the family f (B) = { f (B1) , f (B2) , ...} is a base for Y . Let V be open in Y and let
y ∈V , then f−1 (V ) is open in X by the continuity of f . Let x ∈ f−1 (V ) such that y = f (x); since
B is a base, there is Bn such that x ∈ Bn ⊂ f−1 (V ), whence y = f (x) ∈ f (Bn)⊂ f

(
f−1 (V )

)
. But

f
(

f−1 (V )
)
=V because f is onto, so f (B) is a countable base for Y .�

For the construction of the product of topological spaces, see Proposition 2.3.13 in chapter 2.
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Theorem 3.7.5. Let
(

Π
n

Xn,⊗
n

τn

)
be the product of a topolofical Spaces (Xn,τn) of topological

spaces. Then
(

Π
n

Xn,⊗
n

τn

)
is separable (resp. has countable base) if and only if each space (Xn,τn)

is separable (resp. has countable base).

Corollary: The euclidean spaces Rn,n ≥ 1 and the infinite product space RN are separable and
second countable.

As for infinite product of metric spaces we quote the following:
Let (Xn,dn) be a sequence of metric spaces with diameters δn = δ (Xn). On the product X = Π

n
Xn

define the function ρ : X ×X −→ R by ρ (x,y) = Sup
n

dn (xn,yn), where x = (xn) ,y = (yn). Then

we have:
Theorem 3.7.6. (a) Suppose that the sequence δn is bounded, then ρ defines a metric on X .
(b) The product topology ⊗

n
τ (dn) on X coincides with the topology τ (ρ) induced by ρ if and only

if Lim
n

δn = 0.

Theorem 3.7.7. Suppose there is a sequence (εn) of positive numbers such that ∑
n

εnδn < ∞ and

define σ : X×X −→ R by σ (x,y) = ∑
n

εndn (xn,yn). Then σ is a metric on X and we have τ (σ) =

⊗
n

τ (dn).

3.8 Exercises

52. Let (X ,τ) be a second countable topological space and let F = {Uα ,α ∈ A} be a family of
open sets such that X = ∪

α∈A
Uα . Prove that X = ∪

n
Uαn for some countable subfamily {Uαn ,n≥ 1}

of F (Lindelof property).
[Let B = {B1,B2, ...} be a countable base for X . Since each Uα is a union of elements in B, we
get a subfamily S of B which covers X . Put S = {Bn1 ,Bn2 , ...} and for each n j take the Uα j

containing Bn j ].

53. Let (X ,d) be a metric space in which every infinite subset has a limit point. By completing the
following steps, prove that X is separable.
(a) Let δ > 0 and fix x1 ∈ X . Define the sequence xn as follows:

x2 ∈ X\B1 where B1 = B(x1,δ )
x3 ∈ X\(B1∪B2) where B2 = B(x2,δ ) and so on.

Prove that ∀n 6= m,d (xn,xm)≥ δ and such sequence is finite.
(b) Deduce that for each δ > 0, the space X can be covered by a finite set of open balls of radius δ .

(c) If δ =
1
n

, let Dn be the finite set of the centers of open balls that cover X .
Prove that D = ∪

n
Dn is dense in X .

3.9 Baire Spaces

Definition 3.9.1. A topological space (X ,τ) is a Baire space if the intersection of every countable
family of dense open sets in X is a dense subset of X .

Proposition 3.9.2. Let X be a Baire space and let {Fn,n≥ 1} be a sequence of closed sets such
that X = ∪

n
Fn.
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Then at least one of the sets Fn has non empty interior.

Proof: Put Gn = X\Fn, then we have ∩
n

Gn = /0. Since X is a Baire space, there is k such that

Gk 6= X ; we deduce that X\Gk 6= /0, but X\Gk =
o

X\Gk =
o

Fk.�

The prototype of Baire space is given by the following theorem:

Theorem 3.9.3. Every complete metric space (X ,d) is a Baire space.

Proof: Let {Gn,n≥ 1} be a sequence of dense open sets in X , we have to show that ∩
n

Gn is dense
in X . Let V be non empty open set of X ; since G1 is dense, V ∩G1 6= /0 and so there is an open ball
B1 with B1 ⊂V ∩G1 and δ

(
B1
)
≤ 1, where δ

(
B1
)

is the diameter of B1.
Likewise, G2 being dense, B1 ∩G2 6= /0 and there is an open ball B2 with B2 ⊂ B1 ∩G2 and

δ
(
B2
)
≤ 1

2
. We can iterate the process and get a sequence Bn of open balls satisfying:

Bn ⊂ Bn−1∩Gn and δ
(
Bn
)
≤ 1

n
.

The
(
Bn
)

is a decreasing sequence of closed sets such that δ
(
Bn
)
−→ 0,n −→ ∞. Since X is

complete, this yields ∩
n

Bn 6= /0 (Theorem 3.2.9). But ∩
n

Bn ⊂V ∩
(
∩
n

Gn

)
, so V ∩

(
∩
n

Gn

)
6= /0, since

V is arbitrary we deduce the density of ∩
n

Gn.�

Examples 3.9.4. (a) The euclidean spaces Rn,n≥ 1 are Baire spaces.
(b) The set Q of rationals is not a Baire space. Indeed we have Q= ∪

n
{rn} and each {rn} is closed

with empty interior.
(b) In R, the sets R\{x} are open and dense, however ∩

x
R\{x}= /0, so countability is essential in

Definition 3.9.1.

Definition 3.9.5. A subset A of a topological space (X ,τ) is said to be non dense if
o
A = /0. The

subset A is said to be of the first category if it can be written as a countable union of non dense sets.
A set is of the second category if it is not of the first category.

Examples 3.9.6. (a) Every Baire space is of the second category
(Proposition 3.9.2), in particular every complete metric space is of the second category (Theorem
3.9.3).
(b) The set Q of rationals is of the first category.
(b) Every countable set of a Hausdorff non discrete space is of the first category.

Theorem 3.9.7. In a Baire space, every set of first category has empty interior.

Proof: Let A be of the first category in X then A = ∪
n

Bn, where the Bn are non dense. Let U be

an open set with U ⊂ A; we must prove that U = /0. We have U ⊂ ∪
n

Bn ⊂ ∪
n

Bn, so ∩
n

X\Bn ⊂ X\U .

Since
o

Bn = /0, the sets X\Bn are dense and then ∩
n

X\Bn is also dense because X is a Baire space.

We deduce that the closed set X\U is dense in X , which gives X\U = X , that is U = /0.�

Remark 3.9.8. (a) Although a set A of the first category, in a Baire space, has empty interior,
the closure A of A may have non empty interior. For example the set Q of rationals is of the first

category in R, however
o
Q= R.

(b) In a Baire space the complement of a set of the first category is a set of the second category.
(c) A set of the 2nd category may have empty interior as is shown by the set of irrationals in R.
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3.10 Exercises
54. Prove that every discrete space is a Baire space.
55. Let X be a Baire space and Y a topological space. Let f : X −→ Y be a function, surjective,
continuous and open. Prove that Y is a Baire space.
56. Prove that in a Baire space every countable intersection of dense open sets is of the 2nd category.
57. In a Baire space, give an example of a set of the 2nd category whose complement is not of the
first category.
58. A perfect set E in a topological space is a closed set in which every point is a limit point. It is
the same to say that a perfect set is a closed set which has no isolated points.

(a) The set Q of rationals is not perfect although it has no isolated points.
(b) If E has no isolated points prove that its closure E is a perfect set.
(c) Every closed and bounded interval in R ( and R itself!) is perfect.
(d) A discrete space is not perfect.
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4. COMPACT SPACES AND LOCALLY COMPACT SPACES

The concept of compactness is an abstraction of the Heine-Borel property satisfied by any closed
and bounded interval in R and formulated by:

If [a,b]⊂ ∪
α

Vα , where the Vα are open sets in R, then there is a finite number

Vα1 , ...,Vαn among the Vα such that [a,b]⊂Vα1 ∪ ...∪Vαn . (see Theorem 4.7.3. below)
A general statement of this property in a topological space leads to the concept of compactness
which is a considerable importance in analysis.

4.1 Compact Spaces

Definition 4.1.1. (a) A Hausdorff topological space (X ,τ) is said to be compact if for any family
{Uα ,α ∈ A} of open sets in X such that X = ∪

α∈A
Uα , there is a finite subfamily

{
Uα j ,1≤ j ≤ n

}
still with X =

n
∪

j=1
Uα j . In other words, X is compact if every open cover {Uα ,α ∈ A} of X contains

a finite subcover
{

Uα j ,1≤ j ≤ n
}

.
(b) A subset K ⊂ X is compact if the subspace (K,τK), with the trace topology τK , is compact.
Since every V ∈ τK is of the form V =U ∩K, U ∈ τ , (b) is equivalent to:

K ⊂ X is compact if for any family {Uα ,α ∈ A} of open sets in X such that K ⊂ ∪
α

Uα , there is

a finite subfamily
{

Uα j ,1≤ j ≤ n
}

with K ⊂
n
∪

j=1
Uα j .

Definition 4.1.2. We say that a family of sets (Eα) has the finite intersection property if every finite
subfamily of (Eα) has non empty intersection.
The following proposition is straightforward.

Proposition 4.1.3. In a Hausdorff space (X ,τ) the following properties are equivalent:
(a) X is compact.
(b) Every family of closed sets with empty intersection contains a finite subfamily with empty
intersection.

45
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(c) Every family of closed sets having the finite intersection property has non empty intersection.

Examples 4.1.4. (a) Every finite set in a Hausdorff space is compact.
(b) A discrete space is compact if and only if it is finite.
(c) The space R is not compact, e.g the open covering {]−n,n[ ,n≥ 1} has no finite subcover.
(d) A closed and bounded interval [a,b] in R is compact by Heine-Borel theorem

Theorem 4.1.5. Let X be a Hausdorff space and K ⊂ X a compact set.
If x ∈ X\K there are open sets U,V in X such x ∈U,K ⊂V and U ∩V = /0.

Proof: Since X is Hausdorff, for each y ∈ K there exist disjoint open sets Uy,Vy in X such that
x ∈ Uy,y ∈ Vy. The open sets Vy cover K, and since K is compact, there is a finite number of
them Vy1 , ...,Vyn , with K ⊂ Vy1 ∪ ...∪Vyn . Then the open sets U = ∩Uy j and V = ∪Vy j give the
conclusion.�

Corollary: In a Hausdorff space, every compact set is closed.

Proof: By the above theorem we have x /∈K =⇒ x /∈K so K ⊂K, that is K = K, and K is closed.�

Proposition 4.1.6. Let X be a compact space and K ⊂ X . Then the following properties are
equivalent:

(a) K is compact.
(b) K is closed.

Proof: (a) =⇒ (b) This is the above corollary.
Conversely, if K is closed, let (Gα) be a covering of K by open sets of X . Then we have X =
∪
α

Gα ∪V , with V = X\K open; since X is compact the family {(Gα) ,V} contains a finite subcover
of X . If V is included in this subcover we can remove it and obtain a finite subcover of K, so K is
compact.�

Theorem 4.1.7. Every compact space is normal.

Proof: For normal space see Definition 2.5.7, Chapter 2. Let F,H be closed sets in the compact
space X , with F ∩H = /0. By Proposition 4.1.6 F and H are compact; applying Theorem 4.1.5 we
get, for each x ∈ F , open sets Ux,Vx in X such that x ∈Ux, H ⊂Vx and Ux∩Vx = /0. Now the open
covering (Ux) of F contains a finite subcovering F ⊂Ux1 ∪ ...∪Uxn . This gives open sets U = ∪Uxi

and V = ∩Vxi satisfying U ∩V = /0 and F ⊂U,H ⊂V .�

This proof can easily be adapted to obtain:

Proposition 4.1.8. Let X be a Hausdorff space and C,K be compact sets in X such that C∩K = /0.
Then there exist open sets U,V , with U ∩V = /0 and C ⊂U,K ⊂V .�

Theorem 4.1.9. Bolzano-Weierstrass
Let A be an infinite subset of a compact space X , then A has at least one limit point.

Proof: Suppose A has no limit point. Then for each x ∈ X there is an open set Vx with x ∈Vx, and
Vx ∩A contains at most one point. Then we have X = ∪

x∈X
Vx; the compactness of X reduces the

covering (Vx) to a finite one: X =Vx1∪ ...∪Vxn , but then A would be equal to (A∩Vx1)∪ ...∪(A∩Vxn)
and would be finite contrary to the condition A infinite.�
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4.2 Exercises

59. Let (X ,τ) be topological space and K ⊂ A⊂ X . Prove that K is compact in (X ,τ) if and only if
K is compact in (A,τA).

60. Let F,K be subsets of the Hausdorff space X , such that F is closed and K compact. Prove that
F ∩K is compact.

61. In a Hausdorff space, prove that the union of a finite family of compact sets is a compact set.
Give a simple example to show that this is not true in general for infinite families.

62. Let X be a Hausdorff space and let (Kα) be any family of compact sets in X .
(a) Prove that ∩

α
Kα is compact.

(b) If ∩
α

Kα = /0, then (Kα) contains a finite subfamily Gα1 , ...,Gαn

such that Gα1 ∩ ...∩Gαn = /0.

(c) Deduce that for every sequence (Kn) of non empty compact sets such that
K1 ⊃ K2 ⊃ ..., we have ∩

n
Kn 6= /0.

63. A Hausdorff space X is said to be regular if for any closed set F in X and any x /∈ F , there exist
open sets U,V such that x ∈U,F ⊂V and U ∩V = /0. This is an intermediate separation property
between Hausdorff property and normality.
Let K be compact in a regular space X . Prove that for every open set U such that K ⊂U , there is
an open V satisfying K ⊂V ⊂V ⊂U . [K∩X\U = /0, so apply regularity to each x ∈ K with the
closed set X\U].

64. Let (X ,τ) be a Hausdorff space. Let σ be a topology on X such that (X ,σ) is compact. Prove
that τ ⊂ σ =⇒ τ = σ [every compact set for σ is compact for τ so every closed set for σ is closed
for τ].

65. Let (In) be a sequence of compact intervals in R such that In ⊃ In+1,∀n. Prove without using
Exercise 62(c), that ∩

n
In 6= /0.

[Put In = [an,bn], the set E = {a1,a2, ...} is bounded above by b1. Then prove that SupE ∈
∩
n
[an,bn]].

66. (The Cantor set). Let X = [0,1] be the unit interval of R. Consider the sequence (En) of
subsets of X defined as follows:

E1 = X\
]

1
3
,
2
3

[
=

[
0,

1
3

]
∪
[

2
3
,1
]

E2 = E1\
]

1
9
,
2
9

[
∪
]

7
9
,
8
9

[
=

[
0,

1
9

]
∪
[

2
9
,
3
9

]
∪
[

6
9
,
7
9

]
∪
[

8
9
,1
]

and so on. We get a sequence (En) of subsets of X such that:

En is the union of 2n disjoint closed intervals In,k,k = 1,2, ...,2n, all having the same length
1
3n and

satisfying E1 ⊃ E2 ⊃ .... Now define the Cantor set by C = ∩
n

En. Prove that

(a) En is compact for every n.
(b) C is not empty and compact.
(c) C has empty interior [C does not contain open interval].
(d) C is a perfect set (see Exercise 58).
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4.3 Compact Metric Spaces

Lemma 4.3.1. Let (X ,d),be a compact metric space. For every ε > 0 there is a finite covering for
X by open balls with radius ε . In particular X is bounded.

Proof: The family of open balls {B(x,ε) ,x ∈ X} is an open covering for X which reduces to a
finite one by compactness, thus we have X = B(x1,ε)∪ ...∪B(xn,ε), for some x1, ...,xn. Putting
M = Max

i, j
d (xi,x j) we get δ (X)≤M+2ε < ∞.�

Lemma 4.3.2. Let (Vα) be an open covering of a compact metric space (X ,d). There exists
λ > 0 such that ∀x ∈ X ∃α : B(x,λ )⊂Vα . We call λ the Lebesgue number associated to the open
covering (Vα).

Proof: Since X = ∪
α

Vα , we have for each x ∈ X there is α , and there is rx > 0 such that

B(x,rx)⊂Vα . From the open covering
{

B
(

x,
rx

2

)
,x ∈ X

}
we can extract a finite subcovering, say,{

B
(

xi,
rxi

2

)
,1≤ i≤ n

}
. Define λ by

λ = Min
{rxi

2
,1≤ i≤ n

}
. We prove that such λ works: indeed if x ∈ X there is i with x ∈

B
(

xi,
rxi

2

)
, so that for z ∈ B(x,λ ) we will have

d (z,xi)≤ d (z,x)+d (x,xi)≤ λ +
rxi

2
≤ rxi .

Consequently, B(x,λ )⊂ B(xi,rxi)⊂Vα , for some α .�

Theorem 4.3.3. Every compact metric space (X ,d) is separable. In particular such space is second
countable.

Proof: From Lemma 4.2.1 for each n the space X has a finite covering by open balls with radius
1
n

. Let Cn be the set of centers of these balls; then the set D = ∪
n
Cn is countable and dense in X ;

indeed if B(x,α) is any open ball, there is n≥ 1 such that
1
n
≤ α , and from the definition of Cn,

there is xmn ∈Cn with d (x,xmn)<
1
n
≤ α , so that xmn ∈ B(x,α), consequently, X is separable. By

Theorem 3.7.3 Chapter 3, X is second countable.�

Theorem 4.3.4. Let (X ,d) be a metric space. The following are equivalent:
(a) X is compact.
(b) Every infinite subset A⊂ X has at least one limit point.

[Note that (a) =⇒ (b) is true in every compact space by Theorem 4.1.9.]

Corollary: Let (X ,d) be a metric space. The following are equivalent:
(a) X is compact.
(b) Every infinite sequence in X contains a convergent subsequence.

Definition 4.3.5. A metric space (X ,d) is totally bounded, or precompact, if for every ε > 0, X has
a finite covering by open balls with radius ε .

Theorem 4.3.6. Let (X ,d) be a metric space. The following are equivalent:
(a) X is compact.
(b) X is complete and totally bounded.

Proof: If X is compact then it is totally bounded, by Lemma 4.3.1. On the other hand, let (xn)
be a Cauchy sequence in X , then from the corollary of Theorem 4.3.4, (xn) contains a convergent
subsequence (xnk), say with limit x. Then we have d (xn,x) ≤ d (xn,xnk)+d (xnk ,x) −→ 0,k −→
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∞,n −→ ∞, so X is complete. To prove the converse we also use the above corollary, that is
we show that every infinite sequence (xn) in X contains a convergent subsequence. Since X

is totally bounded, for each k ≥ 1, there is a covering Bk for X with open balls of radius
1
k

.

Consequently, there is B1 ∈B1 such that B1∩{xn,n≥ 1} is infinite. Likewise there is B2 ∈B2
such that B2∩B1∩{xn,n≥ 1} is infinite, and so on. We get a sequence (Bn) of open balls such
that for every p, B1∩B2∩ ...∩Bp∩{xn,n≥ 1} is infinite. At this stage define the subsequence
(xnk)⊂ (xn) by:
choose xn1 in B1∩{xn,n≥ 1} , since B1∩B2∩{xn,n≥ 1} is infinite, there is n2 > n1 with xn2 ∈
B1∩B2, since B1∩B2∩B3∩{xn,n≥ 1} is infinite, there is n3 > n2 with xn3 ∈ B1∩B2∩B3.
In this way we get a subsequence (xnk) of (xn) such that 1≤ n1 < n2 < n3 < ... and xnk ∈ B1∩B2∩
...∩Bk for every k.
It is clear that for ni ≥ n j, we have xni ,xn j ∈ B j and then

d
(
xni ,xn j

)
<

2
j
−→ 0,ni,n j −→ ∞, so (xnk) is Cauchy. We deduce that xnk converges since X is

complete.�

4.4 Exercises

67. Let (X ,d) be a metric space and let (xn) be a convergent sequence in X with limit x. Prove that
the set E = {xn,n≥ 1}∪{x} is compact.

68. Prove that in a totally bounded space every infinite sequence contains a Cauchy subsequence.

69. We say that a topological space is countably compact if every countable open covering contains
a finite subcovering.
(a) Prove that X is countably compact if and only if every infinite sequence has a limit point.
(b) Prove that in a metric space the compactness is equivalent to the countable compactness.

4.5 Continuous Functions on Compact Spaces

Theorem 4.5.1. Let f : X −→Y be a continuous function from a compact space X into a Hausdorff
space Y . Then we have:

(a) The image f (X) of X is compact.
(b) The function f is closed, that is the image by f of a closed set is closed.
(c) If f is a bijection then f is an homeomorphism from X onto Y .

Proof: (a) Let (Uα) be an open covering of f (X). Since f is continuous, the family
(

f−1 (Uα)
)

is an open covering of X which can be reduced to a finite one say f−1 (Uα1) , ..., f−1 (Uαn) by the
compactness of X ; then it is clear that Uα1 , ...,Uαn is a finite covering of f (X) .
(b) Let A⊂ X be closed then A is compact (Proposition 4.1.6) and f (A) is compact by (a); since Y
is Hausdorff f (A) is closed by corollary of Theorem 4.1.5.

(c) If f is bijective, let A⊂ X be closed then
(

f−1
)−1

(A) = f (A) is closed in Y by (b), so f−1 is
continuous.�

Theorem 4.5.2. Every continuous function f : X −→ R from a compact metric space into R is
bounded an achieves its bounds.

Proof: By part (a) of the above Theorem f (X) is a compact subset of R, and so, by Heine-Borel
Theorem, f (X) is a closed and bounded interval. Put M = sup

x
f (x), m = inf

x
f (x); we prove
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that M is attained, that is, there is a ∈ X with f (a) = M; the proof for m is similar. The nature
of M gives a sequence (xn) ⊂ X such that lim

n
f (xn) = M. From the corollary of Theorm 4.3.4,

we get a convergent subsequence (xnk) ⊂ (xn) with lim
n

xnk = a, and the continuity of f implies

lim
k

f (xnk) = f (a) so f (a) = M since lim
n

f (xn) = M.�

Theorem 4.5.3. Every continuous function f : X −→ Y from a compact metric space (X ,d) into a
metric space (Y,δ ) is uniformly continuous.

Proof: We have to show that:
∀ε > 0,∃λ = λ (ε)> 0 : d (x,x′)< λ =⇒ δ ( f (x) , f (x′))< ε.

Let
{

B
(

y,
ε

2

)
,y ∈ Y

}
be the open covering of Y by the open balls B

(
y,

ε

2

)
. Let λ = λ (ε) be the

Lebesgue number associated to the open covering{
f−1
(

B
(

y,
ε

2

))
,y ∈ Y

}
of X (see Lemma 4.3.2 for the definition of the Lebesgue number). Then,

by Lemma 4.3.2, every open ball B(x,λ ) of X is contained in at least one set f−1
(

B
(

y,
ε

2

))
.

Consequently, if d (x,x′)< λ we will have f (x) , f (x′) ∈ B
(

y,
ε

2

)
for some y ∈ Y ; this yields

δ ( f (x) , f (x′))≤ δ ( f (x) ,y)+δ (y, f (x′))<
ε

2
+

ε

2
= ε .�

Theorem 4.5.4. Let X be a compact topological space and let ( fn) be a sequence of continuous
functions from X into a metric space (Y,d) satisfying the following condition:
(Equicontinuity):

For each x ∈ X and each ε > 0 there is an open set U with
x ∈U and d ( fn (x) , fn (y))< ε,∀y ∈U,∀n≥ 1

Suppose that fn converges pointwise to some function f : X −→ Y , then f is continuous and the
convergence of fn to f is uniform on X .

Proof: Fix ε > 0. By the equicontinuity, for each x ∈ X there is an open set Ux with x ∈Ux and
d ( fn (x) , fn (y))<

ε

3
,∀y ∈Ux,∀n≥ 1. Since fn (x)−→ f (x) and fn (y)−→ f (y) as n−→ ∞, we

deduce that d ( f (x) , f (y))<
ε

3
,∀y∈Ux. This gives the continuity of f . Next since X is compact the

open covering {Ux,x ∈ X} can be reduced to a finite one, say,
{

Ux1 , ...,Uxn0

}
. Since fn (x)−→ f (x)

on X , there is N = Nε ≥ 1 such that ∀n≥ N,d ( fn (xi) , f (xi))<
ε

3
, i = 1, ...,n0. On the other hand

∀y ∈ X there is 1≤ i≤ n0 such that y ∈Uxi , then we have
∀n≥ N,d ( fn (y) , f (y))≤

d ( fn (y) , fn (xi))+d ( fn (xi) , f (xi))+d ( f (xi) , f (y))< ε , this proves the uniform convergence
of fn to f .�

4.6 Exercises

70. Let X be a compact topological space and let ( fn) be a sequence of continuous functions from
X into R such that fn ≤ fn+1 on X ,∀n ≥ 1. Suppose there is a continuous g : X −→ R such that
lim

n
fn (x) = g(x), ∀x ∈ X .

Prove that the convergence of fn to g, is uniform. [put ϕn = g− fn, then ϕn ≥ ϕn+1 on X ,∀n≥ 1
and ϕn (x) −→ 0, ∀x ∈ X . Prove that for each ε > 0, we have X = ∪

n
{x : ϕn (x)< ε}. Since X is

compact, it is concluded that there is N = Nε ≥ 1 such that ∀n≥ N, X = {x : ϕn (x)< ε}.]
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71. Let (X ,d) be a compact metric space and let f : X −→X be a function satisfying d ( f (x) , f (y))=
d (x,y) ,∀x,y. Prove that f is an homeomorphism and that d

(
f−1 (x) , f−1 (y)

)
= d (x,y) ,∀x,y. [To

prove that f is onto, suppose there is z /∈ f (X), this gives d
(

f n−1 (z) , f n (z)
)
= d (z, f (z)) ,∀n≥ 1.

Since X is compact metric space so the sequence f n (z) contains a convergent subsequence (corollary
of Theorem 4.3.4.) and we get d (z, f (z)) = 0, whence a contradiction with the fact z /∈ f (X)].

72. Let X be a topological space. We say that a function f : X −→ X is a local homeomorphism at
x ∈ X if there is an open set U with x ∈U such that f is an homeomorphism from U onto f (U). f
is said to be a local homeomorphism on X if it is a local homeomorphism at every x ∈ X .
(a) Prove that if X is compact and f : X −→ X is a local homeomorphism, then for every x ∈ X the
fibre f−1 (x) is finite.
(b) Let (X ,d) be a compact metric space and let f : X −→ X be a local homeomorphism, prove
that there is α > 0 such that:
∀x,y ∈ X , f (x) = f (y) =⇒ d (x,y)> α

[use contradiction reasoning in both (a) ,(b)].

73. Let ϕ : X −→ X be a continuous surjection of a compact metric space (X ,d). We say that ϕ is
expansive with constant α > 0 if:
∀x 6= y ∃n = n(x,y)≥ 1 : d (ϕn (x) ,ϕn (y))> α.

If ϕ is expansive, prove that for every x ∈ X the fibre f−1 (x) is finite.

74. Let X be a compact space and let x,y ∈ X . Suppose that f (x) = f (y) for every bounded
continuous function f : X −→ R. Prove that x = y. [use Urysohn Lemma 2.5.10 Chapter 2].

4.7 Product of Compact Spaces

Let {Xα ,τα ,α ∈ A} be a family of topological spaces and form the cartesian product X = Π
α

Xα

of the sets Xα . Let πα : X −→ Xα be the α−coordinate projection. We equip X = Π
α

Xα with the
product topology ⊗

α

τα , making all the projections πα continuous. Let us recall (Remark 2.3.14.

Chapter 2) that the open elementary sets [Bα1 ,Bα2 , ...,Bαn ] =
n
∩
1

π−1
αi

(Bαi) form a base of ⊗
α

τα .

Let X be a Hausdorff space and let F be a subbase for the topology of X . Suppose that any
covering of X by open sets in F contains a finite subcovering. Then X is compact.
Theorem 4.7.2. (Tychonoff)

The product
(

Π
α

Xα ,⊗
α

τα

)
of every family {Xα ,τα ,α ∈ I} of compact spaces is compact.

Proof: Note first that
(

Π
α

Xα ,⊗
α

τα

)
is Hausdorff (Theorem 2.5.5. (b) Chapter 2). On the other

hand, Alexander Theorem allows one to consider open coverings for Π
α

Xα by open sets in the family

F =
{

π−1
α (Uα) ,Uα ∈ τα ,α ∈ I

}
, which is a subbase for the product topology ⊗

α

τα . So, let U be

an open covering for Π
α

Xα by open sets in F and for each α put Uα =
{

U ∈ τα : π−1
α (U) ∈U

}
;

then there is α ∈ I such that Uα constitutes an open covering for Xα (why?). Since Xα is compact
spacce so there is {U1, ...,Un} ⊂U with Xα =

n
∪
1
Ui, then it is clear that

{
π−1

α (U1) , ...,π
−1
α (Un)

}
is a finite subcovering of U for Π

α
Xα .�

Theorem 4.7.3. (Heine-Borel)
A subset K in Rn is compact if and only if it is closed and bounded.
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Proof: If K is compact, by Lemma 4.3.1, K is bounded and K is closed by the corollary of Theorem

4.1.5. Conversely, suppose K is closed and bounded. We have K bounded =⇒ K ⊂
n
Π
1
[ai,bi] = A;

since K is closed in Rn, it is closed in A which is compact, so K is compact by Proposition 4.1.6.�

4.8 Exercises

75. Prove that the product set [0,1]N is compact.

76. Prove that in the space Rn every bounded infinite sequence contains a convergent subsequence.

4.9 Locally Compact Spaces

Definition 4.9.1. We say that a subset A of a topological space X is relatively compact if the closure
A is compact.

Definition 4.9.2. A topological space X is locally compact if each of its points has an open
neighborhood relatively compact.

Examples 4.9.3. (a) Every compact space is locally compact.
(b) Rn is locally compact.
(b) Every infinite discrete space is locally compact but not compact.

Theorem 4.9.4. Let X be a locally compact space. Then for every x ∈ X and every open neighbor-
hood U of x, there is an open set V with V compact and such that x ∈V ⊂V ⊂U .

Proof: Let W be a relatively compact open neighborhood of x and put G =U ∩W ; then G is an
open neighborhood of x contained in U and satisfying G⊂W ; since W is compact and G closed,
we deduce that G is compact. Consider the boundary of G that is Γ = G∩X\G, we have Γ⊂ G
and Γ closed, so Γ is compact. If Γ = /0 we have G = G∪Γ = G, and the open set V = G works. If
Γ 6= /0 then for each y ∈ Γ we have y 6= x, and since X is Hausdorff, there are open neighborhoods
Vy,Hy of x and y respectively such that Vy∩Hy = /0. We can assume Vy ⊂ G, otherwise we take
Vy∩G instead of Vy. Now the open covering {Hy,y ∈ Γ} of Γ can be reduced to a finite one by the
compactness of Γ, say, Γ⊂Hy1 ∪ ...∪Hyn = H. Put V =Vy1 ∩ ...∩Vyn , then V ⊂G and V ⊂G, so V
is compact. On the other hand V ∩H = /0, this yields V ⊂ X\H and since X\H is closed, V ⊂ X\H.
We deduce that V ⊂ G∩X\H ⊂ G∩X\Γ = G, where the equality comes from this one G = G∪Γ,
so the open set V =Vy1 ∩ ...∩Vyn gives the conclusion.�

If we take in the above theorem a compact set in X instead of a point x, we get:

Theorem 4.9.5. Let X be a locally compact space, and K ⊂ X compact. Then, if U is open with
K ⊂U , there is an open set V such that

V is compact and K ⊂V ⊂V ⊂U .

Proof: By Theorem 4.9.4., for each x ∈ K there is an open set Vx with V x compact and such that
x ∈Vx ⊂V x ⊂U . As K is compact the open covering {Vx,x ∈ K} of K can be reduced to a finite
one: K ⊂ Vx1 ∪ ...∪Vxn = V ⊂U . The open set V = Vx1 ∪ ...∪Vxn satisfies the conclusion since
V =Vx1 ∪ ...∪Vxn is compact.�

Corollary 1. A locally compact space has a base of relatively compact open sets.

Proof: Let B be the family of all relatively compact open sets of X . By Theorem 4.9.4, for every
open set U and every x ∈U , there is V ∈B such that x ∈V ⊂U , this proves that B is a base.�
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Corollary 2. Let X be a locally compact space with a countable base. Then X has a countable base
of relatively compact open sets.

Proof: Let U = {Un,n≥ 1} a countable base for X . By Theorem 4.9.4, for each Un and each y∈Vy

there is an open set Vy with Vy compact and y ∈Vy ⊂Vy ⊂Un. But Un considered as a subspace of
X , has itself a countable base, so the covering {Vy,y ∈Un} of Un contains a countable subcovering
{Vn,m,m≥ 1}. Then it is clear that the family of relatively compact open sets {Vn,m,n≥ 1,m≥ 1}
is a countable base for X .�

The existence of non constant continuous functions on a topological space is not a trivial
problem in general. For normal spaces, in particular for compact spaces, examples of such
functions are given by Urysohn lemma (Theorem 2.5.10 Chapter 2). We give below an adaptation
of Urysohn lemma to a locally compact space (for an example of a locally compact space which is
not normal‘. Let us start with the following preliminary:

Proposition 4.9.6. Let C be a closed set in a topological space X and f : C −→ R a continuous
function on C such that f (x) = 0 for x ∈ ∂C. Define F : X −→ R by

F (x) = f (x) ,x ∈C,

F (x) = 0,x ∈ X\C.

Then F is a continuous extension of f to X .

Theorem 4.9.7. Let X be a locally compact space, and K ⊂ X compact, U open with K ⊂U . There
is a continuous function F : X −→ R such that:

0≤ F (x)≤ 1,∀x ∈ X F (x) = 1,∀x ∈ K F (x) = 0,∀x ∈ X\U.

Proof: By Theorem 4.9.5. there is an open set V such that V is compact and K ⊂V ⊂V ⊂U . Put
V =C and Γ = ∂C. Since C is compact it is normal; on the other hand, Γ and K are disjoint closed
subsets of C, so by Urysohn lemma there is a continuous function f : C −→ [0,1] on C such that

f (x) = 1,∀x ∈ K and f (x) = 0,∀x ∈ Γ.
Let us extend f to the function F : X −→ [0,1] given by F (x) = f (x) ,x∈C and F (x) = 0,x∈ X\C.
The function F : X −→ [0,1] so defined meets the conclusion by Proposition 4.9.6.�

Remark 4.9.8. The support of the function F is the closed set
supp(F) = {x ∈ X : F (x) 6= 0}. The above construction shows that supp(F) is compact and satisfies
supp(F)⊂C ⊂U .

Theorem 4.9.9. Every locally compact space is a Baire space.

Proof: From the definition of a Baire space, we have to show that for every sequence (Dn) of
dense open sets in X , the intersection ∩

n
Dn is dense. Let U be any non empty open set. We have

U ∩D1 6= /0, since D1 is dense; by Theorem 4.9.4, there a relatively compact open set V1 such
that V1 ⊂U ∩D1. Similarly, using V1 and D2, there is a relatively compact open set V2 such that
V2 ⊂V1∩D2. Continuing the process, we get a sequence (Vn) of relatively compact open sets with
Vn ⊂Vn−1∩Dn,n≥ 1 and V0 =U . Since the Vn are closed in the compact set V1, we have ∩

n
Vn 6= /0

(why?). Since ∩
n
Vn ⊂U ∩∩

n
Dn 6= /0.�

4.10 Exercises

77. Let X be a locally compact space and K ⊂ X compact. Prove that there exist an open set U ,
with U compact and K ⊂U . [for each x ∈ K there is a relatively compact open set Ux containing x.
Then consider a finite covering of K by the open sets Ux].
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78. Let U be an open set in a locally compact space. Prove that the subspace U endowed with the
trace topology is locally compact.

79. Let X be a locally compact space and K ⊂ X compact. Let U1,U2, ...,Un be open sets such
that K ⊂U1∪U2∪ ...∪Un. Prove that for each i = 1,2, ...,n, there is an open set Wi satisfying: Wi

compact, Wi ⊂Ui, and K ⊂W1∪W2∪ ...∪Wn. [use Theorem 4.9.4].

80. Consider the data of Exercise 79. Prove that there exist n continuous functions f1, f2, ..., fn :
X −→ [0,1] such that:

supp( fi)⊂Ui,1≤ i≤ n and f1 (x)+ f2 (x)+ ...+ fn (x) = 1,∀x ∈ K.
Such family of functions { f1, f2, ..., fn} is called partition of unity.
[use Theorem 4.9.7 and Remark 4.9.8: for each i = 1,2, ...,n, there is a continuous function
gi : X −→ [0,1] with gi = 1 on Wi and supp(gi)⊂Ui, then define f1 = g1, f2 = (1−g1)g2, ..., fn =
(1−g1)(1−g2) ...(1−gn−1)gn].

81. Let X ,Y be locally compact spaces. Prove that the product X ×Y endowed with the product
topology is locally compact.

4.11 Compactification

Definition 4.11.1. Let X be a topological space. A compactification of X is a pair
(

X̃ ,ϕ
)

, where X̃

is a compact space and ϕ is an homeomorphism from X onto a dense subspace of X̃ .

Theorem 4.11.2. (Alexandroff compactification)
(1) (Existence) Every locally compact space has a compactification

(
X̃ ,ϕ

)
such that X̃\X is a

singleton.
(2) (Uniqueness) If

(
X̃ ,ϕ

)
,
(

Ỹ ,ψ
)

are two compactifications of X , there is a homeomorphism f

from X̃ onto Ỹ such that the restriction of f to X is the identity map.
Usually the point X̃\X is denoted by ∞, so we have X̃ = X ∪∞.

Example 4.11.3. Let Sn be the unit sphere in Rn+1 :
Sn =

{
(x1,x2, ...,xn+1) ∈ Rn+1 : x2

1 + x2
2...+ x2

n+1 = 1
}
.

Consider the projection p : Sn\(0,0, ...,1)−→ Rn given by:

p(x1,x2, ...,xn+1) =

(
x1

1− xn+1
,

x2

1− xn+1
, ...,

xn

1− xn+1

)
.

A straightforward checking shows that:
p is an homeomorphism
Sn is compact (closed and bounded in Rn+1)
Sn\(0,0, ...,1) is dense in Sn

Then by Definition 4.11.1 and the uniqueness part of the above theorem, we deduce that Sn is the
Alexandroff compactification of Rn.
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5. BANACH SPACES

5.1 Normed spaces

In what follows X is a vector space on the scalar field R or C, whose nul vector will be denoted
by 0. The notion of norm allows to define on X a metrizable topology compatible with the vector
space structure.

Definition 5.1.1. A norm on the vector space X is a function x−→ ‖x‖ from X into R satifying the
conditions:

(a) ‖x‖ ≥ 0,∀x and ‖x‖= 0 ⇐⇒ x = 0.
(b) ‖λ · x‖= |λ | · ‖x‖ ,∀x ∈ X and every scalar λ .
(c) ‖x+ y‖ ≤ ‖x‖+‖y‖ ,∀x,y ∈ X (subadditivity property).

A vector space X equipped with a norm ‖·‖ is called normed space and will be denoted by (X ,‖·‖).

Let us point out right now that any norm makes the set X a metric space:

Proposition 5.1.2. Let (X ,‖·‖) be a normed space. Define the function
d : X×X −→ R by d (x,y) = ‖x− y‖ then:

(a) d is a metric on X
(b) The function x−→ ‖x‖ is uniformly continuous on the metric space (X ,d).

Proof: (a) is a consequence of properties (a) ,(b) ,(c) of a norm.
(b) By the subadditivity property of the norm, we have ∀x,y ∈ X :
‖x‖= ‖y+ x− y‖ ≤ ‖y‖+‖x− y‖
‖y‖= ‖x+ y− x‖ ≤ ‖x‖+‖y− x‖

so we deduce that |‖x‖−‖y‖| ≤ ‖x− y‖ = d (x,y), and the uniform continuity of the function
x−→ ‖x‖ follows.�

Example 5.1.3. (1) For any real 1≤ p < ∞, define ‖x‖p on Rn by:

‖x‖p =

(
n
∑

i=1
|xi|p

)1
p , x = (x1,x2, ...,xn) ∈ Rn.
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Then ‖x‖p is a norm on Rn. It is immediate for p = 1. If p > 1 let q > 1, be the conjugate of p,

that is q satisfies the relation
1
p
+

1
q
= 1.

Then we have ∀u,v≥ 0, u · v≤ up

p
+

vq

q
and this relation gives the so called Holder inequality:

x,y ∈ Rn,
n
∑

i=1
|xi · yi| ≤ ‖x‖p · ‖y‖q ,

which in turn gives Minkowski inequality:

x,y ∈ Rn, ‖x+ y‖p ≤ ‖x‖p +‖y‖p ,

that is, the subadditivity of x−→ ‖x‖p.
These are part of general convex inequalities.

For p = 2 we get the euclidean norm of Rn ‖x‖2 =

(
n
∑

i=1
|xi|2

)1
2 .

On the other hand, for p = ∞, we define ‖x‖
∞

by ‖x‖
∞
= Max

1≤i≤n
|xi|. It not difficult to check that

‖x‖
∞

is a norm on Rn satisfying:

1√
n
‖x‖

∞
≤ 1√

n
‖x‖2 ≤ ‖x‖∞

,

‖x‖
∞
≤ ‖x‖1 ≤ n‖x‖

∞
,

(2) lp spaces, 1≤ p < ∞.

Consider the set of real sequences given by lp =

{
(xn) ∈ RN : ∑

n
|xn|p < ∞

}
.

If x = (xn) ,y = (yn) are in lp and λ ∈ R, put x+ y = (xn + yn) and λx = (λxn) .
Then by the convex inequality, (u+ v)p ≤ 2p−1 (up + vp), valid for u,v ≥ 0, we deduce that the
above operations make lp a vector space with nul vector 0 = (0,0...) .

For x = (xn) ∈ lp we put ‖x‖p =

(
∑
n
|xn|p

)1
p . Then it is not difficult to prove that ‖x‖p is a norm

on lp; to see the subadditivity property, consider the inequality ‖x+ y‖p ≤ ‖x‖p +‖y‖p valid for
x,y ∈ Rn and for all n≥ 1, (example (1)), and then make n goes to ∞.

(3) l∞ space:

Let us define the space l∞ by the following :

l∞ =

{
(xn) ∈ RN : Sup

n
|xn|< ∞

}
, that is the set of bounded real sequences. If x = (xn) ,y = (yn)

are in l∞ and λ ∈ R, put x+ y = (xn + yn), λx = (λxn), and ‖x‖
∞
= Sup

n
|xn|. It is straightforward

that this data makes l∞ a normed space with lp ⊂ l∞, for 1≤ p < ∞.

(4) Let X be a topological space and consider the set Cb (X) of all continuous and bounded
functions f : X −→ R. If f ,g ∈Cb (x) and λ ∈ R, define f +g, and λ f in the usual way. Next put
‖ f‖

∞
= Sup

x∈X
| f (x)|, then Cb (x) is a vector space and ‖ f‖

∞
is a norm on Cb (x). Let us point out the

following simple fact:
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If fn, f ∈Cb (X), then we have ‖ fn− f‖
∞
−→ 0,n−→ 0 if and only if fn converges uniformly to f

on X .

(5) Let C [0,1] be the space of all continuous functions f : [0,1]−→R, and define ‖ f‖1 =
∫ 1

0 f (x)dx
for f ∈C [0,1] (Riemann integral). Then ‖ f‖1 is a norm on C [0,1] and we have ‖ f‖1 ≤ ‖ f‖

∞
.

Notation: Let E,F be subsets of a vector space X and Λ ⊂ R or C, in the sequel we use the
following notations:

E +F = {a+b : a ∈ E,b ∈ F}
Λ ·E = {λa : a ∈ E,λ ∈ Λ}

Definition 5.1.4. A subset E of a vector space X is said to be convex if for every x,y ∈ E and
0≤ λ ≤ 1, λx+(1−λ )y∈ E; in other words, E is convex if λE+(1−λ )E ⊂ E for all 0≤ λ ≤ 1.

Example 5.1.5. (a) Every vector subspace of X is convex.
(b) If E is convex then a+E is convex for every a ∈ X .

Proposition 5.1.6. Let (X ,‖·‖) be a normed space. For ε > 0 define the open ball centred at 0 and
with radius ε by Bε = {x ∈ X : ‖x‖< ε}. Then we have:

(a) Bε is a convex set ∀ε > 0.
(b) Bε = {x ∈ X : ‖x‖ ≤ ε}, closed ball centred at 0 and with radius ε .
(c) Bε = εB1.
(d) The family {Bε ,ε > 0} is a base of convex open neighborhoods of vector 0.

Proof: (a) Let x,y ∈ Bε and 0≤ λ ≤ 1, we have
‖λx+(1−λ )y‖ ≤ ‖λx‖+‖(1−λ )y‖= λ ‖x‖+(1−λ )‖y‖

< λε +(1−λ )ε ⊂
= ε

so λx+(1−λ )y ∈ Bε .
(b) It is clear that {x ∈ X : ‖x‖ ≤ ε} is a closed set and Bε ⊂ {x ∈ X : ‖x‖ ≤ ε}.

Since {x ∈ X : ‖x‖ ≤ ε} = Bε ∪ Sε , with Sε = {x ∈ X : ‖x‖= ε}, it is enough to prove Sε ⊂ Bε .
Let x ∈ Sε and let δ > 0; consider the open ball B(x,δ ) centred at x and with radius δ , then one
can easily check that the vector y = αx, with α ∈

](
1−δε−1

)+
,1
[
, is in B(x,δ )∩Bε , where(

1−δε−1
)+

= Sup
(
1−δε−1,0

)
. Consequently, every open neighborhood of x cuts Bε , this

proves that x ∈ Bε .
(c) comes from the following equivalence:
x ∈ Bε ⇐⇒ ε−1x ∈ B1 ⇐⇒ x ∈ εB1.
(d) Let V be any open neighborhood of 0 for the topology induced on X by the norm (Propo-

sition 5.1.2. ); so there is ε > 0 such that Bε ⊂V , this shows that {Bε ,ε > 0} is a base of convex
open neighborhoods of vector 0 (see Definition 2.1.8, Chapter 2, for local base).�
Corollary: In a normed space, every point has a base of convex open neighborhoods.
Proof: Let B(x,ε) be the open ball centered at x with radius ε . We have B(x,ε) = x+Bε and
so B(x,ε) is convex (Example 5.1.5.). Consequently, {B(x,ε) ,ε > 0} is base of convex open
neighborhoods for x.�
Proposition 5.1.7. Let (X ,‖·‖) be a normed space. Let M be a vector subspace of X and suppose M
closed. Consider the quotient X/M of X with respect to the equivalence relation xRy ⇐⇒ x−y∈M.
If u is in X/M,
define: ‖u‖= inf{‖x‖ ,x ∈ u}
then ‖u‖ is a norm on X/M, which will be denoted by ‖·‖Q.

Proof: First let us point out that X/M is a vector space with operations:
u,v ∈ X/M, u+ v = x+ y+M, if u = x+M,v = y+M
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λu = λx+M, for λ scalar.
It is easy to check that such operations are well defined, that is, depending on u,v and not on their
representatives x,y. Note that the nul vector of X/M is the class M of the vector 0 of X . Now let us
prove that ‖u‖= inf{‖x‖ ,x ∈ u} is a norm:

(1) If ‖u‖= 0, there is a sequence xn ∈ u such that ‖xn‖ −→ 0. Let a ∈ X with u = a+M, then
there is tn ∈M such that xn = a+ tn; then ‖a+ tn‖ −→ 0; since M is closed we deduce that −a ∈M
and then u = M, the nul vector of X/M.

(2) Let λ be a scalar and u ∈ X/M. Then ‖λu‖= inf{‖t‖ , t ∈ λu}= inf{‖λx‖ ,λx ∈ λu}=
inf{|λ |‖x‖ ,λx ∈ λu}= |λ | inf{‖x‖ ,λx ∈ λu}
= |λ | inf{‖x‖ ,x ∈ u}= |λ |‖u‖.

(3) Let u,v ∈ X/M, then by the definition of u+ v we have:
‖u+ v‖= inf{‖x+ y‖ ,x ∈ u,y ∈ v} ≤ inf{‖x‖+‖y‖ ,x ∈ u,y ∈ v}
≤ inf{‖x‖ ,x ∈ u}+ inf{‖y‖ ,y ∈ v} .�

Theorem 5.1.8. Let (X ,‖·‖) be a normed space and M a closed vector subspace of X . Consider the
quotient X/M of Proposition 5.1.7. and the canonical mapping p : X −→ X/M. Then we have:
The canonical mapping p : X −→ X/M is open from (X ,‖·‖) onto (X/M,‖·‖Q).

Proof: Let ε > 0 and consider the open balls:

Bε = {x ∈ X : ‖x‖< ε} .⊂ X ,‖·‖ and Gε =
{

u ∈ X/M : ‖u‖Q < ε

}
.

First we prove that p(Bε) = Gε ; let x ∈ Bε and put u = p(x), then ‖u‖Q ≤ ‖x‖, from the defintion
of ‖u‖Q (Proposition 5.1.7), so ‖u‖Q < ε , that is u ∈ Gε , and so p(Bε)⊂ Gε . On the other hand,
let u ∈ Gε ; since ‖u‖Q < ε , there is x ∈ u such that ‖x‖< ε which gives x ∈ Bε and p(x) = u, that
is Gε ⊂ p(Bε). Now consider an open set V of the nul vector 0 in (X ,‖·‖), we have to prove that
p(V ) is an open set of the nul vector M in X/M,‖·‖Q. Since V is open there is ε > 0 such that
Bε ⊂V , then p(Bε) = Gε ⊂ p(V ), we deduce that p(V ) is an open set containing the nul vector M
in X/M,‖·‖Q. In general, if x ∈ X and if U be an open neighborhood of x in (X ,‖·‖), there is an
open set V of the nul vector 0 with U = x+V (see lemma below); by the additivity of p we get
p(U) = p(x)+ p(V ); since p(V ) is an open set of the nul vector M in (X/M,‖·‖Q) we deduce
that p(U) is an open neighborhood of p(x).�

Lemma Let E,‖·‖ be a normed space. Then the function ϕt : E −→ E, give by ϕt (x) = x+ t, with
t fixed in E, is an homeomorphism of E, with inverse ϕ

−1
t = ϕ−t .

Proof: Straightforward.�

Proposition 5.1.9. Let X ,Y be a normed spaces on the same field. For (x,y) ∈ X×Y , the formula
|||(x,y)|||= ||x||+ ||y|| defines a norm on X×Y whose induced topology coincides with the product
topology on X×Y .

Proof: The fact that ||(x,y)|| is a norm is immediate. So we prove the second part of the propo-
sition. Let (s, t) ∈ X ×Y , and let Vε be the open ball centered at (s, t) with radius ε that is:
Vε = {(x,y) ∈ X×Y : |||(x,y)− (s, t)|||< ε}= {(x,y) ∈ X×Y : ||x− s||+ ||y− t||< ε}. It is clear

that
{

x ∈ X : ||x− s||< ε

2

}
×
{

y ∈ Y : ||y− t||< ε

2

}
⊂Vε , and the left side is an open set for the

product topology containing (s, t), so Vε is an open for the product topology. Conversely, let W
be an open neighborhood of (s, t) for the product topology of the form W = {x ∈ X : ||x− s||< α}×
{y ∈ Y : ||y− t||< β};putting γ =Min(α,β ) we get Vγ = {(x,y) ∈ X×Y : ||x− s||+ ||y− t||< γ}⊂
W , and since Vγ is open for the norm topology and contains (s, t), we deduce that W is neighborhood
of (s, t) for the norm topology.�
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Proposition 5.1.10. Let (X ,‖·‖) be a normed space on the field K = R or C. Then the norm
topology on X is compatible with the algebraic vector structure of X , which means that the
functions:

(x,y)−→ x+ y from X×X into X
(λ ,x)−→ λx from K×X into X

are continuous with the product topologies on X×X and K×X .

Proof: Let x,y ∈ X and λ ∈ K. Let us consider sequences (xn) ,(yn) ⊂ X , (λn) ⊂ K such that
xn −→ x,yn −→ y and λn −→ λ as n−→ ∞. Then we have:
‖(xn + yn)− (x+ y)‖ ≤ ‖xn− x‖+‖yn− y‖ −→ 0,n−→ ∞

‖λnxn−λx‖= ‖λn (xn− x)+(λn−λ )x‖
≤ |λn|‖xn− x‖+ |λn−λ |‖x‖ −→ 0,n−→ ∞.�

Corollary 1: Let (X ,‖·‖) be a normed space. Fix an x0 ∈ X and a scalar λ0 6= 0, then the functions
x−→ x+ x0 and x−→ λ0x are homeomorphisms of X .

Corollary 2: In a normed space (X ,‖·‖), the neighborhoods of a vector x are of the form x+V ,
where V is a neighborhoods of 0.

Proofs are left as exercises to the reader.�

Definition 5.1.11. Let (xn) be an infinite sequence in a normed space (X ,‖·‖), and put sn =
x1 + x2 + ...+ xn.

(a) We say that the series sn converges to s ∈ X if Lim
n
‖sn− s‖= 0.

We denote s = ∑
n

xn.

(b) We say that the series sn converges absolutely if ∑
n
‖xn‖< ∞.

The relation between these two convergence types is the best one when the normed space X is
complete according to the following definition:

Definition 5.1.12. A Banach space is a normed space which is complete with respect to the metric
induced by the norm. (see Proposition 5.1.2. for the metric induced by a norm).

Proposition 5.1.13. A normed space (X ,‖·‖) is a Banach space if and only if every absolutely
convergent series is convergent.

Proof: Suppose that X is a Banach space and let (xn) be an infinite sequence in X with ∑
n
‖xn‖< ∞,

and sn = x1 + x2 + ...+ xn; we prove that (sn) is Cauchy. Indeed we have for m ≥ n ‖sm− sn‖ =∥∥∥∥ m
∑

n+1
xk

∥∥∥∥≤ m
∑

n+1
‖xk‖ ≤

∞

∑
n+1
‖xk‖ −→ 0, since this last sum is the remainder of a convergent positive

series.
So ‖sm− sn‖ −→ 0,m,n−→ ∞, and (sn) is Cauchy. As X is complete, sn converges to some s ∈ X .

Conversely, assume the condition of the proposition for the space X ,‖·‖. We have to prove that
X is complete. Let (xn) be Cauchy in X , so for each integer k ≥ 1 there is Nk ≥ 1 such that

∀m,n≥ Nk,‖xn− xm‖<
1
2k .

Let nk be the subsequence of integers given by:
n1 = N1 and for k ≥ 2, nk = Max(Nk,nk−1 +1)

Then we have 1≤ n1 < n2 < ... < nk −→ ∞ and
∥∥xnk+1− xnk

∥∥< 1
2k ,∀k ≥ 1, from this we deduce

that the series xn1 +
∞

∑
n+1

(
xnk+1− xnk

)
is absolutely convergent and so convergent by the condition of

the proposition.

5.1 Normed spaces 59



Ptolemy Scientific Research Press https://pisrt.org/

But xn1 +
m−1
∑

k=1

(
xnk+1− xnk

)
= xnm , then the subsequence (xnm) converges to some x ∈ X and so the

sequence (xn) itself converges to x, since ‖xn− x‖ ≤ ‖xn− xnm‖+‖x− xnm‖ −→ 0,n,m−→ ∞.�

Examples 5.1.14. (1) The space Rn is a Banach space for the euclidean norm. We will see later
that Rn is a Banach space for every norm.
(2) The lp spaces, 1≤ p≤ ∞ are Banach spaces ∀1≤ p≤ ∞.(see Example 5.1.3. (2) ,(3) for the
definition of these spaces). We prove the property for 1≤ p < ∞, and leave the easier case p = ∞

as exercise.
Let (xn) be Cauchy in lp, with xn = (αn,k)k≥1. From the definition of the norm in lp, we

have ‖xn− xm‖p =

(
∑
k
|αn,k−αm,k|p

)1
p , so for ε > 0 there is N ≥ 1 such that n,m ≥ N =⇒

∑
k
|αn,k−αm,k|p < ε p.

We deduce that ∀L ≥ 1,
L
∑

k=1
|αn,k−αm,k|p < ε p, in particular |αn,r−αm,r|p < ε p, for each r ≥ 1;

this means that the sequence (αn,r)n≥1 is Cauchy in R.
Put αr = lim

n
αn,r, we prove that the vector x = (αr)r≥1 is in lp, and that xn converges to x in lp. For

each L ≥ 1, and every n ≥ N lim
m−→∞

L
∑

k=1
|αn,k−αm,k|p =

L
∑

k=1
|αn,k−αk|p ≤ ε p. On the other hand,

we have:

∀n≥ N, ∑
k
|αn,k−αk|p = lim

L−→∞

L
∑

k=1
|αn,k−αk|p ≤ ε p, and this proves that

xn− x ∈ lp with ‖xn− x‖p ≤ ε,∀n≥ N, that is xn converges to x.

(3) Let X be a topological space, the space Cb (x) of all continuous and bounded functions f : X −→
R, with the norm ‖ f‖

∞
= Sup

x∈X
| f (x)| is a Banach space (see Example 5.1.3. (4)). This comes

from the fact that a uniform limit of a sequence of continuous bounded functions, is a continuous
bounded function.

(4) Let X be a normed space and M a closed subspace of X . Let the quotient X/M be equipped
with the quotient norm ‖u‖= inf{‖x‖ ,x ∈ u} (Proposition 5.1.7. ). If X is a Banach space then
X/M is a Banach space. To see this we use the criteria of Proposition 5.1.13. Let (un) be an
absolutely convergent series in X/M, we prove that (un) is convergent. From the definition of
‖un‖, we get: ∀n ≥ 1,∃xn ∈ un : ‖xn‖ ≤ 2‖un‖. So the series (xn) is absolutely convergent in X ,
then it is convergent since X is Banach, let x be its limit. Put u = x+M, the class of x, then we

have
∥∥∥∥N

∑
1

un−u
∥∥∥∥≤ ∥∥∥∥N

∑
1

xn− x
∥∥∥∥−→ 0,N −→ ∞. From this it comes that u = ∑

n
un, which proves the

convergence of the series (un) .

5.2 Exercises

82. Let X be a vector space. A metric d on X is said to be translation invariant if d (x+a,y+a) =
d (x,y) ,∀a,x,y ∈ X .

(a) If X is a normed space then the metric induced by the norm is
translation invariant.
(b) Let d be a translation invariant metric on X and put ‖x‖= d (0,x).
Prove that ‖−x‖= ‖x+ y‖, ≤ ‖x‖+‖y‖, and ‖x‖= 0 ⇐⇒ x = 0.
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83. Let C1 [0,1] be the space of continuous functions on [0,1] having continuous first derivative
(functions of class C1). For f ∈C1 [0,1], define:
‖ f‖1 = sup

t∈[0,1]
(| f (t)|+ | f ′ (t)|)

‖ f‖2 = sup
t∈[0,1]

| f (t)|+ sup
t∈[0,1]

| f ′ (t)|

Prove that ‖ f‖1 and ‖ f‖2 are norms on C1 [0,1] with ‖ f‖1 ≤ ‖ f‖2 .
Give an example of a function f ∈C1 [0,1] with ‖ f‖1 < ‖ f‖2 .

84. A semi-norm on a vector space X is a function p : X −→ [0,∞) satisfying:
(1) p(x+ y)≤ p(x)+ p(y) ,∀x,y ∈ X .
(2) p(λx) = |λ | p(x), for every scalar λ .

(a) Prove that N = {x : p(x) = 0} is a vector subspace of X .
(b) Define on the quotient space X/N the function ‖·‖ by:

u ∈ X/N, ‖u‖= p(x), if u = x+N.
Prove that ‖·‖ is a well defined norm on X/N.

85. Let X be a normed space and x,y ∈ X . If z = x+ y then for every open neighborhood W of z,
there is an open neighborhood U of x and an open neighborhood V of y such that U +V ⊂W.

86. Let X be a normed space and let M be a vector subspace of X .
Prove that the closure M of M is also a subspace of X .

87. Let X be a normed space and let E,F be subsets of X such that E is compact and F closed.
Prove that E +F is closed.

88. Let X ,Y be normed spaces and let the product X ×Y be equipped with the product norm
(Proposition 5.1.9.). Prove that X×Y is a Banach space if and only if X and Y are Banach spaces.
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89. Let X be a normed space and let A be a subset of X . Prove that for every scalar α and every
vector x, we have:

o
αA = α

o
A

αA = αA
o

x+A = x+
o
A

x+A = x+A

90. Let us consider the following spaces of sequences:
c0 =

{
a = (an) ∈ RN : lim

n
an = 0

}
d0 =

{
a = (an) ∈ RN : ∃N ≥ 1,an = 0,∀n≥ N

}
(a) Prove that c0,d0 are vector subspace of RN and we have:

d0 ⊂ lp ⊂ c0 ⊂ l∞
(b) Prove that d0 is dense in lp for ‖·‖p and d0 is dense in c0 for ‖·‖

∞
.

5.3 Linear Bounded Operators

A linear operator from a normed space X into a normed space Y is a linear mapping from X into Y .

Definition 5.3.1. A linear operator T from a normed space X into a normed space Y is said to be
bounded if there is a constant M > 0 such that:

‖T (x)‖ ≤M.‖x‖ ,∀x ∈ X ,

This definition means that if B is a bounded subset of X , the set {T (x) ,x ∈ B} is bounded in Y . For
instance if B = {x : ‖x‖ ≤ 1}, then ‖T (x)‖ ≤M,∀x ∈ B.

Examples 5.3.2. Let the space C [0,1] of continuous functions f : [0,1]−→ R, be equipped with
the uniform norm ‖·‖

∞
. Define T : C [0,1]−→ R by

T ( f ) =
∫ 1

0 f (x)dx (Riemann integral), then it is clear that |T ( f )| ≤ ‖ f‖
∞

and T is bounded with
the choice M = 1.

Proposition 5.3.3. Let T be a bounded operator from X into Y . Define:

‖T‖= sup
{
‖T (x)‖
‖x‖

: x ∈ X ,x 6= 0
}

m1 = sup{‖T (x)‖ : x ∈ X ,‖x‖= 1}
m2 = sup{‖T (x)‖ : x ∈ X ,‖x‖< 1}
m3 = sup{‖T (x)‖ : x ∈ X ,‖x‖ ≤ 1}

Then m1 = m2 = m3 = ‖T‖< ∞ and we have:

‖T (x)‖ ≤ ‖T‖‖x‖ ,∀x ∈ X

Proof: First T bounded operator =⇒ mi < ∞, i = 1,2,3, and ‖T‖ < ∞; next we have from the

definition, m1 ≤ ‖T‖. On the other hand, if x 6= 0, then
∥∥∥∥ x
‖x‖

∥∥∥∥= 1, and
∥∥∥∥T
(

x
‖x‖

)∥∥∥∥= ‖T (x)‖
‖x‖

≤

m1, this yields ‖T‖ ≤ m1, so ‖T‖= m1.
Since {x : ‖x‖= 1} ⊂ {x : ‖x‖ ≤ 1}, we get m1 ≤ m3; on the other hand, for ‖x‖ ≤ 1,x 6= 0,

we have
∥∥∥∥T
(

x
‖x‖

)∥∥∥∥ = ‖T (x)‖
‖x‖

≤ m1, whence ‖T (x)‖ ≤ ‖x‖m1 ≤ m1. Taking supremum over
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{x : ‖x‖ ≤ 1} we get m3 ≤ m1,so m1 = m3. By the same trick we obtain m1 = m2. Finally, it is
clear that ‖T (x)‖ ≤ ‖T‖‖x‖ ,∀x ∈ X .�

Theorem 5.3.4. The following properties are equivalent for a linear operator T from X into Y :
(a) T is bounded.
(b) T is uniformly continuous.
(c) T is continuous at a point x0 ∈ X .

Proof:(a) =⇒ (b)
We have ‖T (x)−T (x′)‖ = ‖T (x− x′)‖ ≤ ‖T‖‖x− x′‖ ,∀x,x′ ∈ X , so if ε > 0 then we have
‖x− x′‖< ε ‖T‖−1 =⇒ ‖T (x)−T (x′)‖< ε.
(b) =⇒ (c) is trivial.
(c) =⇒ (a)
By (c) there is σ > 0 such that ‖x− x0‖< σ =⇒ ‖T (x)−T (x0)‖< 1. Now if ‖x‖< 1, we get

‖σx+ x0− x0‖<σ , and since x=
1
σ
(σx+ x0− x0), we deduce ‖T (x)‖= 1

σ
‖T (σx+ x0)−T (x0)‖<

1
σ

. From Proposition 5.3.3, ‖T‖= sup{‖T (x)‖ : x ∈ X ,‖x‖< 1}, and then ‖T‖ ≤ 1
σ

, this yields
T bounded.�

We denote by B(X ,Y ) the set of linear bounded operators from a normed space X into a normed
space Y , on the same field K of scalars. Let S,T ∈ B(X ,Y ) and α ∈K , we define for x ∈ X :

(S+T )(x) = S (x)+T (x)
(αT )(x) = αT (x)

Then we have:

Proposition 5.3.5. B(X ,Y ) is a vector space with these defined operations. Moreover, the function
T −→ ‖T‖ is a norm on B(X ,Y ) .

Proof: It is immediate that B(X ,Y ) is a vector space, the null vector being the operator T with
T (x) = 0,∀x ∈ X . To see that T −→ ‖T‖ is a norm, let S,T ∈ B(X ,Y ), then we have ‖S+T‖ =
sup{‖S (x)+T (x)‖ ,‖x‖= 1}≤ sup{‖S (x)‖+‖T (x)‖ ,‖x‖= 1}≤ sup{‖S (x)‖ ,‖x‖= 1}+sup{‖T (x)‖ ,‖x‖= 1}
= ‖S‖+ ‖T‖ . Likewise ‖αT‖ = |α|‖T‖ ,α ∈ K. Finally, since ‖T (x)‖ ≤ ‖T‖‖x‖, we have
‖T‖= 0 =⇒ T (x) = 0,∀x ∈ X .�

Theorem 5.3.6. If Y is a Banach space, B(X ,Y ) is a Banach space.

Proof: Let (Tn) be Cauchy in B(X ,Y ). For each x ∈ X we have
‖Tn (x)−Tm (x)‖ ≤ ‖Tn−Tm‖‖x‖ ,∀n,m ≥ 1, so (Tn (x)) is Cauchy in Y and since Y is Banach
lim

n
Tn (x) exists in Y ; we denote this limit by T (x).

The mapping so defined from X into Y is linear.
Indeed, for each n≥ 1 we have ‖T (x+ y)− (T (x)+T (y))‖ ≤
‖T (x+ y)−Tn (x+ y)‖+‖Tn (x+ y)− (T (x)+T (y))‖ ≤
‖T (x+ y)−Tn (x+ y)‖+‖Tn (x)−T (x)‖+‖Tn (y)−T (y)‖ −→ 0,n−→∞. So we get T (x+ y) =
T (x)+T (y). Similarly T (αx) = αT (x), α ∈K, x ∈ X .
It remains to prove that T ∈ B(X ,Y ) and that ‖Tn−T‖ −→ 0. If ε > 0 there is Nε ≥ 1: n,m ≥
Nε =⇒ ‖Tn−Tm‖< ε . For n≥Nε , we have ‖Tn (x)−T (x)‖= lim

m
‖Tn (x)−Tm (x)‖≤ limsup

m
‖Tn−Tm‖‖x‖≤

ε ‖x‖.
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Consequently, if n≥Nε , we get ‖Tn (x)−T (x)‖≤ ε ‖x‖ ,∀x∈X , and this yields Tn−T ∈B(X ,Y ) and T ∈
B(X ,Y ); on the other hand, for n≥ Nε

‖Tn−T‖= sup{‖Tn (x)−T (x)‖ ,‖x‖= 1} ≤ ε , that is ‖Tn−T‖ −→ 0.�

Definition 5.3.7. Let X be a normed space on the field K= R or C. A linear functional or linear
form on X is a linear operator from X into K. We denote by X∗, instead of B(X ,K), the Banach
space of continuous linear functionals on X . The space X∗ is called the dual space of X . Likewise
we denote by X∗∗ the dual space of X∗ and call it the bidual space of X .

One of the famous theorems related to the space linear functionals on X , useful in many
applications, is the following:

Theorem 5.3.8. (Hahn-Banach)
Let X be a vector space on the field K= R or C, and let p : X −→ [0,∞) be a seminorm on X ,

that is p satisfies:
(1) p(x+ y)≤ p(x)+ p(y) ,∀x,y ∈ X .
(2) p(αx) = |α| p(x) ,∀α ∈K,∀x ∈ X .

Let M be a subspace of X and g : M −→K, a linear form on M such that:

|g(y)| ≤ p(y) ,∀y ∈M

Then g can be extended to a linear functional f : X −→K, on X such that:

| f (x)| ≤ p(x) ,∀x ∈ X

For applications, the following corollaries are the most useful:

Corollary 1: Let X be a vector space on the field K= R or C
and let p : X −→ [0,∞) be a seminorm on X , then for each a ∈ X , there is a linear functional f on
X such that f (a) = p(a) and | f (x)| ≤ p(x) ,∀x ∈ X .

Proof: If a = 0 take f ≡ 0. If a 6= 0, consider the subspace M generated by a, that is M =K.a, and
define g : M −→K by g(λa) = λ p(a), λ ∈K. Then g is a linear functional on M which satisfies
the conditions of Theorem 5.3.8., since we have |g(λa)|= |λ | p(a) = p(λa). So there is a linear
functional f : X −→ K, on X such that f (y) = g(y) ,∀y ∈ M, and | f (x)| ≤ p(x) ,∀x ∈ X . But
a ∈M and f (a) = g(a) = p(a) .�

The next corollary shows that in a normed space, continuous linear functionals exist in profusion:

Corollary 2: Let X be a normed space, then for each a ∈ X , there is f ∈ X∗ such that f (a) = ‖a‖,
| f (x)| ≤ ‖x‖ ,∀x ∈ X and ‖ f‖= 1.

Proof: Apply corollary 1 with p(x) = ‖x‖: for each a ∈ X , there is a linear functional f on X
such that f (a) = ‖a‖ and | f (x)| ≤ ‖x‖ ,∀x ∈ X . It is clear that such functional is continuous and

‖ f‖ ≤ 1. On the other hand, we have ‖ f‖= sup
{
| f (x)|
‖x‖

: x ∈ X ,x 6= 0
}
≥ | f (a)|‖a‖

= 1, so we get

‖ f‖= 1.�

Corollary 3: Let X be a normed space and let M be a subspace of X .
If g : M −→K, is a continuous linear functional on M, i.e g ∈M∗, there is an extension f of g to X
with f ∈ X∗ and ‖ f‖= ‖g‖ .

Proof: Put p(x) = ‖g‖‖x‖. Then since g is continuous we have |g(x)| ≤ ‖g‖‖x‖ = p(x) on
M. Apply Theorem 5.3.8 to get an extension f of g to X with | f (x)| ≤ ‖g‖‖x‖ = p(x). This
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shows that f ∈ X∗ and ‖ f‖ ≤ ‖g‖. But we have also ‖ f‖ = sup{| f (x)| : x ∈ X ,‖x‖ ≤ 1} ≥
sup{| f (y)| : y ∈M,‖y‖ ≤ 1}= sup{|g(y)| : y ∈M,‖y‖ ≤ 1}= ‖g‖ .�

Definition 5.3.9. Let X ,Y,E be normed spaces on the same field K = R or C. A mapping
T : X×Y −→ E is bilinear if:
∀x,x′ ∈ X ,∀y,y′ ∈ Y,∀α,β ∈K
T (αx+βx′,y) = αT (x,y)+βT (x′,y)
T (x,αy+βy′) = αT (x,y)+βT (x,y′)

In other words, T is bilinear if the following mappings are linear:
x−→ T (x,y) ,y fixed in Y
y−→ T (x,y) ,x fixed in X

Note also that if T is bilnear then T (αx,βy) = αβT (x,y) .

Proposition 5.3.10. Let T : X×Y −→ E be a bilinear mapping, X×Y equipped with the product
topology. The following properties are equivalent:

(a) T is continuous on X×Y
(b) T is continuous at (0,0)
(c) There is a constant M > 0 such that:
‖T (x,y)‖ ≤M ‖x‖‖y‖ ,∀(x,y) ∈ X×Y

Proof: First let us recall that the product topology on X ×Y is induced by the norm ||(x,y)|| =
||x||+ ||y|| (Proposition 5.1.9).
(a) =⇒ (b) is immediate
(b) =⇒ (c) : Let B be the unit open ball in E. Since T (0,0) = 0, condition (b) shows that
T−1 (B) is an open neighborhood of (0,0) in X ×Y , so there is c > 0 such that ||x|| < c,‖y‖ < c

implies ‖T (x,y)‖ ≤ 1. Let 0 < d < c and x 6= 0,y 6= 0, then we have
∥∥∥∥d

x
‖x‖

∥∥∥∥< c and
∥∥∥∥d

y
‖y‖

∥∥∥∥< c;

consequently,
∥∥∥∥T
(

d
x
‖x‖

,d
y
‖y‖

)∥∥∥∥ = d2

‖x‖‖y‖
T (x,y) ≤ 1 and condition (c) is satisfied with the

constant M =
1
d2 .

(c) =⇒ (a) : Let (a,b) ∈ X ×Y , we have by the bilinearity T (x,y)− T (a,b) = T (x−a,y)+
T (a,y−b); taking the norms we get from (c) ‖T (x,y)−T (a,b)‖≤‖T (x−a,y)‖+‖T (a,y−b)‖≤
M ‖x−a‖‖y‖+M ‖a‖‖y−b‖.
But ‖y‖ ≤ ‖y−b‖+‖b‖, consequently, ‖T (x,y)−T (a,b)‖ ≤
M (‖x−a‖‖y−b‖+‖x−a‖‖b‖+‖a‖‖y−b‖)−→ 0 if (x,y)−→ (a,b) .�

5.4 Exercises

91. Let X ,Y be normed spaces and T : X −→ Y a linear operator.
Prove that T is bounded iff T−1 {y : ‖y‖ ≤ 1} has nonempty interior.

92. Let λ = (λn) ∈ l1 and define the linear operator ϕλ on the space c0 by:
a = (an) ∈ c0, ϕλ (a) = ∑

n
λn.an

Prove that ϕλ is bounded and ‖ϕλ‖= ∑
n
|λn|= ‖λ‖l1 .
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93. Let λ = (λn) ∈ l∞ and define the linear operator ψλ on the space l1 by:
b = (bn) ∈ l1, ψλ (b) = ∑

n
λn.bn

Prove that ψλ is bounded and ‖ψλ‖= sup
n
|λn|= ‖λ‖∞

.

94. Let X ,Y be normed spaces and T : X −→ Y a bounded linear operator.
(a) Let M = {x ∈ X : T (x) = 0} be the kernel of T. Prove that M is a closed

subspace of X .
(b) Define T̃ : X/M −→ Y by T̃ (x+M) = T (x). Prove that T̃ is well defined,

linear and injective.
(c) We equip X/M with the quotient norm (Proposition 5.1.7)

Prove that
∥∥∥T̃
∥∥∥= ‖T‖ .

95. Let X be a normed space and let M be a closed subspace of X . We equip X/M with the quotient
norm, and consider the canonical projection π : X −→ X/M. Prove that π is linear continuous and
‖π‖ ≤ 1.

96. Let X be a compact topological space and let C (X) be the space of all continuous functions
f : X −→ R, equipped with the uniform norm.
Let T : C (X)−→ R, be a linear functional satisfying the positivity property:

f ∈C (X) , f ≥ 0 =⇒ T ( f )≥ 0
(a) Prove that: f ≤ g =⇒ T ( f )≤ T (g) and |T ( f )| ≤ T (| f |) .
(b) Prove that T is continuous and ‖T‖= T (1),

where 1 is the constant function equal to 1.

97. Let X be a normed space and let S be a dense subspace of X . Let f : S −→ R be a linear
continuous functional on S. Prove, without using Hahn-Banach theorem, that there exists g ∈ X∗

such that g(x) = f (x) ,∀x ∈ S and ‖g‖= ‖ f‖ .

98. Let X be a normed space and let M be a closed subspace of X . Fix z /∈M and consider the
subspace S generated by M and z, that is:

S = {x+αz,x ∈M,α ∈K}
Define f : S−→K by f (x+αz) = α.

(a) Prove that f ∈ S∗ and ‖ f‖ = 1
d

, where d = d (z,M), is the distance from z to M (Definition

3.1.14(b) Chapter 3); note that d > 0 since M is closed (see Exercise 41 Chapter 3).
(b) Prove that S is closed.
(c) Prove that f has an extension g to all of X

with ‖g‖= ‖ f‖ and g(x) = 0,∀x ∈M.
(Apply corollary 3 of Hahn-Banach theorem).

99. Let (Tn) be a sequence in B(X ,Y ) and suppose there is T ∈ B(X ,Y ) such that ‖Tn−T‖ −→
0,n−→ ∞. Let (xn) be a sequence in X with xn→ x, prove that Tn (xn)−→ T (x) in Y.

100. (a) Prove that the lp spaces 1≤ p < ∞ are separable.
(b) Prove that the space c0 is separable for the norm ‖·‖

∞
.

(c) Prove that c∗0 = l1 and l∗1 = l∞
(this means: there is a linear bijection ϕ : l1→ c∗0 (resp.ψ : l∞→ l∗1) such that
‖ϕ (x)‖= ‖x‖ (resp.‖ψ (x)‖= ‖x‖).).

As for the separability of Banach spaces we have the following theorem whose proof can be found
in [1]
Theorem 5.4.1. Let X be a Banach space such that the dual X∗ is separable, then X is separable.
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5.5 Normed Spaces of Finite Dimension

Definition 5.5.1. Let X ,Y, be normed spaces. A mapping ϕ : X −→ Y is an isomorphism from X
onto Y if:

(i) ϕ is linear and bijective
(ii) ϕ and its inverse ϕ−1 are continuous.

condition (i) implies that ϕ−1 is linear.

Using Proposition 5.3.3, we rephrase this definition as follows:

Proposition 5.5.2. A linear bijective mapping ϕ : X −→ Y is an isomorphism of normed spaces if
and only if there are positive constants α,β such that:
‖ϕ (x)‖ ≤ α ‖x‖ ,∀x ∈ X∥∥ϕ−1 (y)

∥∥≤ β ‖y‖ ,∀y ∈ Y

Proof: Apply Theorem 5.3.4.�

Definition 5.5.3. Let X be a normed space equipped with two norms ‖·‖1 ,‖·‖2.
We say that ‖·‖1 ,‖·‖2 are equivalent if there is α > 0,β > 0 such that:
‖x‖2 ≤ α ‖x‖1 and ‖x‖1 ≤ β ‖x‖2 ∀x ∈ X

Two remarks are in order from this definition:
(1) The equivalence of the norms ‖·‖1 ,‖·‖2 means that the identity mapping from (X ,‖·‖1) into
(X ,‖·‖2) is an isomorphism.
(2) Two equivalent norms on X induce the same topology on X .

Norms on spaces of finite dimension have special properties.

Proposition 5.5.4. Suppose Rn endowed with the product topology and let p be any norm on Rn,
then p is continuous.

Proof: Note that the product topology is induced by the euclidean norm of Rn ‖x‖2 =

(
n
∑

i=1
|xi|2

)1
2 .

Let e1,e2, ...,en be the canonical base of Rn and let
x = (x1,x2, ...,xn) ,y = (y1,y2, ...,yn) be vectors in Rn.

Then we have x− y =
n
∑

i=1
(xi− yi) .ei and |p(x)− p(y)| ≤ p(x− y)

≤
n
∑

i=1
|xi− yi| .p(ei)≤ n.

(
n
∑

i=1
p(ei)

)
‖x− y‖2, whence the continuity of p.

(see the inequalities in Example 5.1.3. (1)).�

Theorem 5.5.5. All the norms on Rn are equivalent.

Proof: Let p be an arbitrary norm on Rn, it is enough to prove that p is equivalent to the euclidean
norm. By Proposition 5.5.4 p is continuous, so it is bounded on the unit sphere S = {x : ‖x‖2 = 1} .
Let α = inf

x∈S
p(x), β = sup

x∈S
p(x), then we have α > 0 (why?), and so we deduce that α ‖x‖2 ≤

p(x)≤ β ‖x‖2 ,∀x ∈ X .�

Corollary: All the norms on a finite dimensional vector space are equivalent.

Theorem 5.5.6. Let X be a normed space and let ϕ : Rn −→ X be a linear bijection. Then ϕ is an
isomorphism of normed spaces.

Proof: Since ϕ is linear and bijective, it follows that the dimension of X is equal to n. Let p be an
arbitrary norm on X , by the linearity of ϕ p◦ϕ is a norm on Rn which is equivalent to the euclidean

5.5 Normed Spaces of Finite Dimension 67



Ptolemy Scientific Research Press https://pisrt.org/

norm (Theorem 5.5.5); consequently, there is a constant α such that p◦ϕ (x)≤ α ‖x‖2 ,∀x ∈ Rn,
so ϕ is continuous. A similar argument gives the continuity of ϕ−1.�

Theorem 5.5.7. Every finite dimensional normed space is a Banach space.

Proof: Let n be the dimension of X and let ϕ : Rn −→ X be a linear bijection. Then ϕ is an
isomorphism of normed spaces, by the preceding theorem, so ϕ is bicontinuous. Since Rn is
complete we deduce that X is complete.�

5.6 Exercises

101. Prove that every linear mapping from Rn into a normed space is continuous.

102. Let X be a vector space with two norms p,q such that p≤ αq for some α > 0
(a) Prove that (X ,q) separable =⇒ (X , p) separable.
(b) Prove that l1 is separable for the norm ‖·‖

∞
.

102. Let T : X −→ X be a linear bounded operator on a normed space (X ,‖·‖). Define on X the
function: |||x|||= ||x||+ ||T (x)||.

(a) Prove that |||·||| is a norm equivalent to the norm ‖·‖.
(b) Prove that X , |||·||| is a Banach space iff X ,‖·‖ is a Banach space.

5.7 Linear Bounded Operators in Banach Spaces

Linear bounded operators in Banach spaces have remarkable properties, using in an essential way
the fact that such spaces are Baire spaces (see Chapter 3).
Let us start with the following fundamental lemma.

Lemma 5.7.1. Let X ,Y be Banach spaces and let T : X −→ Y be a bounded operator. Suppose that
T is onto and consider the open unit ball A = {x ∈ X : ‖x‖< 1} in X . Then there is r > 0 such that
B = {y ∈ Y : ‖y‖< r} ⊂ T (A). In other words T (A) is an open neighborhood of 0 in Y .

Proof: Let Sn =

{
x ∈ X : ‖x‖< 1

2n

}
, n≥ 1.

We have X = ∪
k

k.S1, because if x ∈ X there is k ≥ 1 such that ‖x‖< k
2

, i.e x ∈ k.S1; we deduce

that T (X) = Y = ∪
k

kT (S1) = ∪
k

kT (S1).

Note that k.T (S1) = k.T (S1)
o

k.T (S1) =
o

k.T (S1) = k.
o

T (S1) (see Exercise 89).

Since Y is a Baire space, there is k ≥ 1 such that
o

kT (S1) 6= /0; but kT (S1) = k.T (S1), so
o

kT (S1) =
o

k.T (S1) = k.
o

T (S1) 6= /0; consequently, there is p∈ T (S1) and η > 0 such that the open ball B(p,η)
is contained in T (S1). Since B(p,η) = p+B(0,η) we get B(0,η) ⊂ T (S1)− p; as p ∈ T (S1),
this gives
B(0,η)⊂ T (S1)−T (S1)⊂ T (S0). On the other hand, it is clear that

T (S0) = 2nT (Sn), so we deduce that B
(

0,
η

2n

)
⊂ T (Sn),∀n≥ 0.

Note that S0 = A and T (S0) = T (A). We prove now that B
(

0,
η

2

)
⊂ T (A), and this will achieve

the proof. Let y ∈ B
(

0,
η

2

)
then y ∈ T (S1) and there is x1 ∈ S1 such that ‖y−T (x1)‖<

η

4
. This
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implies that y−T (x1)∈B
(

0,
η

4

)
⊂ T (S2), so there is x2 ∈ S2 such that ‖y−T (x1)−T (x2)‖<

η

8
.

If we continue the process in this way we get a sequence (xn) in X with xn ∈ Sn and∥∥∥∥y−
n
∑
1

T (x j)

∥∥∥∥ < η

2n+1 ,∀n ≥ 1. Since ‖xn‖ <
1
2n , the series ∑

n
xn is absolutely convergent and so

convergent because X is a Banach space. Put x = ∑
n

xn, then ‖x‖ ≤ ∑
n
‖xn‖< ∑

n

1
2n = 1, this yields

x ∈ S0 = A and by the continuity of T , T (x) = T
(

∑
n

xn

)
= ∑

n
T (xn). But from the nature of (xn)

we have y = ∑
n

T (xn) and we conclude that y = T (x) ∈ T (A) .�

Theorem 5.7.2. (Open mapping theorem)
Let X ,Y be Banach spaces and T : X −→ Y a linear bounded operator. Suppose that T is onto,

then T is an open mapping.

Proof: Let U be open in X , x ∈U , and y = T (x) ∈ T (U). There is δ > 0 such that B(x,δ ) ⊂
U ; since B(x,δ ) = x + B(0,δ ) we get B(0,δ ) ⊂ U − x. Applying T which is linear, yields
T (B(0,δ )) = δT (B(0,1)) ⊂ T (U)− y. By Lemma 5.7.1, there is γ > 0 such that B(0,γ) ⊂
T (B(0,1)); we get:

δB(0,γ) = B(0,δγ)⊂ δT (B(0,1))⊂ T (U)− y.
So y+B(0,δγ) = B(y,δγ)⊂ T (U). This proves that T (U) is open in Y.�

Corollary: Let X ,Y be Banach spaces and T : X −→ Y a linear bijective operator. Suppose that T
is bounded, then T−1 is bounded and so T is an isomorphism.

Proof: Let U be open in X . We have
(
T−1

)−1
(U) = T (U). By the open mapping theorem T (U)

is open in Y , then T−1 is bounded.�

Proposition 5.7.3. Let X be a vector space endowed with two norms ‖·‖1 ,‖·‖2 such that X is a
Banach space for each of them. Suppose there is α > 0 such that ‖x‖2 ≤ α ‖x‖1 ,∀x ∈ X , then there
is β > 0 satisfying ‖x‖1 ≤ β ‖x‖2 ,∀x ∈ X . In other words, two comparable norms on a Banach
space are equivalent.

Proof: The condition says that that the identity map i : X ,‖·‖1 −→ (X ,‖·‖2) is continuous, so by
the corollary the inverse i−1 : X ,‖·‖2 −→ X ,‖·‖1 is continuous, whence the existence of β > 0 such
that ‖x‖1 ≤ β ‖x‖2 ,∀x ∈ X .�

Definition 5.7.4. Let X ,Y be normed spaces and T : X −→ Y a linear operator. The graph of T is
the subspace Γ of X×Y defined by Γ = {(x,T (x)) : x ∈ X}.
We say that T is closed if its graph Γ is closed in the product space X×Y .

Remark: Let (xn) be a sequence in X and consider the conditions:
(i) xn −→ x,n−→ ∞

(ii) T (xn)−→ y
(iii) y = T (x)

If T is closed then (i) and (ii) =⇒ (iii). If T is continuous (i) =⇒ (ii) and (iii) .

Proposition 5.7.5. If T : X −→ Y linear continuous then T is closed.

Proof: Let ϕ : X ×Y −→ Y ×Y be the mapping defined by ϕ (x,y) = (T (x) ,y). Then ϕ is
continuous (why?) and we have Γ = ϕ−1 (∆), where ∆ is the diagonal of Y ×Y . Since Y is
Hausdorff, ∆ is closed and then Γ is closed.�

The converse of this proposition is false in general as is shown by the following:
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Example: Consider the space C [0,1] equipped with the uniform norm and the space C1 [0,1] of
functions f : [0,1]−→ R with first continuous derivative, also equipped with the uniform norm

Define T : C1 [0,1]−→C [0,1], by T (x) = x′ =
dx
dt

.

T is not continuous since for example, if xn (t) = tn, t ∈ [0,1] ,n ≥ 1, we have ‖xn‖ = 1, but
‖T (xn)‖ = sup

0≤t≤1
ntn−1 = n −→ ∞. However T is closed; indeed let (xn) ⊂C1 [0,1] be such that

xn −→ x and T (xn) −→ y, then xn (t) converges uniformly to x(t) and T (xn) = x′n converges
uniformly to y; consequently, x ∈C1 [0,1] and x′ = y = T (x) .�

The remarkable fact is contained in the following:
Theorem 5.7.6. (Closed graph theorem)
Let X ,Y be Banach spaces and T : X −→ Y a linear operator.
If T is closed then T is continuous.

Proof: The space X is a Banach space for the norm |||x|||= ||x||+ ||T (x)||. Indeed let xn be Cauchy
for the norm |||·|||; so we have |||xn− xm||| = ||xn− xm||+ ||T (xn)−T (xm)|| −→ 0, n,m −→ ∞.
We get (xn) Cauchy in X and (T (xn)) in Y . Since X ,Y are Banach spaces, the limit x ∈ X of xn and
the limit y ∈ Y of T (xn) and we have y = T (x) because T is closed. This implies that
|||xn− x|||= ||xn− x||+ ||T (xn)−T (x)|| −→ 0,n−→ ∞ and proves that X is a Banach space for
the norm |||·|||. As ||x|| ≤ |||x|||, there is γ > 0 such that |||x||| ≤ γ ||x|| (Proposition 5.7.3); since
||T (x)|| ≤ |||x|||, we deduce that
||T (x)|| ≤ γ ||x|| ,∀x ∈ X and T is continuous.�

Theorem 5.7.7. Let X be a Baire space (for example a metric complete space or a locally
compact space). Let ( fi, i ∈ I) be a family of continuous functions from X into R such that
sup{| fi (x)| , i ∈ I} < ∞, for each x ∈ X . Then there is a nonempty open U of X and a constant
M > 0 such that:

sup{| fi (x)| , i ∈ I} ≤M,∀x ∈U .

Proof: The condition on the fi means that for each x∈ X there is Mx > 0 such that | fi (x)| ≤Mx,∀i∈
I. Consider the set Ain = {x ∈ X : | fi (x)| ≤ n} , i∈ I,n≥ 1; it is closed by the continuity of fi, so the
set An =∩

i
Ain is also closed. On the other hand, if x∈ X there is nx ≥ 1 such that | fi (x)| ≤ nx,∀i∈ I,

i.e x ∈ Anx . This proves that X = ∪
n

An and since X is a Baire space, there is m ≥ 1 such that the

interior set
o

Am is non empty. Put U =
o

Am and M = m, then we get | fi (x)| ≤M,∀x ∈U,∀i ∈ I.�
Theorem 5.7.8. (Uniform boundedness Theorem)
Let X be a Banach space and let (Ei, i ∈ I) be a family of normed spaces.
For each i ∈ I let Ti : X −→ Ei a linear continuous operator such that:
sup{‖Ti (x)‖ , i ∈ I}< ∞, for each x ∈ X . Then we have: sup{‖Ti‖ , i ∈ I}< ∞.

Proof: For each i∈ I define the continuous function fi : X −→R by fi (x) = ‖Ti (x)‖. The condition
reads: for each x∈X there is Mx > 0 such that fi (x)= ‖Ti (x)‖≤Mx,∀i∈ I. Since X is a Baire space
there is a nonempty open U of X and a constant M > 0 such that sup{‖Ti (x)‖ , i ∈ I} ≤M,∀x ∈U
(Theorem 5.7.7). Let B(a,r) be an open ball contained in U with a ∈U and r > 0. So we have

‖x−a‖< r =⇒ sup{‖Ti (x)‖ , i ∈ I}≤M. We show that ‖Ti‖≤
2M
r

,∀i∈ I. To this end it is enough

to have ‖Ti (y)‖ ≤
2M
r

,∀i ∈ I for ‖y‖< 1. For such y put x = a+ ry, we get ‖x−a‖= r‖y‖< r

and then ‖Ti (x)‖ ≤M,∀i ∈ I. This gives ‖Ti (a)+ rTi (y)‖ ≤M,∀i. But a ∈U , so ‖Ti (a)‖ ≤M.
Now we make the following estimation:
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‖rTi (y)‖ ≤ ‖Ti (a)+ rTi (y)‖+‖Ti (a)‖ ≤M+M = 2M whence ‖Ti (y)‖ ≤
2M
r

,∀i ∈ I. Finally, we

get ‖Ti‖= sup{‖Ti (y)‖ ,‖y‖< 1} ≤ 2M
r

,∀i ∈ I.�

Corollary: (Banach-Steinhauss)
Let X be a Banach space and let E be a normed space. Let (Tn) be a sequence of linear bounded
operators from X into E. Suppose that T (x) = lim

n
Tn (x) exists in E for each x ∈ X . Then T (x)

defines a linear bounded operator T from X into E with ‖T‖ ≤ liminf
n
‖Tn‖ .

Proof: It is clear that T is linear. Let ε > 0 and x ∈ X , there is N = Nε,x ≥ 1 such that ∀n ≥ N :
‖Tn (x)‖ ≤ ‖T (x)‖+ ε . Since sup

n≤N
‖Tn (x)‖< ∞, we deduce that sup

n
‖Tn (x)‖< ∞, for each x ∈ X .

By the uniform boundedness theorem, there is M > 0 such that sup
n
‖Tn‖ ≤M, this yields ‖Tn (x)‖ ≤

‖Tn‖‖x‖ ≤M ‖x‖ ,∀n≥ 1 and ‖T (x)‖= lim
n
‖Tn (x)‖ ≤M ‖x‖, this proves that T is bounded. On

the other hand, ‖Tn (x)‖ ≤ ‖Tn‖‖x‖ ,∀n ≥ 1 =⇒ ‖T (x)‖ = lim
n
‖Tn (x)‖ ≤ liminf

n
‖Tn‖‖x‖ and

then ‖T‖ ≤ liminf
n
‖Tn‖ .�

5.8 Exercises

103. Let X ,Y be Banach spaces and T : X −→ Y a linear operator such that g◦T ∈ X∗ for every
g ∈ Y ∗. Prove that T is bounded, (use the closed graph theorem).

104. Let X ,Y be Banach spaces and T : X×Y −→ R be a bilinear mapping, X×Y equipped with
the product topology. Suppose that the partial functions:

Tx : Y −→ R, Tx (y) = T (x,y)
Ty : X −→ R, Ty (x) = T (x,y)

are continuous. The aim is to prove that T is continuous. It is enough to prove that T is continuous
at (0,0) (Proposition 5.3.10). Let (xn,yn) be a sequence in X×Y converging to (0,0). Define the
linear operator Tn : Y −→ R, Tn (y) = T (xn,y) .
(a) Prove that the set {|Tn (y)| ,n≥ 1} is bounded for each y ∈ Y.
(b) Prove that M = sup

n
‖Tn‖< ∞ and |Tn (y)| ≤M ‖y‖ ,∀y,∀n.

(c) Deduce that |T (xn,yn)| −→ 0.

105. Let T be a linear bijection from a normed space X to a normed space Y . Prove that T is closed
if and only if T−1 is closed.

106. Let X ,Y be compact topological spaces and let us equip the spaces C (X) ,C (Y ) with the
uniform norm. A linear operator T : C (X)−→C (Y ) is positive if f ≥ 0 =⇒ T ( f )≥ 0.
(a) Prove that if T is positive then f ≥ g =⇒ T ( f )≥ T (g) .
(b) If T is positive then T is continuous and ‖T‖= ‖T (1)‖, where 1 is the constant function equal
to 1.
(c) Let Tn : C (X) −→C (Y ) be a sequence of linear operators such that Tn+1−Tn is positive for
every n and let T : C (X)−→C (Y ) be a linear operator. Prove that Tn −→ T for the operators norm
iff Tn (1)−→ T (1) for the uniform norm.

107. Let X ,Y be normed spaces, T : X −→ Y a linear operator and Γ the graph of T . Consider the
closure Γ of Γ in X×Y.
(a) Prove that Γ is the graph of a linear operator from X into Y if and only if
∀y ∈ Y\{0} ,(0,y) /∈ Γ.
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(b) Let X ⊂C [0,1] be the subspace of those f ∈C [0,1] that have f ′ (0) (derivative at 0). Define
T : X −→C [0,1] by (T f )(x) = f ′ (0), that is, T f is the constant function equal to f ′ (0). Let fn be

the sequence of functions given by fn (x) =
sinnx

n
,x ∈ [0,1] . Then (T fn)(x) = f ′n (0) = 1,∀n. If Γ

is the graph of T prove that ( fn,T fn) converges to (0,1). Deduce that Γ does not define a linear
operator.

5.9 Duality in Norm Spaces, Weak Topologies

Let X be a normed space with dual X∗ and bidual X∗∗. We know that X∗ and X∗∗ are Banach spaces.
Fix x ∈ X and define the linear functional x∗∗ on X∗ by: x∗∗ : X∗ −→ K, x∗∗ ( f ) = f (x) , f ∈ X∗.
Then we have |x∗∗ ( f )|= | f (x)| ≤ ‖ f‖‖x‖, so x∗∗ is continuous i.e x∗∗ ∈ X∗∗. More precisely we
have:

Theorem 5.9.1. The mapping ϕ : X −→ X∗∗ given by ϕ (x) = x∗∗ is a linear isometry from X into
X∗∗.

Proof: It is easy to check that ϕ is linear. We show that ‖ϕ (x)‖ = ‖x‖ ,∀x ∈ X , that is ϕ is an
isometry. If f ∈ X∗, we have |ϕ (x)( f )|= | f (x)| ≤ ‖x‖‖ f‖, so ‖ϕ (x)‖ ≤ ‖x‖. On the other hand,
if x ∈ X , there is f ∈ X∗, such that f (x) = ‖x‖ and ‖ f‖= 1 (corollary 2 of Hahn-Banach theorem);
for such f we have |ϕ (x)( f )|= | f (x)|= ‖x‖ ≤ ‖ϕ (x)‖‖ f‖= ‖ϕ (x)‖ whence ‖ϕ (x)‖ ≥ ‖x‖, this
yields ‖ϕ (x)‖= ‖x‖ .�

Definition 5.9.2. In the sequel we put X0 = ϕ (X), so X0 is a subspace of the bidual X∗∗ and X0 is a
Banach subspace of X∗∗. We say that a normed space X is reflexive if X0 = X∗∗.

Example 5.9.3. Let (S,F ,µ) be a measure space, (for details on examples (a) ,(b) see any basic
course on integration).
(a) If 1 ≤ p < ∞ let Lp be the space of functions f : S −→ R such that | f |p is integrable. Then
L∗p = Lq where q is the conjugate of p that is q satisfies pq = p+ q. So we deduce that Lp is
reflexive.

(b) Let L∞ be the space of functions f : S −→ R bounded µ−almost everywhere and define the
norm ‖ f‖

∞
= inf{α > 0 : µ {s : µ ( f > α) = 0}}, then L∞ is a Banach space and if µ is σ−finite

we have L∗∞ = Lp.

(c) The space l1 is not reflexive since l∗1 = l∞ and l∗∞ 6= l1(see Exercise 100).

(d) The space c0 is not reflexive since c∗0 = l1 and c∗∗0 = l∞.

Proposition 5.9.4. Every normed space X of finite dimension is reflexive and we have dimX =
dimX∗ = dimX∗∗, where dim denotes the dimension.

Proof: Let x1,x2, ...,xn be a basis of X and Define f j : X −→ R by:

if x =
n
∑

i=1
λ j.x j ∈ X , f j (x) = λ j,1≤ j ≤ n. Let us point out that f j is linear and since X is of finite

dimension, f j is continuous (Exercise 101); so f j ∈ X∗.
We prove that the f j,1 ≤ j ≤ n form a basis of X∗. Let f ∈ X∗, x ∈ X and put f (x j) = α j, then

we have f (x) = f
(

n
∑

i=1
λ j.x j

)
=

n
∑

i=1
λ j.α j; but λ j = f j (x), so f (x) =

n
∑

i=1
α j. f j (x) ,∀x ∈ X . This

proves that the f j generate X∗. On the other hand suppose that
n
∑

i=1
λ j. f j = 0, then for each k ≤ n,

n
∑

i=1
λ j. f j (xk) = λk = 0, whence λ1 = λ2 = ...= λn = 0, and the f j are independent.�
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The following theorem gives an interesting description of the topology generated on a vector
space by a family of linear functionals. For the definition of the topology generated by a family of
functions, see Theorem 2.3.11, Chapter 2.

Theorem 5.9.5. Let X be a vector space and let { fi, i ∈ I} be a family of linear functionals
fi : X −→R on X . Consider the family F of all finite intersections ∩

i∈J
f−1
i (V ), where J ⊂ I is finite

and V is runing over a base of neighborhoods of 0 in R. Then F is a base of neighborhoods of 0 in
X for the topology τ = τ { fi, i ∈ I} generated by the family { fi, i ∈ I} .

Proof: Let U be an open neighborhood of 0 in X for the topology τ = τ { fi, i ∈ I}, from Theorem
2.3.11, Chapter 2, there is a finite family U j, j∈ J in R such that 0∈ ∩

j∈J
f−1

j (U j)⊂U . But f j (0)= 0

so 0∈U j,∀ j∈ J and V0 = ∩
j∈J

U j is a neighborhood of 0 in R, and we have ∩
j∈J

f−1
j (V0)= ∩

j∈J
f−1

j (U j).

If V is a basic neighborhoods of 0 in R with V ⊂V0 we deduce that 0 ∈ ∩
j∈J

f−1
j (V )⊂U .�

Choosing basic neighborhoods of 0 in R, the sets V = {x ∈ R : |x|< ε,ε > 0} we obtain:

Corollary: Under the conditions of Theorem 5.9.5, the family of sets
Vε,J =

{
x ∈ X :

∣∣ f j (x)
∣∣< ε, j ∈ J

}
,ε > 0,J finite

is a base of neighborhoods of 0 in X for the topology τ { fi, i ∈ I} .
Theorem 5.9.6. Let X be a vector space and let { fi, i ∈ I} be a family of linear functionals
fi : X −→K on X . Then the mappings:

ϕ : X×X −→ X ,ϕ (x,y) = x+ y
h : K×X −→ X ,h(λ ,x) = λ .x

are continuous, if X is endowed with the topology τ { fi, i ∈ I}, and the spaces X × X ,K× X
equipped with the product topology.

Proof: Use Proposition 2.3.12 of Chapter 2.�

Corollary: Under the conditions of Theorem 5.9.6, the family of sets
x+Vε,J,ε > 0,J finite, where Vε,J =

{
x ∈ X :

∣∣ f j (x)
∣∣< ε, j ∈ J

}
is a base of neighborhoods of x in X for the topology τ { fi, i ∈ I} .

Proof: By Theorem 5.9.6 the translation t −→ t− x and its inverse
t −→ t+x are homeomorphisms of X for the topology τ { fi, i ∈ I} . So if U is an open neighborhood
of x in X , U− x is an open neighborhood of 0. By the corollary of Theorem 5.9.5, there is ε > 0
and a finite J ⊂ I such that Vε,J ⊂U− x and then x+Vε,J ⊂U.�

Definition 5.9.7. Let X ,Y be vector spaces and let B : X ×Y −→K be a bilinear functional. We
say that B is nondegenerate if:

B(x,y) = 0,∀y ∈ Y =⇒ x = 0
B(x,y) = 0,∀x ∈ X =⇒ y = 0

Definition 5.9.8. We say that there is a duality between vector spaces X ,Y if there exist a nonde-
generate bilinear functional B : X×Y −→K.

Examples 5.9.9. (a) Let X be a vector space and let Y = X ′ be the vector space of all linear forms
X −→ K, that is X ′ is the algebraic dual of X . Then the formula B(x,x′) = x′ (x) ,x ∈ X ,x′ ∈ X ′

defines a duality between X ,X ′ called the canonical duality. To see that B is nondegenerate, the
reader is refered to any basic algebra course.

(b) Let X be a normed space with dual X∗, the Banach space of all continuous linear forms X −→K,
then the bilinear functional B(x, f ) = f (x) ,x ∈ X , f ∈ X∗ defines a duality between X ,X∗. Indeed
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B is nondegenerate since, by the Hahn-Banach, if x 6= 0 there f ∈ X∗ such that f (x) 6= 0 (see
corollary 2 of theorem 5.3.8).

Remark 5.9.10. Let X ,Y be vector spaces and let B : X ×Y −→ K be a nondegenerate bilinear
functional defining a duality between them. For x ∈ X ,y ∈ Y let us put Bx (y) = B(x,y) and
By (x) = B(x,y). Then Bx (resp. By) is a linear functional on Y (resp. on X) and we have:

Proposition 5.9.11. (a) The mapping x−→ Bx is a linear injection from X into the space of linear
forms on Y .

(b) The mapping y−→ By is a linear injection from Y into the space of linear forms on X .

Proof: It is a consequence of the fact that B(x,y) is a nondegenerate bilinear functional.�
Definition 5.9.12. Let X ,Y be vector spaces with duality given by a nondegenerate bilinear
functional B(x,y). Then we define:

(a) The topology σ (X ,Y ) as the topology on X generated by the family of mappings {By,y ∈ Y} .
(b) The topology σ (Y,X) as the topology on Y generated by the family of mappings {Bx,x ∈ X} .

The description of the topology generated by a family of linear forms is given in Theorems 5.9.5
and 5.9.6.

Definition 5.9.13. (Weak topologies)
Let X be a normed space:

(a) The topology σ (X ,X∗) is called the weak topology on X induced by the bilinear functional
B(x, f ) = f (x) ,x ∈ X , f ∈ X∗; so σ (X ,X∗) = τ ( f , f ∈ X∗).

(b) The topology σ (X∗,X) is called the weak∗ (weak star) topology on X∗ induced by the
bilinear functional B( f ,x) = f (x) ,x ∈ X , f ∈ X∗;
so σ (X∗,X) = τ (Bx,x ∈ X), where Bx : X∗ −→K is defined by Bx ( f ) = f (x) .

Theorem 5.9.14. (a) The family of sets Vε,n = {x ∈ X : | fi (x)|< ε, i = 1,2, ...,n} where ε > 0,n≥
1, fi ∈ X∗, i = 1,2, ...,n is a base of neighborhoods of 0 for the weak topology σ (X ,X∗) .
(b) The family of sets V ∗ε,n = { f ∈ X∗ : | fi (x)|< ε, i = 1,2, ...,n}
where ε > 0,n ≥ 1,xi ∈ X , i = 1,2, ...,n is a base of neighborhoods of 0 in X∗ for the weak−∗
topology σ (X∗,X) .

Proof: Apply Theorems 5.9.5 and 5.9.6.�

As an immediate consequence of this theorem we have:

Theorem 5.9.15. (a) The family of sets x+Vε,n,ε > 0,n≥ 1 is a base of neighborhoods of x ∈ X
for the weak topology σ (X ,X∗) .
(b) The family of sets g+V ∗ε,n,ε > 0,n≥ 1 is a base of neighborhoods of g ∈ X∗ for the weak−∗
topology σ (X∗,X) .

Theorem 5.9.16. The weak topology σ (X ,X∗) is compatible with the vector structure of X .
Moreover, the topology σ (X ,X∗) is Hausdorff. The same conclusions are valid for X∗,σ (X∗,X) .

Proof: The compatibility of σ (X ,X∗) and σ (X∗,X) comes from Theorem 5.9.6. To prove the
Hausdorff property, let us show first that if x ∈ X ,x 6= 0 there is a neighborhood Vx of x and a
neighborhood V0 of 0, in σ (X ,X∗), such that Vx∩V0 = /0. By the Hahn-Banach theorem there is
f ∈ X∗ such that f (x) 6= 0. On the other hand, since the field K is Hausdorff there is ε > 0 and δ > 0
such that the open sets Uε = {λ ∈K : |λ − f (x)|< ε} and Wδ = {λ ∈K : |λ |< δ} are disjoint.
Put Vx = f−1 (Uε) ,V0 = f−1 (Wδ ) then Vx∩V0 = /0 and since f is σ (X ,X∗) continuous, Vx,V0 are
open for the topology σ (X ,X∗). Now let x 6= y, by the preceding fact, there is a neighborhood Vx−y

of x− y and a neighborhood V0 of 0, in σ (X ,X∗), such that Vx−y∩V0 = /0. The sets Ax = y+Vx−y

and By = y+V0 are open neighborhoods in σ (X ,X∗) of x and y respectively, by the compatibility
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of σ (X ,X∗); moreover, they satisfy Ax∩By = y+(Vx−y∩V0) = /0, this proves that X ,σ (X ,X∗) is
Hausdorff. The proof is same for X∗,σ (X∗,X), and even simpler since it does not use Hahn-Banach
theorem.�

In the sequel we need to describe the σ (X ,Y )−linear forms. Let us start with the following
algebraic lemma

Lemma 5.9.17. Let f , f1, f2, ..., fn,be linear forms on a vector space X such that f is not 0. Let
M = {x ∈ X : f (x) = 0} be the kernel of f , and let Mi = {x ∈ X : fi (x) = 0} be the kernel of fi,
i = 1,2, ...,n.Suppose

n
∩
1

Mi ⊂M, then there are scalars λ1,λ2, ...,λn such that f = λ1 f1 +λ2 f2 +

...+λn fn.

Proof: See any basic algebra course.�

Theorem 5.9.18. Let X ,Y be vector spaces with duality given by a nondegenerate bilinear functional
B(x,y). A linear form f on X is σ (X ,Y ) continuous if and only if f = By for some y ∈ Y .

Proof: If f = By for some y ∈ Y , then f is σ (X ,Y ) continuous since σ (X ,Y ) is generated by
the family of mappings {By,y ∈ Y} (Definition 5.9.12.). Conversely, suppose that f is σ (X ,Y )
continuous, then there is an open set of the form V = {x ∈ X : |By j (x)|< ε, j = 1,2, ...,n} such that
V ⊂ {x ∈ X : | f (x)|< 1}. Put λ (x) = max

j
|By j (x)|; we have {x ∈ X : |λ (x)|< ε}=V and then{

x ∈ X : ε−1 |λ (x)|< 1
}
⊂ {x ∈ X : | f (x)|< 1}. Let x ∈ X and α > 0, applying λ to the vector

y = ε (λ (x)+α)−1 x we get λ (y) = ε (λ (x)+α)−1
λ (x)< ε ; by the above inclusion, this implies

that | f (y)|< 1 which gives | f (y)|= ε (λ (x)+α)−1 | f (x)|< 1 or | f (x)|< ε−1 (λ (x)+α) ,∀α >
0. If α −→ 0 we get | f (x)|< ε−1λ (x) ,∀x∈X and f (x) must be 0 if x∈∩

j
{x ∈ X : By j (x) = 0}.By

Lemma 5.9.17 there are scalars µ1,µ2, ...,µn such that
f = µ1By1 +µ2By2 + ...+µnByn

but then f = By, with y = µ1y1 +µ2y2 + ...+µnyn.�

Theorem 5.9.19. Let X be a normed space with norm topology τ , then:
(a) σ (X ,X∗)⊂ τ.
(b) σ (X ,X∗) = τ if and only if X is finite dimensional.

Proof: (a) The topology τ makes continuous the linear forms f ∈ X∗ and σ (X ,X∗) is the smallest
one having this property, so σ (X ,X∗)⊂ τ.

(b) If X is finite dimensional, the norm topology is the only Hausdorff topology compatible
with the vector structure of X (see Tychonoff Theorem Appendix 3). By Theorem 5.9.16 we deduce
the equality σ (X ,X∗) = τ . Conversely, suppose that σ (X ,X∗) = τ . Let V = {x ∈ X : ‖x‖< 1},
then V is also a σ (X ,X∗) neighborhood of 0; so there is ε > 0,n≥ 1, and f1, f2, ..., fn in X∗ such
that {x ∈ X : | fi (x)|< ε, i = 1,2, ...,n} ⊂ V. On the other hand, if fi (x) = 0, i = 1,2, ...,n, then
x = 0; indeed ∀k ≥ 1 we have fi (kx) = k fi (x) = 0, i = 1,2, ...,n, this shows that ∀k ≥ 1 kx ∈V , i.e

‖x‖< 1
k
,∀k ≥ 1 so x = 0. Consequently, the intersection of the kernels of f1, f2, ..., fn is {0}; from

Lemma 5.9.17 we deduce that f = λ1 f1 +λ2 f2 + ...+λn fn, for some scalars λ1,λ2, ...,λn. This
proves that X∗ is finite dimensional, and then X also is finite dimensional.�

Let us observe that on the space X∗ we can define three topologies that are: the strong topology
induced by the norm, the weak topology σ (X∗,X∗∗) induced by mean of the canonical duality
between X∗ and X∗∗ and finally the weak∗ topology. Relations between these topologies and some
fundamental facts are given below, for the proofs the reader is refered to [2]. We start with a
definition:
Definition 5.9.20. Consider the image X0 of X by the canonical isometry
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ϕ : X −→ X∗∗,ϕ (x)( f ) = f (x) ,x ∈ X , f ∈ X∗. Now define the bilinear form B : X∗×X0 −→K,
B( f ,ϕ (x)) = ϕ (x)( f ) = f (x). The bilinear form B is non degenerate and defines σ (X∗,X0) and
σ (X0,X∗) .

Theorem 5.9.21. With the above notations we have:
(a) σ (X∗,X0) = σ (X∗,X) .

(b) The isomorphism ϕ from X onto X0 = ϕ (X) is bicontinuous for
the topologies σ (X ,X∗) on X and σ (X0,X∗) on X0.

(c) The relative topology induced on X0 by the weak−∗ topology
σ (X∗∗,X∗) is σ (X0,X∗) .
(d) The canonical isometry ϕ : X −→ X∗∗ is continuous for the
topologies σ (X ,X∗) on X and σ (X∗∗,X∗) on X∗∗.

Theorem 5.9.22. Let τ∗ be the norm topology on X∗ then:
(a) σ (X∗,X)⊂ σ (X∗,X∗∗)⊂ τ∗.

(b) σ (X∗,X) = σ (X∗,X∗∗) if and only if X is reflexive.
(c) τ∗ = σ (X∗,X∗∗) if and only if X is finite dimensional.

Theorem 5.9.23. (Alaoglu)
The unit ball of X∗, that is B = { f ∈ X∗ : ‖ f‖ ≤ 1}, is compact
for the weak∗ topology σ (X∗,X) .

5.10 Exercises

108. Let X be a normed space, prove that:
‖ f‖= sup{| f (x)| ,‖x‖ ≤ 1} , if f ∈ X∗.
‖x‖= sup{| f (x)| , f ∈ X∗,‖ f‖ ≤ 1} , if x ∈ X .

109. (a) Let (xn) be a sequence in X . Prove that xn converges to x for the weak topology if and only
if for every f ∈ X∗, the sequence f (xn) converges to f (x) in K. We say that xn converges weakly
to x.
(b) Prove that the convergence of functions for the weak−∗ topology is identical to the simple
convergence.

110. (a) The norm convergence implies the weak convergence.
(b) The converse of (a) is not true: take the sequence xn = (δmn)m in the space c0 endowed with
the uniform norm and use the fact that c∗0 = l1 (Exercise 100(c)).

111. In the Banach space l1 the norm convergence is equivalent to the weak convergence (Apply
V.H.S Theorem Appendix 4).

112. Let X0 be the image of X by the canonical isometry ϕ : X −→ X∗∗ (Definition 5.9.2). Prove
that X0 is dense in X∗∗ for the weak−∗ topology σ (X∗∗,X∗) .

113. A subset A of a normed space X is bounded if sup{‖x‖ ,x ∈ A} < ∞; it is weakly bounded
if sup{| f (x)| ,x ∈ A} < ∞,∀ f ∈ X∗. In a Banach space A is bounded if and only if it is weakly
bounded.

114. Let X be a normed space with norm topology τ , M ⊂ X a vector subspace. Prove that M is
τ−closed if and only if it is σ (X ,X∗)−closed.

115. In a reflexive Banach space, prove that the unit ball B= {x ∈ X : ‖x‖ ≤ 1} is σ (X ,X∗)−compact.[use
the canonical isometryof X into X∗∗ and apply Alaoglu theorem].
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116. Let X ,Y be normed spaces and T : X −→ Y a linear continuous operator. We define the
operator T ∗ : Y ∗ −→ X∗ by: g ∈ Y ∗,T ∗ (g) = g◦T.
(a) Prove that T ∗ is linear continuous (T ∗ is the adjoint of T ).
(b) Let S : X −→ Y and T : Y −→ Z be linear continuous.Prove that

(T ◦S)∗ = S∗ ◦T ∗.
(c) Let T ∗∗ : X∗∗ −→ Y ∗∗ the adjoint of T ∗. Prove that T ∗∗ ◦ϕ (x) = ψ ◦T (x) ,x ∈ X where ϕ is
the canonical isometryof X into X∗∗ and ψ the canonical isometryof Y into Y ∗∗. Deduce from (a)
that ‖T‖= ‖T ∗‖ .

5.10 Exercises 77



6. HILBERT SPACES

Hilbert spaces are a natural generalization of the euclidean spaces of finite dimension Rn, which
means that several familiar geometric properties of Rn can be extended to infinite dimensional
spaces. Let us recall that the eucliden norm of Rn:

x = (x1,x2, ...,xn) ∈ Rn, ‖x‖=
(

n
∑

i=1
|xi|2

)1
2

is induced by the inner product:

x = (x1,x2, ...,xn) ,y = (y1,y2, ...,yn) , 〈x,y〉=
n
∑

i=1
xi.yi

which is a bilinear form on Rn satisfying ‖x‖= 〈x,x〉 1
2 .

6.1 Hermitian Forms

In what follows X is a vector space on the scalar field K= R or C, whose null vector will be
denoted by 0.

Definition 6.1.1. An hermitian form on X is a function ϕ : X×X −→K satisfying the conditions:
(i) For each fixed y in X the function x−→ ϕ (x,y) from X into K is linear.
(ii) (Hermitian symmetry) For all x,y in X we have ϕ (x,y) = ϕ (y,x), where z is the conjugate

of z.

Remark 6.1.2.
(a) The hermitian symmetry implies that ϕ (x,x) is real for all x in X .
(b) The hermitian symmetry implies also that:
ϕ (x,y+ z) = ϕ (y+ z,x) = ϕ (y,x)+ϕ (z,x) = ϕ (y,x)+ϕ (z,x)
= ϕ (x,y)+ϕ (x,z) .
ϕ (x,λy) = ϕ (λy,x) = λϕ (y,x) = λϕ (y,x) = λϕ (x,y) ,
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for all x,y in X and all λ ∈K.

Definition 6.1.3. An hermitian form ϕ on X is said to be non degenerated if:
ϕ (x,x)≥ 0, for all x ∈ X and ϕ (x,x) = 0 ⇐⇒ x = 0

An inner product on X is a non degenerated hermitian form on X and will be denoted by: 〈x,y〉,
x,y ∈ X .
Theorem 6.1.4. If 〈,〉 is an inner product on X , then:

(a) (Cauchy-Schwarz inequality) For every x,y ∈ X we have:

|〈x,y〉|2 ≤ 〈x,x〉.〈y,y〉

(b) The formula: ‖x‖= 〈x,x〉
1
2 , x ∈ X , defines a norm on X .

Proof: (a) For every x,y ∈ X and λ ∈K= R or C, we have 〈x+λy,x+λy〉 ≥ 0. Developping this
inner product, we get:
〈x+λy,x+λy〉= 〈x,x〉+λ 〈y,x〉+λ 〈x,y〉+λλ 〈y,y〉

if 〈y,y〉= 0 then y = 0 and 〈x,y〉= 0, so (a) is satisfied in this case.

if 〈y,y〉 6= 0 taking λ =−〈x,y〉
〈y,y〉

, we get:

〈x+λy,x+λy〉= 〈x,x〉− |〈x,y〉|
2

〈y,y〉
− |〈x,y〉|

2

〈y,y〉
+
|〈x,y〉|2

〈y,y〉
= 〈x,x〉− |〈x,y〉|

2

〈y,y〉
≥ 0

therefore |〈x,y〉|2 ≤ 〈x,x〉.〈y,y〉, and (a) is satisfied.
(b) If ‖x‖ = 0 then 〈x,x〉 = 0 and x = 0. On the other hand, for λ ∈ K and x ∈ X , we have

‖λx‖=
(

λλ 〈x,x〉
)1

2
= |λ |‖x‖ .

To see the triangle inequality, we have:
‖x+ y‖2 = 〈x+ y,x+ y〉= ‖x‖2 +‖y‖2 + 〈x,y〉+ 〈y,x〉
= ‖x‖2 +‖y‖2 +2Re(〈x,y〉)≤ ‖x‖2 +‖y‖2 +2 |〈x,y〉| ≤ ‖x‖2 +‖y‖2 +2‖x‖2 ‖y‖2

= (‖x‖+‖y‖)2, so ‖x+ y‖ ≤ ‖x‖+‖y‖ .�

Definition 6.1.5. A prehilbert space X ,〈.〉 is a vector space endowed with an inner product 〈.〉.
We say that X ,〈.〉 is a Hilbert space if it is complete with respect to the norm induced by the

inner product 〈.〉, as given in the theorem above.

Examples 6.1.6. (a) Let X =C [0,1] = { f : [0,1]−→K, f continuous} .
For f ,g ∈ X define 〈 f ,g〉=

∫ 1
0 f (t) .g(t)dt, the integral being a Riemann one.

It is well known, from the Riemann integral properties, that X is not complete for the norm

‖ f‖=
(∫ 1

0 | f (t)|
2 dt
)1

2
.

So X is a prehilbert space.

(b) Consider the space l2 =
{
(xn) ∈ CN : ∑

n
|xn|2 < ∞

}
and define:

For x = (xn) ,y = (yn) in l2, 〈x,y〉= ∑
n

xn.yn and ‖x‖2 = 〈x,x〉
1
2 =

(
∑
n
|xn|2

)1
2
.

Then l2 is a Hilbert space for the norm ‖x‖2, see example 5.1.14 (2) in chapter 5.

Proposition 6.1.7. (Parallelogram law)
In a prehilbert space X we have:
‖x+ y‖2 +‖x− y‖2 = 2

(
‖x‖2 +‖y‖2

)
, ∀x,y ∈ X .

Proof: We have:
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‖x+ y‖2 = 〈x+ y,x+ y〉= ‖x‖2 +‖y‖2 +2Re(〈x,y〉)
‖x− y‖2 = 〈x− y,x− y〉= ‖x‖2 +‖y‖2−2Re(〈x,y〉)

we get the proof by addition.�

6.2 Orthogonality

Definition 6.2.1. Let X be a prehilbert space. Two non zero distinct vectors x,y are orthogonal if
〈x,y〉= 0.

A family B of vectors in X is said to be orthogonal if for every x 6= y in B we have 〈x,y〉= 0. B
is orthonormal if it is orthogonal and ‖x‖= 1, for all x in B.

Proposition 6.2.2. (Pythagorean theorem)
If the vectors x,y are orthogonal then ‖x+ y‖2 = ‖x‖2 +‖y‖2 .
More generally, if x1,x2, ...,xn is a finite family of orthogonal vectors, we have:∥∥∥∥ n

∑
1

xi

∥∥∥∥2

=
n
∑
1
‖xi‖2 .

Proof: Since 〈x,y〉= 0, we have:
‖x+ y‖2 = 〈x+ y,x+ y〉= ‖x‖2 +‖y‖2 +2Re(〈x,y〉) = ‖x‖2 +‖y‖2 .∥∥∥∥ n

∑
1

xi

∥∥∥∥= n
∑
1
‖xi‖2 + ∑

i 6= j
〈xi,x j〉=

n
∑
1
‖xi‖2, since 〈xi,x j〉= 0,∀i 6= j.�

The proof of the following lemma uses the definition of the inner product and is left as exercise.

Lemma 6.2.3. Let x1,x2, ...,xn be a finite family of orthonormal vectors in a a prehilbert space X .
Then for every x ∈ X and all a1,a2, ...,an in K, we have:∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥2

= ‖x‖2−
n
∑
1
|〈x,xi〉|2 +

n
∑
1
|ai−〈x,xi〉|2 .

In many applications one aims to determine the best approximation of a vector x ∈ X by a linear

combination
n
∑
1

aixi of some given vectors x1,x2, ...,xn, in the sense of making the norm
∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥
minimum. The following theorem gives the best way to do this.

Theorem 6.2.4. Let x1,x2, ...,xn be a finite orthonormal system of vectors in a prehilbert space

X and let x ∈ X . Then the norm
∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥, when the scalars are varying in K, is minimal for

ai = 〈x,xi〉, i = 1,2, ...,n, and in this case the minimum is given by
(
‖x‖2−

n
∑
1
|〈x,xi〉|2

)1
2

. So we

deduce that
∥∥∥∥x−

n
∑
1
〈x,xi〉.xi

∥∥∥∥= (‖x‖2−
n
∑
1
|〈x,xi〉|2

)1
2
.

Proof: By Lemma 6.2.3 we have
∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥2

= ‖x‖2−
n
∑
1
|〈x,xi〉|2 +

n
∑
1
|ai−〈x,xi〉|2.

Since
∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥2

is positive, the R.H.S is minimal iff
n
∑
1
|ai−〈x,xi〉|2 = 0, that is ai = 〈x,xi〉,

i= 1,2, ...,n.In this case it is clear that the minimum value of
∥∥∥∥x−

n
∑
1

aixi

∥∥∥∥ is
(
‖x‖2−

n
∑
1
|〈x,xi〉|2

)1
2
.�

As an application we give an important extension to infinite orthonormal sequences (xn) in a
prehilbert space:
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Theorem 6.2.5. (Bessel Inequality)
Let (xn) be an infinite orthonormal sequence of vectors in a prehilbert space X and let x ∈ X .

Then we have ‖x‖2 ≥ ∑
n
|〈x,xn〉|2, where the equality occurs iff

∥∥∥∥x−
n
∑
1
〈x,xi〉.xi

∥∥∥∥−→ 0,n−→ ∞.

Proof: For each n≥ 1 and each finite subsequence x1,x2, ...,xn we have:

0≤
∥∥∥∥x−

n
∑
1
〈x,xi〉.xi

∥∥∥∥2

= ‖x‖2−
n
∑
1
|〈x,xi〉|2

this comes from Theorem 6.2.4, and gives ‖x‖2 ≥
n
∑
1
|〈x,xi〉|2; letting n−→∞, we get the inequality.

Finally, it is clear that equality occurs iff
∥∥∥∥x−

n
∑
1
〈x,xi〉xi

∥∥∥∥−→ 0,n−→ ∞.�

Let M be a subset of a prehilbert space X and let x ∈ X\M. Let us ask the following problem:
does there exist a vector y ∈ M giving the best approximation of x, that is, such that the norm
‖x− y‖ is minimal. If X is a Hilbert space and M is a closed convex subset of X , the solution is
given by:

Theorem 6.2.5. Let M be closed convex subset in a Hilbert space X .
Then for each x ∈ X , there is a unique vector y0 ∈M such that:

‖x− y0‖= inf{‖x− y‖ : y ∈M} .

Proof: Let us recall that M convex means
λ ∈K, 0≤ λ ≤ 1 =⇒ λM+(1−λ )M ⊂M.

Put d = inf{‖x− y‖ : y ∈M}, so there is a sequence (yn) in M such that
‖x− yn‖ −→ d,n−→ ∞.

We show that (yn) is a Cauchy sequence in X . By the Parallelogram law, we have:
‖(yn− x)+(ym− x)‖2 +‖(yn− x)− (ym− x)‖2 = 2

(
‖yn− x‖2 +‖ym− x‖2

)
which gives:
‖yn− ym‖2 = 2

(
‖yn− x‖2 +‖ym− x‖2

)
−4
∥∥1

2 (yn + ym)− x
∥∥2

since M is convex 1
2 (yn + ym) ∈M, and

∥∥1
2 (yn + ym)− x

∥∥≥ d
then we deduce that
‖yn− ym‖2 ≤ 2

(
‖yn− x‖2 +‖ym− x‖2

)
−4d2 −→ 0, n,m−→ ∞.

As X is complete, yn converges to some y0 ∈ M, because M is closed. So we deduce that
‖x− yn‖ −→ ‖x− y0‖= d, by the continuity of the norm.
Now we prove uniqueness. Take z0 ∈M with ‖x− z0‖= ‖x− y0‖= d and apply the Parallelogram
law to get:
‖(y0− x)+(z0− x)‖2 +‖(y0− x)− (z0− x)‖2 = 2

(
‖y0− x‖2 +‖z0− x‖2

)
= 4d2

So ‖y0 + z0−2x‖2 +‖y0− z0‖2 = 2
(
‖y0− x‖2 +‖z0− x‖2

)
= 4d2

Since
∥∥y0 + z0−2x2

∥∥= 4
∥∥1

2 (y0 + z0)− x
∥∥2 ≥ 4d2 we get ‖y0− z0‖ ≤ 0

that is y0 = z0.�
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Theorem 6.2.6. Let M be closed subspace of a Hilbert space X and let x ∈ X\M.
Then we have:

y0 ∈M and ‖x− y0‖= inf{‖x− y‖ : y ∈M} ⇐⇒ y0 ∈M and x− y0⊥M
where x− y0⊥M means 〈x− y0,y〉= 0,∀y ∈M.

Proof: Suppose y0 ∈M and x− y0⊥M. Then:
∀y ∈M,‖x− y‖2 = ‖(x− y0)− (y− y0)‖2 = ‖x− y0‖2 +‖y− y0‖2

by Pythagorean theorem, because x− y0⊥M and y− y0 ∈M. Consequently, ‖x− y‖2 ≥ ‖x− y0‖2.
So we get ‖x− y0‖= inf{‖x− y‖ : y ∈M} .

Conversely, suppose ‖x− y0‖ = inf{‖x− y‖ : y ∈M}. Let y ∈M and c ∈ R, so y0 + cy ∈M
and then ‖x− y0− cy‖ ≥ ‖x− y0‖. On the other hand, we have:
‖x− y0− cy‖2 = ‖x− y0‖2 + |c|2 ‖y‖2−2Re〈x− y0,cy〉

we deduce that |c|2 ‖y‖2−2Re〈x− y0,cy〉= ‖x− y0− cy‖2−‖x− y0‖2 ≥ 0.
Taking c = α〈x− y0,y〉, where α is real we get:
〈x− y0,cy〉= α |〈x− y0,y〉|2 and Re〈x− y0,cy〉= α |〈x− y0,y〉|2

Then the above inequality gives |〈x− y0,y〉|2
(

α2 ‖y‖2−2α

)
≥ 0. But with the choice 0 < α ≤

2
‖y‖

, we have α2 ‖y‖2−2α ≤ 0, so we deduce 〈x− y0,y〉= 0.�

Corollary 1. Let M be closed subspace of a Hilbert space X . Then every vector x ∈ X has a unique
representation of the form:

x = y+ z, with y ∈M and z⊥M
in fact y is the orthogonal projection of the vector x on the subspace M.

Proof: Let y0 be the orthogonal projection of the vector x on M. Then the vectors y = y0 and
z = x−y give the desired representation since by the preceding theorem x−y0⊥M. Let us prove the
uniqueness. Suppose x= y+z= y′+z′ with y,y′ ∈M,z,z′⊥M. But y−y′ ∈M and y−y′= z−z′⊥M,
so 〈y− y′,y− y′〉= 0, thus y− y′ = 0 = z− z′.�

Corollary 2. If M is a subset of M, put M⊥ = {x ∈ X , x⊥M}. Then M⊥ is a closed subspace of X .
Moreover, if M is a closed subspace of X , we have

X = M⊕M⊥, that is, X is the direct sum of M and M⊥.

Proof: observe that M⊥ is a closed subspace of X even if M is not a subspace and apply corollary
1.�

Definition 6.2.7. The vector y0 satisfying 〈x−y0,y〉= 0,∀y∈M, is called the orthogonal projection
of the vector x on the subspace M.

6.3 Orthonormal Bases

In this section we will have to deal with arbitrary families (xα) of vectors in a prehilbert space and
we should be able to define sums like ∑

α

〈x,xα〉xα . Let us start with the summability of arbitrary

families of scalars.

Definition 6.3.1. Let {xα ,α ∈ I} be an arbitrary family of positive real numbers. We say that

{xα ,α ∈ I} is summable if the family of finite sums
{

∑
α∈F

xα ,F ⊂ I, F finite
}

is bounded. In this

case we put ∑
α

xα = sup
{

∑
α∈F

xα ,F ⊂ I, F finite
}
.

Theorem 6.3.2. Let {xα ,α ∈ I} be a summable family of positive real numbers.
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Then the set D = {α ∈ I, xα 6= 0}= {α ∈ I, xα > 0} is at most countable.

Proof: For each integer n≥ 1, put Dn =

{
α ∈ I, xα >

1
n

}
.

Then {xα ,α ∈ I} summable implies Dn finite for all n, otherwise{
∑

α∈F
xα ,F ⊂ I, F finite

}
would not be bounded, contradicting summability.

Since D = ∪
n

Dn, we deduce that D is at most countable.�

Remark 6.3.3. By this theorem, if {xα ,α ∈ I} is summable, there is a sequence (αn)⊂ I such that
∀α ∈ I\(αn), xα = 0 and we have ∑

α

xα = ∑
n

xαn .

Remark 6.3.4. The remark above allows to formulate Bessel inequality (Theorem 6.2.5) as:
Let B = {xα ,α ∈ I} be an orthonormal family of vectors in a prehilbert space X . Then ∀x ∈ X
there is a sequence (αn)⊂ I such that ∀α ∈ I\(αn), 〈x,xα〉= 0 and ‖x‖2 ≥ ∑

n
|〈x,xαn〉|

2 .

Definition 6.3.5. Let {xα ,α ∈ I} be an arbitrary family of real or complex numbers. We say that
{xα ,α ∈ I} is absolutely summable if the family of moduli {|xα | ,α ∈ I} is summable in the sense
of Definition 6.3.1.
In this case there is a sequence (αn)⊂ I such that ∀α ∈ I\(αn), |xα |= xα = 0 , ∑

α

|xα |= ∑
n
|xαn |.

So we define the sum of the family {xα ,α ∈ I} by ∑
α

xα = ∑
n

xαn .

Definition 6.3.6. Let B = {xα ,α ∈ I} be an orthonormal family of vectors in a prehilbert space X .
We say that B is maximal if any orthonormal family C containing B coincides with B. We say that
B is an orthonormal base for the prehilbert space X , if B is maximal.
Let us recall that the subspace generated by a subset B⊂ X is defined by

M (B) =
{

x ∈ X : x =
n
∑
1

aixi,n≥ 1,ai ∈K,xi ∈ B
}

(finite linear combinations of vectors in B)
The closure M (B) of the subspace M (B) is also a subspace of X . In fact M (B) is the closed
subspace generated by a subset B, see Chapter 5 for details.

For a Hilbert space, the following theorem gives an exhaustive characterization of orthonormal
bases:
Theorem 6.3.7. Let B = {xα ,α ∈ I} be an orthonormal family of vectors in a Hilbert space X .
Then the following properties are equivalent:

(a) B is an orthonormal base for the space X
(b) If x ∈ X and x⊥B then x = 0
(c) M (B) = X
(d) For all x ∈ X : x = ∑

α

〈x,xα〉.xα

(e) For all x,y ∈ X : 〈x,y〉= ∑
α

〈x,xα〉.〈xα ,y〉

( f ) For all x ∈ X : ‖x‖2 = ∑
α

|〈x,xα〉|2 (Parseval Relation)

The numbers 〈x,xα〉 are called the Fourier coeffients of the vector x with respect to the orthonormal
base B.

Proof: See [2]
Theorem 6.3.8. Every non trivial Hilbert space has an orthonormal base.

Proof: Let S be the set of all orthonormal families in a given Hilbert space and put on S the
inclusion ordering. We prove that every chain F in S has an upper bound in S. To this end let
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S = ∪
s∈F

s, then it is clear that S is an upper bound for F; moreover, S is orthonormal. Indeed, let

x1,x2 ∈ S and s1,s2 ∈ F , with x1 ∈ s1,x2 ∈ s2; since F is a chain (that is totally ordered family) we
can assume that s1 ⊂ s2. So both x1,x2 are in s2, but s2 is orthonormal, therefore ‖x1‖= ‖x2‖= 1
and x1⊥x2. We deduce that S is orthonormal. Now apply Zorn lemma to get that S has a maximal
element B which is an orhnormal base for the given Hilbert space.� [osidafunctional],
The reader is refeered to Chapter 1 for all concepts attached to partial ordering.

The following definition gives an important example of Hilbert space.

Definition 6.3.9. Let A be an arbitrary non empty set and consider the following:

l2 (A) =
{
(xα)α∈A ⊂K : ∑

α

|xα |2 < ∞

}
Note that x = (xα)α∈A ∈ l2 (A), implies, by Theorem 6.3.2, the existence of a countable set D = Dx

such that xα = 0,∀α ∈ A\Dx. With these , l2 (A) is a vector space and ‖x‖2 =

(
∑
α

|xα |2
)1

2 is a

norm making it a Banach space (The proof of these facts is similar to that given in Example 5.1.14
(2), Chapter 5).
Now let x = (xα) ,y = (yα) be in l2 (A), so there are countable sets Dx,Dy ⊂ A such that xα =
0,∀α ∈ A\Dx and yα = 0,∀α ∈ A\Dy. Consequently, xα .yα = 0,∀α ∈ A\Dx∩Dy and the trivial

inequality |xα .yα | ≤
1
2

(
|xα |2 + |yα |2

)
implies that the family (xα .yα) is absolutely summable.

Then we put 〈x,y〉 = ∑
α∈Dx∩Dy

x.yα ; it is easy to check that 〈x,y〉 is an inner product inducing the

norm ‖x‖2, from which we deduce that l2 (A) is a Hilbert space.

The outstanding fact about the spaces l2 (A) is that they allow, in some sense, a classification of
Hilbert spaces. More precisely we have:

Theorem 6.3.10. Let A be an arbitrary non empty set and let X be a Hilbert space,with an
orthonormal base B having the same cardinal as A. Then there is an isometric isomorphism ϕ from
X onto l2 (A).
Proof: Since A and B have the same cardinal there is a bijection between them (see Chapter 1,
section 8), and we can write B = {xα ,α ∈ A}. On the other hand let x ∈ X ; according to Theorem
6.2.13 (d) ,( f ), we have x=∑

α

〈x,xα〉.xα and ‖x‖2 =∑
α

|〈x,xα〉|2. Therefore (〈x,xα〉,α ∈ A)∈ l2 (A)

and we define
ϕ : X −→ l2 (A) by ϕ (x) = (〈x,xα〉,α ∈ A) (Fourier coefficents of x). Theorem 6.2.13 ( f ) implies
that ϕ is an isometry and since it is linear we deduce that it is injective. We prove that it is surjective.
Let a = (aα) ∈ l2 (A) , then ∑

α

|aα |2 < ∞; this implies that aα = 0 except for a sequence α1,α2, ....

Put x = ∑
n

aαn .xαn ; apply the lemma below to get the convergence of this series, so x is well defined.

Since {xα ,α ∈ A} is orthonormal we have aα = 〈x,xα〉,∀α ∈ A (why?), therefore ϕ (x) = a and ϕ

is surjective.�

Lemma. Let y1,y2, ... be an orthonormal sequence in a Hilbert space X and let c1,c2, ... be in K.
Then the series ∑

n
cn.yn converges iff ∑

n
|cn|2 < ∞.

Proof: Consider the partial sums
n
∑

i=1
ci.yi.

We have
∥∥∥∥ m

∑
i=n

ci.yi

∥∥∥∥2

=
m
∑

i=n
|ci|2 .‖yi‖2 =

m
∑

i=n
|ci|2 by the orthonormality of the yn, thus

n
∑

i=1
ci.yi is

Cauchy in X iff
m
∑
1
|ci|2 is Cauchy in R.�
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The classification of separable Hilbert spaces is given by:

Theorem 6.3.11. A Hilbert space X is separable if and only if X has a countable orthonormal base.
If the base is finite the space is isometrically isomorphic to Kn for some n. If the base is infinite the
space is isometrically isomorphic to l2 (N) .

Proof: Let B be an orthonormal base for X and let x 6= y be in B. Then we have (∗) ‖x− y‖2 =

‖x‖2 +‖y‖2 = 2. For each x ∈ X consider the open ball Ax =

{
y : ‖x− y‖< 1

2

}
and observe that

t 6= s =⇒ At ∩As = /0, because of the relation (∗). Let D be a dense set in X . So each set Ax

contains at least one point of D. Consequently, if B is not countable, the family {Ax,x ∈ B} also
will not be countable, so D will not be countable and X would not be separable.
Conversely, suppose that B is countable, B = {x1,x2, ...}. We know from Theorem 6.2.13 (c) that
M (B) = X (M (B) is the subspace generated by B). Now consider the family of vectors

D =

{
n
∑
1

ak.xk : n≥ 1,xk ∈ B,ak ∈ C,ak = sk + i.tk, sk, tk ∈Q
}

It is not difficult to show that D is countable and that M (B)⊂ D; since M (B) = X we deduce that
D = X and X is separable.�

6.4 Dual Space

Let X be a prehilbert space, we denote by X∗ the topological dual of X , that is, the space of
continuous linear functionals ϕ : X −→K, normed with ‖ϕ‖= sup{|ϕ (x) : ‖x‖ ≤ 1|}. We know
that for every normed space X the dual X∗ is a Banach space.
When X is a Hilbert space, we will see that X is isometric to its dual. Let us start with the following:

Theorem 6.4.1. Let X be a prehilbert space. For each y ∈ X , the function
ϕy : X −→K given by ϕy (x) = 〈x,y〉, x ∈ X

is a continuous linear functional with norm ‖ϕy‖= ‖y‖.

Proof: It is clear that ϕy is linear. By the Cauchy-Schwarz inequality, for every x,y ∈ X we have:
|〈x,y〉|2 ≤ 〈x,x〉.〈y,y〉. So ‖ϕy (x)‖ ≤ ‖x‖‖y‖. This proves that ϕy is continuous and ‖ϕy‖ ≤ ‖y‖.
On the other hand, |ϕy (y)|= |〈y,y〉|= ‖y‖2 ≤ ‖ϕy‖ .‖y‖, thus ‖ϕy‖ ≥ ‖y‖, whence ‖ϕy‖= ‖y‖.�

Theorem 6.4.2. (Riesz)
Let X be a Hilbert space, with dual X∗ . Then we have:
(a) For each ϕ ∈ X∗, there is a unique y ∈ X such that ϕ = ϕy.

(b) The function y−→ ϕy is a bijective isometry of X onto X∗.

Proof: (a) Let ϕ ∈ X∗, and let N = {x ∈ X : ϕ (x) = 0} be the kernel of ϕ and suppose ϕ not
identically null. Then N 6= X and N is closed, so X = N⊕N⊥. We have N⊥ 6= {0} and there
is y0 ∈ N⊥, y0 6= 0. Let us observe that the two linear functions ϕ,ϕy0 are null on the same
subspace, that is N, so there is λ ∈ K such that ϕ = λ .ϕy0 (see Appendix 3).We deduce that
ϕ (x) = λ .ϕy0 (x) = λ .〈x,y0〉= 〈x,λ .y0〉, ∀x∈X . This gives ϕ =ϕy, with y= λ .y0. The uniqueness
is clear since if 〈x,y〉= 〈x,y′〉,∀x ∈ X , we have y− y′⊥x, whence y− y′ = 0.

(b) We have ϕy+y′ = ϕy +ϕy′ and ϕλy = λ .ϕy, this proves that y−→ ϕy is semilinear if K= C
and is linear if K = R. Since ‖ϕy‖ = ‖y‖, it comes that y −→ ϕy is one-to-one, and by (a) it is
onto.�
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6.5 Exercises

117. Let X be a prehilbert space with inner product 〈x,y〉.
Prove that the function (x,y)−→ 〈x,y〉 from X×X into K is continuous.

118. Show that Cauchy-Schwarz inequality (Theorem 6.1.4(a)) is strict iff the vectors x,y are
linearly independent, which means: there is no scalar λ with y = λ .x .

119. Let X be a prehilbert space and A a subset of X . Define:
A⊥ = {x ∈ X : x⊥a, ∀a ∈ A}
(a) Prove that A⊥ is a closed subspace of X .
(b) A⊂ B =⇒ B⊥ ⊂ A⊥

(c) A⊂
(
A⊥
)⊥

.

120. Let X be a Hilbert space and M is a closed subspace of X .

Prove that M =
(
M⊥
)⊥

.

121. Let M be a closed subspace of a Hilbert space X . and define the mapping P : X −→M, by:
x ∈ X , P(x) = y, where y is the orthogonal projection of x on M.
Prove that P is linear, continuous and satisfies P2 = P◦P = P.

122. Let X be a Hilbert space and P : X −→ X , a linear continuous operator of X . Assume
P2 = P◦P = P. and define the subsets of X :

M = {x ∈ X : P(x) = x} , N = {x ∈ X : P(x) = 0}

(a) Prove that M and N are closed subspaces of X and M∩N = {0}.
(b) Prove that vector x ∈ X has a unique representation of the form:
x = y+ z, with y ∈M and z ∈ N.
(c) Prove that N = M⊥.

123. Let x1,x2, ...,xn be n linearly independent vectors in a Hilbert space X . Let M be the subspace
generated by x1,x2, ...,xn.

Prove that the orthogonal projection of the vector x ∈ X on M is the vector
n
∑
1
〈x,xi〉.xi (observe

that M is a closed subspace of X and apply Lemma 6.2.3).

124. (Gram-Schmidt Process)
Let B = {x1,x2, ...} be a sequence of linearly independent vectors in a Hilbert space X . We

define the sequence of vectors e1,e2, ... by the process:

e1 =
x1

‖x1‖
, e2 =

x2−〈x2,e1〉
‖x2−〈x2,e1〉‖

, ...,en =

xn−
n−1
∑
1
〈xn,ei〉.ei∥∥∥∥xn−

n−1
∑
1
〈xn,ei〉.ei

∥∥∥∥
Note that the vector

n−1
∑
1
〈xn,ei〉.ei is the orthogonal projection of the vector xn on the subspace

M (e1,e2, ...,en) generated by e1,e2, ...,en (Exercise 123).
(a) Prove that M (e1,e2, ...,en−1) = M (x1,x2, ...,xn−1) , ∀n.

Deduce that xn 6=
n−1
∑
1
〈xn,ei〉.ei and so en is well defined.

(b) Prove that the sequence {e1,e2, ...,en, ......} is an orthonormal base of the
closed subspace M (B).

125. Let A : X −→ X be a linear continuous operator of a Hilbert space X .
(a) Show that for each y ∈ X the function x−→ 〈Ax,y〉 is in the dual X∗.
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So there is a unique vector αy ∈ X such that 〈Ax,y〉= 〈x,αy〉,∀x ∈ X .
(b) Let A∗ : X −→ X be the mapping given by: A∗ (y) = αy

Prove that A∗ is a linear continuous operator of X with norm ‖A∗‖= ‖A‖ .
(A∗ is the adjoint operator of the operator A satisfying 〈Ax,y〉= 〈x,A∗ (y)〉)
(c) Prove that:
(i) (A◦B)∗ = B∗ ◦A∗

(ii) A = A∗ (A selfadjoint)⇐⇒ 〈Ax,x〉 is real ∀x ∈ X .

126. Let A : X −→ X be a linear continuous operator of a Hilbert space X .
Prove that the following properties are equivalent:
(a) A∗ ◦A = I, (I is the idendity operator of X)
(b) 〈Ax,Ay〉= 〈x,y〉,∀x,y ∈ X
(c) ‖Ax‖= ‖x‖ ,∀x ∈ X .
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7. TOPOLOGICAL VECTOR SPACES

This chapter may be considered as an introduction to topological vector spaces with some basic
properties. The notion of completeness, we will deal with, is of particular importance. This will be
done through the concept of generalized Cauchy sequences.

7.1 Compatible Topology on a Vector Space

Definition 7.1.1. Let X be a vector space on the field K (= R or C) and let τ be a topology on X .
We say that τ is compatible with respect to the vector structure of X if the following mappings:

(x,y)−→ x+ y, from X×X into X
(λ ,x)−→ λ .x, from K×X into X

are continuous with respect to the product topology on X×X and K×X .
The vector space X endowed with such topology is called a topological vector space, abreviated
(t.v.s) .

Examples 7.1.2. (a) Every normed space is a t.v.s.
(b) The space Kn with the product topology is a t.v.s.

Note the following consequence of the definition:

Theorem 7.1.3. In a t.v.s X :
The translations τa : x−→ x+a, a ∈ X , and the homothetic map ϕλ : x−→ λ .x, λ ∈K, λ 6= 0 are
homeomorphisms of X .

Proof: The inverse of the translation τa is the translation τ−a and the inverse of the homothetic map
ϕλ is the homothetic map ϕλ−1 ; so it is enough to prove continuity. But it comes from Definition
7.1.1 and the following decompositions:

τa : x−→ (x,a)−→ x+a
ϕλ : x−→ (λ ,x)−→ λ .x. �

Corollary For x ∈ X , denote by V (x) the family of neighborhoods of x. Then:
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W ∈ V (x) ⇐⇒ ∃V ∈ V (0) : W = x+V
where x+V = {x+ z, z ∈V} .

Notations
Let X be a vector space on the field K and A,B⊂ X , Λ⊂K, we define:

A+B = {x+ y, x ∈ A,y ∈ B}
x+A = {x+ z, z ∈ A}
Λ.A = {λ .x : λ ∈ Λ,x ∈ A}
−A = {−x : x ∈ A} .

Theorem 7.1.4. In a t.v.s X :
(a) The mapping u : (x,y)−→ x− y, is continuous from X×X into X
(b) For each neighborhood V in V (0) there is a W in V (0) such that

W +W ⊂V
(c) For each neighborhood V in V (0) there is a W in V (0) such that

W −W ⊂V
(d) For each neighborhood V in V (0) there is a W in V (0)

and there is ε > 0 such that
Λε .W ⊂V , where Λε = {λ ∈K : |λ |< ε} .

Proof: (a) Write u as g ◦ f , where f : X ×X −→ X ×X is given by f (x,y) = (x,−y) and g :
X×X −→ X defined by g(x,y) = x+ y. Now f is continuous since its components π1 (x,−y) = x
and π2 (x,−y) =−y are abviously continuous. The mapping is continuous by the definition of a
t.v.s.

(b) comes from the continuity of (x,y)−→ x+y at (0,0), indeed if V is a neighborhood of 0 in
X there is W1,W2 in V (0) such that W1 +W2 ⊂V , then W =W1∩W2 works.

(c) proof similar to that of (b) .
(d) comes from the continuity of (λ ,x)−→ λ .x at (0,0) .�

Definition 7.1.5. A subset A of a t.v.s is balanced if λ .A⊂ A for all λ ∈K, with |λ | ≤ 1, that is A
is invariant by the mappings x−→ λ .x for all λ ∈K, with |λ | ≤ 1.

Theorem 7.1.6. In a t.v.s X , the family of open balanced neighborhoods of 0 is a base for V (0).
This means that for every U ∈ V (0) there is an open balanced neighborhood V of 0 with V ⊂U .

Proof: By Theorem 7.1.4(d) for each neighborhood U in V (0) there is an open set W in V (0)
and there is ε > 0 such that

Λε .W ⊂U , where Λε = {λ ∈K : |λ |< ε}
On the other hand, λ .W is open (continuity of x−→ λ .x), so Λε .W = ∪

λ∈Λε

λ .W is open; moreover,

if |λ | ≤ 1 we have λ .Λε ⊂ Λε and then λ .Λε .W ⊂ Λε .W . This proves that the open set V = Λε .W
is balanced and since 0 ∈V ⊂U , achieves the proof.�

Definition 7.1.7. A t.v.s X is separated if it satisfies the axiom of Hausdorff:
For all x,y ∈ X with x 6= y, there is an open neighborhood V (x) of x and an open neighborhood
V (y) of y such that V (x)∩V (y) = /0.

Theorem 7.1.8. A t.v.s X is separated if and only if for every x 6= 0 there is an open neighborhood
V of 0 such that x /∈V.

Proof: The if part is clear. Conversely, suppose the condition satisfied and let x,y ∈ X with
x 6= y. We have z = x− y 6= 0, then there is an open neighborhood V of 0 such that z /∈ V .
Let W be a neighborhood of 0 such that W +W ⊂ V (Theorem 7.1.4(b)). Put U = W ∩−W ,
A = x+U , B = y+U . Then U is a neighborhood of 0 with U = −U ; A is a neighborhood of
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x; B is a neighborhood of y, and we have A∩B = /0, otherwise the vector z = x− y would be in
U−U =U +U ⊂W +W ⊂V , contradicting the choice of V .�
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Theorem 7.1.9. A t.v.s X is separated if and only if {0} is closed.

Proof: The if part is satisfied by Proposition 2.5.3(c), Chapter 2. Conversely, if {0} is closed,
every {x} is closed since {x}= x+{0}; so if x 6= 0, 0 /∈ {x} and 0 is not a limit point of the closed
set {x}, therefore there is a neighborhood V of 0 with V ∩{x}= /0, i.e x /∈V . Then the conclusion
comes from Theorem 7.1.8.�

7.2 Complete Topological Vector Spaces

The completeness property we give here for t.v.s is based on the concept of generalized Cauchy
sequences. This approch is simple and avoids using uniform topological structures.

Definition 7.2.1. Let Λ be a set endowed with a partial ordering ≺. We say that Λ is a net for the
relation ≺, if for every α,β ∈ Λ there is γ ∈ Λ such that α ≺ γ and β ≺ γ.

Examples 7.2.2. (a) The sets N and R are nets for their usual ordering.
(b) The power set P (X) of any set X is a net for the inclusion partial ordering.

Definition 7.2.3. A generalized sequence in a set X is a mapping from a net Λ into X : α ∈ Λ−→
xα ∈ X .
In the case Λ = N we get the usual sequence xn,n ∈ N.

Definition 7.2.4. Let X be a topological space and let (xα)α∈Λ
be a generalized sequence in

X . We say that (xα) converges to x if for each neighborhood V of x there is α0 ∈ Λ such that
∀α ∈ Λ,α0 ≺ α =⇒ xα ∈V. Notation lim

Λ
xα = x.

Proposition 7.2.5. Let X be a separated topological space and let (xα)α∈Λ
be a generalized

sequence in X . If (xα) converges the limit of (xα) is unique.

Proof: Similar to the usual sequences xn,n ∈ N.�

Definition 7.2.6. Let X be a t.v.s and let (xα)α∈Λ
be a generalized sequence in X . We say that

(xα) is a generalized Cauchy sequence if for each neighborhood V of 0 there is α0 ∈ Λ such that
∀α,β ∈ Λ, α0 ≺ α,β =⇒ xα − xβ ∈V.

Proposition 7.2.7. Let X be a t.v.s and let (xα)α∈Λ
be a convergent generalized sequence in X .

Then (xα) is a generalized Cauchy sequence.

Proof: Let x be the limit of (xα). For each neighborhood U of 0 there is α0 ∈ Λ such that
∀α ∈ Λ,α0 ≺ α =⇒ xα ∈ x+U. By Theorem 7.1.4(c), if V is a neighborhood of 0 there is a
neighborhood W of 0 such that W −W ⊂ V . Now there is α0 ∈ Λ such that ∀α,β ∈ Λ,α0 ≺
α,β =⇒ xα ∈ x+W,xβ ∈ x+W , but then xα − xβ ∈W −W ⊂V .�

Definition 7.2.8. A t.v.s X is complete if every generalized Cauchy sequence in X converges in X .
A subset E of X is complete if every generalized Cauchy sequence in E converges in E.

Theorem 7.2.9. Let A be a subset of a t.v.s X and let x be a limit point of A, then there is generalized
sequence (xα)α∈Λ

in A such that lim
Λ

xα = x. Moreover, the net Λ is independent of A and x, but

depends only on X .

Proof: Put Λ = B (0), where B (0) is a base of neighborhoods of 0 and define on Λ the following
partial ordering:

U,V ∈ Λ U <V ⇐⇒ U ⊃V
It is clear that Λ is a net. For each U ∈ Λ, choose xU ∈ x+U ∩A, this is possible since x ∈ A. We
prove that the generalized sequence (xU)U∈Λ

in A converges to x.
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Let W be a neighborhood of 0. There is U ∈ Λ with W ⊃U, because Λ = B (0). Now if V ∈ Λ

and U ⊃V, we have W ⊃V and xV ∈ x+W ,
which gives lim

Λ
xU = x.�

Theorem 7.2.10. (a) In a complete t.v. every closed subset is complete.
(b) In a separated t.v.s every complete subset is closed.

Proof: (a) Let X be a complete t.v.s and let A be a closed subset in X . Let (xα)α∈Λ
be generalized

Cauchy in A. Then (xα) is Cauchy in X so xα converges to x since X is complete. But (xα)⊂ A
then x is a limit point of A and x ∈ A because A is closed. So A is complete.

(b) Let X be a separated t.v.s and let A be a complete subset in X . We prove that A is closed.
Let x ∈ A, there is generalized sequence (xα)α∈Λ

in A converging to x (Theorem 7.2.9). This
implies that (xα) is Cauchy in A and then converges to a ∈ A since A is complete. So x = a by the
uniqueness of the limit, this gives x ∈ A and A is closed.�

Theorem 7.2.11. Let X ,Y be two t.v.s on the same field and let f : X −→ Y be a linear bijection
bicontinuous from X onto Y .

Then a subset E of X is complete if and only if f (E) is complete.

Proof: Let (xα)α∈Λ
be generalized sequence in E. Then (xα) is Cauchy in E iff yα = f (xα), λ ∈Λ

is Cauchy in f (E), because f is linear bijective. Now the conclusion comes from the definition of
completeness and the fact that f is bicontinuous.�
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8. TOPOLOGICAL VECTOR SPACES OF FINITE DIMENSION

Theorem 8.1.1. Every separated t.v.s X of finite dimension n on the field K= R,C is isomorphic
with Kn. More presisely for each basis {x1,x2, ...,xn} of X the mapping ϕ : Kn −→ X given by
ϕ (λ1,λ2, ...,λn) = λ1x1 +λ2x2 + ...+λnxn is an isomorphism of Kn onto X

Proof. ϕ is one to one: if ϕ (λ1,λ2, ...,λn) = ϕ (µ1,µ2, ...,µn) then (λ1−µ1)x1 +(λ2−µ2)x2 +
...+(λn−µn)xn = 0 and since {x1,x2, ...,xn} is a basis we get λi = µi ∀1≤ i≤ n.
ϕ is onto: let x∈X , since {x1,x2, ...,xn} is a basis of X there is a unique set of scalars {λ1,λ2, ...,λn}
such that x = λ1x1 +λ2x2 + ...+λnxn.
On the other hand, since X is Hausdorff one can prove that ϕ is bicontinuous and this implies that
X is locally compact.�

By the theorem above, any separated t.v.s of finite dimension is locally compact. The following
theorem gives the converse:

Theorem 8.1 2. (Riesz) Every locally compact separated t.v.s is of finite dimension.

Proof. For general t.v.s the proof uses the uniform structure of the space which has not been
considered in this book. So we give the proof in the case of a normed space, which is in fact
the original version of the theorem. Then let X be a locally compact normed space. Let B =
{x ∈ X : ‖x‖ ≤ 1} be the closed unit ball. We can consider B as compact, after modifying it, if
necessary by an homothetic transformation. So B can be covered by a finite set of open balls

B
(

xi,
1
2

)
, i = 1,2, ...n, of radius

1
2

. Let M be the subspace generated by x1,x2, ...,xn. M is closed

by Tychonoff theorem. We prove that M = X . To this end suppose there is x ∈ X \M, so we
have d (x,M) = α > 0, where d is the distance induced by the norm of X . Therefore there is

y ∈M such that α ≤ ‖x− y‖ ≤ 3α

2
. Let z =

1
‖x− y‖

.(x− y) then z ∈ B and there is 1≤ i≤ n such

that ‖z− xi‖ ≤
1
2

. On the other hand we have y+ ‖x− y‖ .z = y+ ‖x− y‖ .xi + ‖x− y‖ .(z− xi);

since y+‖x− y‖ .xi ∈M we deduce that
1
2
‖x− y‖ ≥ ‖x− y‖ .‖z− xi‖ ≥ α , and then ‖x− y‖ ≥ 2α ,
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which is a contradiction with the choice of y.�
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9. THE SPACE C (X)

Let X be a compact topological space and let C (X) be the Banach space of all continuous functions
f : X −→ R with the uniform norm:
‖ f‖= sup{ | f (x)| : x ∈ X}, f ∈C (X)

Some properties of the space C (X) are related essentially to the compactness structure of the space
X . We present in this Chapter two fundamental theorems frequently used in several applications:

The Stone-Weirstrass Theorem which gives an identification of the subsets A ⊂ C (X) that
are dense in C (X). As a consequence, the theorem allows some interesting approximations of
continuous functions.

The Arzela-Ascoli Theorem [3] which, by means of equicontinuity, describes conditions for
the compactness of some subsets in C (X) .

9.1 Stone-Weirstrass Theorem

First let us observe that C (X) is an algebra with the operations: f + g and f .g, for f ,g ∈C (X).
Next a subset A⊂C (X) is a subalgebra if it satisfies:

f ,g ∈ A,a,b ∈ R =⇒ a f +bg ∈ A, f .g ∈ A
The Stone-Weirstrass Theorem gives conditions under which a subalgebra
A⊂C (X) is dense in C (X) .
The theorem will be a consequence of the following four lemma.

Lemma 9.1.1. Consider the real function f (x) = |x|, −1≤ x≤ 1. then:
There exist a sequence of polynomials pn, without constant term, converging uniformly to f on

[−1,1], i.e such that lim
n
‖pn− f‖= 0.

Lemma 9.1.2. Let A⊂C (X) be a subset of C (X) satifying:
f ,g ∈ A =⇒ max( f ,g) ∈ A and min( f ,g) ∈ A.

Let f ∈C (X) be such that ∀x 6= y in X there is a sequence ( fn)⊂ A with:
fn (x)−→ f (x) and fn (y)−→ f (y)
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Then f ∈ A.

Lemma 9.1.3. Let A⊂C (X) be a closed subalgebra of C (X), then:
f ∈ A =⇒ | f | ∈ A and f ,g ∈ A =⇒ max( f ,g) ∈ A and min( f ,g) ∈ A

Lemma 9.1.4. Let A⊂C (X) be a subalgebra of C (X) with the properties:
(∗) ∀x 6= y in X , there is f ∈ A such that f (x) 6= f (y)
(∗∗) ∀x ∈ X , there is f ∈ A such that f (x) 6= 0

Then ∀x 6= y in X , and ∀a,b in R, there is f ∈ A such that f (x) = a, f (y) = b.

We prove lemma 9.1.3 and lemma 9.1.4, leaving the proof of the remaining lemmas to the
reader.

Proof of lemma 9.1.3: Let g ∈ A; if p is a polynomial without constant term, then p◦g ∈ A because

A is an algebra. Now let f ∈ A, f 6= 0, and put ‖ f‖= M, g(x) =
f (x)
M

,we have |g(x)| ≤ 1. If pn

is the sequence of polynomials of lemma 9.1.1 then lim
n
‖pn ◦g−|g|‖= 0. Since A is closed we

get |g| ∈ A and so | f | ∈ A. to finish the proof use the relations max( f ,g) =
1
2
( f +g+ | f −g|) and

min( f ,g) =
1
2
( f +g−| f −g|) .�

Proof of lemma 9.1.4: The conditions (∗) ,(∗∗) imply the existence of g,h,k in A such that:
g(x) 6= g(y) ,h(x) 6= 0,k (y) 6= 0

then we put:
u = g.k−g(x) .k, v = g.h−g(y) .h

we have u,v ∈ A and u(x) = v(y) = 0,u(y) 6= 0,v(x) 6= 0; we deduce that the function f (t) =

a.
v(t)
v(x)

+b.
u(t)
u(y)

works.�

Now we are in a position to state Stone-Weirstrass Theorem.

Theorem 9.1.5. (Stone-Weirstrass) Let A⊂C (X) be a subalgebra of C (X) with the properties:
(∗) ∀x 6= y in X , there is f ∈ A such that f (x) 6= f (y)
(∗∗) ∀x ∈ X , there is f ∈ A such that f (x) 6= 0

Then A is dense in C (X). In other words, if f ∈C (X) there is a sequence fn in A such that fn −→ f
uniformly on X .
( An algebra A⊂C (X) satisfying (∗) is said to separate the points of X ).
( An algebra A⊂C (X) containing the constants satisfies (∗∗) ).

Proof. It is not difficult to prove that A is a closed subalgebra of C (X), so by lemma 3, we have
f ,g ∈ A =⇒ max( f ,g) ∈ A and min( f ,g) ∈ A.

Let g ∈C (X). If x 6= y in X , and g(x) = a,g(y) = b in R, there is f ∈ A ⊂ A such that f (x) =
a, f (y) = b. This shows that the function g satisfies the conditions of lemma 9.1.2. which implies
that g ∈ A. Finally, A =C (X).�

Here is a complex version of Theorem 9.1.5., C (X) being the Banach space of complex valued
fonctions on X .

Theorem 9.1.6. Let A⊂C (X) be a subalgebra of C (X) with the properties:
(∗) ∀x 6= y in X , there is f ∈ A such that f (x) 6= f (y)
(∗∗) ∀x ∈ X , there is f ∈ A such that f (x) 6= 0
(∗∗∗) f ∈ A =⇒ f ∈ A where f is the conjugate of f .

Then A =C (X).�
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As an application of theorem 5 we have:

Theorem 9.1.7. Every continuous function f : [0,1] −→ R, is the uniform limit of a sequence
of polynomials on [0,1]; in other words, for each ε > 0 there is a polynomial P such that
|P(x)− f (x)|< ε,∀x ∈ [0,1] .

Proof. In the Banach space C [0,1], consider the algebra A of polynomials on [0,1]; it is clear
that A contains the constants and separates the points of [0,1], so by Theorem 9.1.5. we have
A =C [0,1] .�

9.2 Arzela -Ascoli Theorem

In this section we assume that X is a compact metric space, with distance d. Let A⊂C (X) be a
subset of C (X). We say that A is equicontinuous if:
∀ε > 0 ∃δ = δε such that x,y ∈ X ,d (x,y)< δ =⇒ | f (x)− f (y)|< ε,∀ f ∈ A.

Note that δ depends only on ε , but neither on x,y nor f .
Examples:
(a) Every finite family { f1, f2, ..., fn} of functions in C (X) is equicontinuous.
(b) Every sequence { fn,n≥ 1} ⊂C (X) uniformly convergent on X

is equicontinuous.

Theorem 9.2.1. (Arzela -Ascoli)
Let A⊂C (X) be an equicontinuous family satisfying:

sup{| f (x)| : f ∈ A}< ∞ for each x ∈ X
Then A is uniformly bounded, that is, sup{‖ f‖ : f ∈ A}< ∞ and A is compact.

See [1] for the proof.�

9.2 Arzela -Ascoli Theorem 97



10. SEMI GROUPS OF LINEAR BOUNDED OPERATORS

10.1 C0 Semigroups

In all what follows X will be a Banach space on the field K= R or C.

Definition 10.1.1. A one parameter family Tt , t ≥ 0 of linear bounded operators from X into X is a
semigroup if [6]:

(i) T0 = I, the identity operator of X
(ii) Tt+s = TtTs, for every t,s≥ 0

the linear operator A defined by A(x) = lim
t→0

Ttx− x
t

, with domain

D(A) =
{

x ∈ X : lim
t→0

Tt (x)− x
t

, exists
}

is the infinitesimal generator of the semigroup Tt .

Definition 10.1.2. A C0 semigroup of linear bounded operators on X is a semigroup satisfying:
lim
t→0

Ttx = x for every x ∈ X , that is lim
t→0
‖Ttx− x‖= 0.

Theorem10.1.3.
Let Tt , t ≥ 0 be a C0 semigroup of linear bounded operators on X .

Then there exist constants ω ≥ 0,M ≥ 1 such that ‖Tt‖ ≤M.eωt , for all t ≥ 0.

Proof: First we show that there is an η > 0 such that ‖Tt‖ is bounded on the interval 0≤ t ≤ η .
If this is not true we would have:

for each η > 0, ‖Tt‖ is not bounded on the interval 0≤ t ≤ η . So we have:
for η = 1, ∃t1,0≤ t1 ≤ 1 and ‖Tt1‖ ≥ 1
for η = 1

2 , ∃t2,0≤ t2 ≤ 1
2 and ‖Tt2‖ ≥ 2, and so on...

The step number n gives: for η = 1
n , ∃tn,0≤ tn ≤ 1

n and ‖Ttn‖ ≥ n. So there is tn ≥ 0 with lim
n

tn = 0

and ‖Ttn‖ ≥ n.From which we deduce that sup{‖Ttn‖ , tn ≥ 0}= ∞. By the Uniform Boundedness
Theorem there is x∈ X such that sup{‖Ttnx‖ , tn ≥ 0}= ∞. Since lim

n
tn = 0, there is a contraduction

with the property of a C0 semigroup given in Definition5.2. Thus there is η > 0 and M > 0 such
that ‖Tt‖ ≤M for 0≤ t ≤ η . Since ‖T0‖= 1 we have M ≥ 1.
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Put ω =
logM

η
≥ 0. For t ≥ 0 there is an integer n≥ 1 such that 0≤ t < (n+1)η (Archimedian

property of R). So we deduce that 0≤ t = n.η +δ for some 0≤ δ < η and by semigroup property
‖Tt‖=

∥∥Tn.η+δ

∥∥
= ‖Tδ Tn.η‖= ‖Tδ TηTη ...Tη‖≤ ‖Tδ‖‖Tη‖‖Tη‖ ...‖Tη‖≤Mn+1 =M.Mn =M.(eωη)n =M.eω.n.η .
Finally,since n.η ≤ t we deduce that ‖Tt‖ ≤M.eω.t .�

Corollary Let Tt , t ≥ 0 be a C0 semigroup of linear bounded operators on X .
Then for each x ∈ X , the function t −→ Ttx is continuous on [0,∞[

Theorem 10.1.4.
Let Tt t ≥ 0 be a C0 semigroup of linear bounded operators on X .

If A is its infinitesimal generator, then we have:

(a) For x ∈ X , lim
h→0

1
h

t+h∫
t

Tsx ds = Ttx

(b) For x ∈ X ,
t∫

0
Tsx ds ∈ D(A)

(c) For x ∈ D(A), Ttx ∈ D(A) and
d
dt

Ttx = ATtx = TtAx

(d) x ∈ D(A), Ttx−Tsx =
t∫
s

TτAx dτ =
t∫
s

ATτx dτ

Corollary If A is the generator of a C0 semigroup then:
D(A) is dense in X and A is closed (see Definition 4.1 in Chapter 1).

10.2 The Hille-Yosida Theorem
Let us recall that if Tt is a C0 semigroup, then:
‖Tt‖ ≤M.eωt , for some M ≥ 1 and ω ≥ 0
If M = 1, ω = 0, we say that Tt is a C0 semigroup of contractions.

Definition 10.2.1.
Let A be a linear operator from X into X .
(a) The resolvent set ρ (A) of A is the set of λ ∈ C such that the inverse (λ I−A)−1 exists as a
bounded linear operator of X
(b) The family of bounded linear operators R(λ ,A) = (λ I−A)−1 ,λ ∈ ρ (A) is called the resolvent
of A

Theorem (Hille-Yosida)10.2.2.
A linear operator (unbounded) A is the generator of a C0 semigroup of contractions Tt if and only if:

(i) A is closed and D(A) = X

(ii) R+ ⊂ ρ (A) and for λ > 0, ‖R(λ ,A)‖ ≤ 1
λ

The following section gives another characterisation of the generator of a C0 semigroup of
contractions Tt .

10.3 The Lumer Phillips Theorem

Preliminaries 10.3.1. Let X be a Banach space and let X∗ be its dual.
We denote the value of x∗ ∈ X∗at x ∈ X by 〈x∗,x〉 or 〈x,x∗〉 . For every x ∈ X we define the duality
set F (x)⊂ X∗ by:
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F (x) =
{

x∗ : x∗ ∈ X∗ and 〈x∗,x〉= ‖x‖2 = ‖x∗‖2
}

From the Hahn-Banach theorem it follows that F (x) 6= φ for every x ∈ X .

Definition 10.3.2.
A linear operator A is dissipative if for every x∈D(A) there is x∗ ∈ F (x) such that Re〈Ax,x∗〉 ≤

0.

Theorem (Lumer-Phillips) 10.3.3.
Let A be a linear operator with dense domain D(A) in X .

(a) If A is dissipative and there is λ0 > 0 such that the range, R(λ0I−A) of λ0I−A is X , then A is
the generator of a C0 semigroup of contractions on X .
(b) If A is the generator of a C0 semigroup of contractions on X then
R(λ I−A)=X for all λ > 0 and A is dissipative. Moreover, for every x∈D(A) and every x∗ ∈F (x),
Re〈Ax,x∗〉 ≤ 0.

10.4 Complement: Uniformly Continuous Semigroups

Definition 10.4.1.
Let X be a Banach space and Tt t ≥ 0 a semigroup of bounded linear operators from X into X . The
semigroup is said to be uniformly continuous if:

lim
t→0
‖Tt − I‖= 0

the linear operator A defined by A(x) = lim
t→0

Ttx− x
t

, with domain

D(A) =
{

x ∈ X : lim
t→0

Tt (x)− x
t

, exists
}

is the infinitesimal generator of the semigroup Tt . From

the Definition it is clear that if Tt is a uniformly
continuous semigroup then: lim

s→t
‖Ts−Tt‖= 0.

Theorem 10.4.2.
A linear operator A is the infinitesimal generator of the uniformly continuous semigroup Tt if

and only if A is a bounded linear operator. In this case we have

Tt = etA = ∑
n≥0

(tA)n

n !

where the series converges in norm for every t ≥ 0.

Theorem 10.4.3.
Let Tt , St be uniformly continuous semigroups if

lim
t→0

Tt − I
t

= A = lim
t→0

St − I
t

then Tt = St for t ≥ 0.

Corollary Let Tt , be a uniformly continuous semigroup on X then:
(a) There is a constant ω ≥ 0 such that ‖Tt‖ ≤ eωt

(b) There exists a unique bounded linear operator A such that Tt = etA

(c) The operator A in part (b) is the infinitesimal generator of Tt

(d) t −→ Tt is differentiable in norm and
dTt

dt
= ATt = TtA.�
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11. MARKOV SEMI GROUPS AND TRANSITION FUNCTIONS

We consider a special class of semigroups of operators St , t ≥ 0, called Markov semigroups and
acting on the Banach space C (X) of all real continuous functions on compact metric space X . Such
semigroups are closely related to the notion of transition function also called markovian kernel.
Under some regularity conditions we will see that a transition function gives rise to a Markov
semigroup. By the way we need some convergence results about real measures. To this end we
endow the space X with its Borel σ−field B , that is the σ−field generated by the open sets of X
or by all real continuous functions on X , which is the same. It is known that the strong dual of C (X)
is the Banach space M of all real measures µ on the measurable space (X ,B), by the representation
Theorem of Riesz. We will be concerned by the subset M1 ⊂M of all probabilty measures equiped
with the weak∗ topology which gives the convergence we need: a sequence (µn)⊂M1 converges
to µ ∈M1 if

∫
X

f dµn converges to
∫
X

f dµ for all f ∈C (X) .

We start with the definition of Markov semigroups on the Banach space C (X) and their
continuity properties, giving some familiar examples. Then we introduce the notion of transition
functions focusing attention on their relation to Markov semigroups. These considerations lead to
the notion of stochastic continuity and the special class of Feller transition function. One important
fact that manages these concepts is the Chapmann-Kolmogorov equation that must be satisfied by a
transition function.

The last part is intended to the generation of Markov semigroups and an application to a
differential equation.

Let X be a compact metric space endowed with its Borel σ−field B , that is the σ−field
generated by the open sets of X or by all real continuous functions on X , which is the same. We
consider the Banach space C (X) of all real continuous functions on X .

Definition 11.1.1.
A family of operators St , t ≥ 0, on the Banach space C (X)

is called a Markov semigroup if:
(1) St+s = StSs, ∀t,s≥ 0, (S0 = I, the identity operator)
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(2) lim
t→0+

St f = f , ∀ f ∈C (X)

(3) St f ≥ 0 for f ≥ 0
(4) St1 = 1, ∀t ≥ 0, (1 is the constant function equal 1).

Remark.
(a) conditions (3) ,(4) imply that St , t ≥ 0 is a contractions semigroup:

indeed if f ≤ g we have by (3) St f ≤ Stg, so since for f ∈C (X)
−‖ f‖≤ f ≤‖ f‖we deduce−‖ f‖St1≤ St f ≤‖ f‖St1 and then |St f | ≤ ‖ f‖, whence ‖St f‖≤ ‖ f‖;
therefore ‖St‖ ≤ 1 and ‖St‖= 1 because St1 = 1.

(b) condition (2) means lim
t→0+

‖St f − f‖ = 0 and implies easly the uniform continuity of the

function t −→ St f for t > 0, since we have:
ε −→ 0+ =⇒‖St+ε f −St f‖= ‖St (Sε f − f )‖ ≤ ‖Sε f − f‖ −→ 0
ε −→ 0− =⇒‖St+ε f −St f‖= ‖St+ε ( f −S−ε f )‖ ≤ ‖ f −S−ε f‖ −→ 0
Example 11.1.2.
Let G : C (X)−→C (X) be a bounded operator such that:

G f ≥ 0, for f ≥ 0 and G1 = 1
Define St , t ≥ 0, on the Banach space C (X) by:

f ∈C (X) , St f = e−t . ∑
n≥0

tn

n! .G
n f , t ≥ 0

This is in fact the exponential semigroup exp(t [G− I]) .
The conditions on G imply that St is Markovian.

11.1 Transition Functions

Definition 11.2.1.
A transition function is a function Pt (x,A) with t ≥ 0,x ∈ X ,A ∈B, such that:
(1) the set function Pt (x, ·) is a probability measure on B for any t ≥ 0, x ∈ X
(2) the function Pt (·,A) is measurable for any t ≥ 0,A ∈B
(3) Chapmann-Kolmogorov equation:

Pt+s (x,A) =
∫

X Pt (x,dy) .Ps (y,A) for any t,s≥ 0,x ∈ X ,A ∈B
(4) P0 (x, ·) = δx (·), the Dirac function at x

In several applications the transition function has the following interpretation:
let us observe the random evolution of some system in the state space X : suppose the system

has state x at time t = 0, then for t > 0, Pt (x,A) is the probability that the system will jump to a
state in A at time t.

It is known that a tansition function, under some mild regularity conditions, can be used to
construct a stochastic process with values in X and having interesting path continuity properties
(see [2], [4]).

Now we consider the important class of Feller transition functions:
Definition 11.2.2.
A transition function Pt (x,A) has the Feller property if the function

x−→ Pt (x, ·) from X into the set M1 of probability measures on X is weak∗ continuous that is,
if for each t:

xn −→ x =⇒
∫

X Pt (xn,dy) . f (y)−→
∫

X Pt (x,dy) . f (y) ,n−→ ∞

for all f ∈C (X) .
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Definition 11.1.3.
A transition function Pt (x,A) is uniformly stochastically continuous if it satisfies the condition:
(C) for each ε > 0, lim

t→0+
.Pt (x,Uε (x)) = 1, uniformly with respect to x ∈ X

Uε (x) being the open ball centered at x with radius ε.
(C). is equivalent to lim

t→0+
.sup
x∈X

. [1−Pt (x,Uε (x))] = 0 for each ε > 0.

Theorem 11.2.4.
Let Pt (x,A) be a Feller transition function on X satisfying the condition (C) of the Definition

2.3, and put for any f ∈C (X) ,St f (x) =
∫

X Pt (x,dy) . f (y), then {St , t ≥ 0} is a Markov semigroup
on C (X) .

Proof
We have to check the conditions of Definition 1.1 for {St , t ≥ 0} :

first by the Feller property of Pt (x,A) we have St f ∈C (X).
By Chapmann-Kolmogorov equation we can write∫

X Pt+s (x,dy) .IA (y) =
∫

X Pt (x,dz) .
∫

X Ps (z,dy).IA (y)
this relation can be extended to simple functions by linearity, and by monotone convergence,
it will be satisfied by any bounded measurable function. So in particular for f ∈ C (X) we
have

∫
X Pt+s (x,dy) . f (y) =

∫
X Pt (x,dz) .

∫
X Ps (z,dy). f (y), that is St+s f = St (Ss f ), and this gives

the validity (1) Definition 1.1; on the other hand, since P0 (x, ·) = δx (·), we have S0 f (x) =∫
X δx (dy). f (y) = f (x) . Conditions (3) ,(4) are trivial; let us show condition (2) that is
lim

t→0+
St f = f , f ∈C (X) : since X is compact f is uniformly continuous,

so for ε > 0 there is η = ηε > 0 such that if d is the metric of X
x,y ∈ X , d (x,y)< η =⇒ | f (x)− f (y)|< ε

let Uη (x) be the open ball centered at x with radius η , we have:
|St f (x)− f (x)|= |

∫
X Pt (x,dy) .( f (y)− f (x))| ≤

∫
X Pt (x,dy) . | f (y)− f (x)|

=
∫

Uη (x) Pt (x,dy) . | f (y)− f (x)|+
∫

X\Uη (x) Pt (x,dy) . | f (y)− f (x)|
≤ sup .

y∈Uη (x)
| f (y)− f (x)|+2‖ f‖ . [1−Pt (x,Uη (x))]

≤ ε +2‖ f‖ .sup
x∈X

. [1−Pt (x,Uη (x))]

we deduce that ‖St f − f‖ ≤ ε +2‖ f‖ .sup
x∈X

. [1−Pt (x,Uη (x))]

letting t goes to 0 we get sup
x∈X

. [1−Pt (x,Uη (x))]−→ 0 by the stochastic continuity of Pt (x,A) and

then
lim

t−→0
.‖St f − f‖ ≤ ε ∀ε > 0, so we have lim

t−→0
.‖St f − f‖= 0.�

We just proved that any Feller transition function satisfying condition (C) generates a Markov
semigroup. Conversely, one can prove:

Theorem 11.2.5.
Let {St , t ≥ 0} be a Markov semigroup on C (X). Then there is a unique Feller transition

function satisfying condition (C) such that:
St f (x) =

∫
X Pt (x,dy) . f (y), ∀ f ∈C (X)

11.2 Markovian Generators

Definition 11.3.1.
Let Ω be a linear operator on C (X) with domain D (Ω). We say that Ω is a markovian pregenerator
if:
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(a) 1 ∈D (Ω) and Ω1 = 0 (1 is the constant function on X equal to 1)
(b) D (Ω) is dense in C (X)
(c) If f ∈D (Ω), λ ≥ 0 and f −λΩ f = g then: min

x
. f (x)≥ .min

x
.g(x)

Proposition 11.3.1.
Let Ω be a markovian pregenerator, then we have:(

c
′
)
∀λ ≥ 0 ‖ f‖ ≤ ‖ f −λΩ f‖, ∀ f ∈D (Ω)

in this case we say that Ω is dissipative.
Proof
We apply condition (c) of Definition 3.1 to f and − f in D (Ω) with f −λΩ f = g.
We get min

x
. f (x)≥ .min

x
.g(x) and min

x
.− f (x)≥ .min

x
.−g(x), and deduce:

−‖g‖ ≤ .min
x

.g(x)≤min
x
. f (x)≤ f (x)≤max

x
. f (x)≤ .max

x
.g(x)≤ ‖g‖

whence ∀x ∈ X ,−‖g‖ ≤ f (x)≤ ‖g‖ and then ‖ f‖ ≤ ‖g‖
since f −λΩ f = g, we get

(
c
′
)
.�

Remark.
Let us observe that in the relation f −λΩ f = g, the function g determines f uniquely by

(
c
′
)

;
indeed if f1−λΩ f1 = f2−λΩ f2 then:

( f1− f2)−λΩ( f1− f2) = 0 so ‖ f1− f2‖ ≤ 0 whence f1 = f2
since in this case we take g = 0.

In order to check condition (c) of Definition 3.1 we frequently use the following proposition:
Proposition 11.3.3.
Let Ω be satisfying the following principle:

f ∈D (Ω), and f (z) = min
x
. f (x) =⇒Ω f (z)≥ 0

then Ω satisfies condition (c) of Definition 3.1, so Ω is dissipative.
Proof
Let z ∈ X with f (z) = min

x
. f (x); such z exists since f is continuous on a compact space X , so for

λ ≥ 0 we have −λΩ f (z)≤ 0
and f (z)−λΩ f (z)≤ f (z) = min

x
. f (x), therefore

min
x
. f (x)≥ f (z)−λΩ f (z) = g(z)≥ .min

x
.g(x) which is condition (c).�

Example 11.3.4.
Let G be a linear operator on C (X) such that G(1) = 1 and G( f )≥ 0 if f ≥ 0, then Ω =G− I is

a markovian pregenerator. We use proposition 3.3 to check condition (c): if f (z) = min
x
. f (x) then

f − f (z)≥ 0 and so G( f − f (z)) = G f − f (z)≥ 0; this implies that Ω f (z) = G f (z)− f (z)≥ 0.
Definition. 11.3.5.

(1) Let Ω be a linear operator on C (X) with domain D (Ω). We say that Ω is closed if its
graph Γ = {( f ,Ω f ) , f ∈D (Ω)} is closed in the product space C (X)×C (X). In other words, Ω

is closed if for any sequence ( fn)⊂D (Ω) such that fn −→ f and Ω fn −→ g, we have f ∈D (Ω)
and Ω f = g.

(2) A linear operator Ω1 on C (X) with domain D (Ω1) and graph Γ1 is an extension of the
operator Ω,D (Ω) with graph Γ if Γ⊂ Γ1, that is D (Ω)⊂D (Ω1) and Ω1 f = Ω f ,∀ f ∈D (Ω) .

(3) If the closure Γ of a graph Γ of some operator Ω,D (Ω) is the graph of an operator Ω,D
(
Ω
)

we say that Ω is the closure of Ω, it is in fact the minimal closed extension of Ω.

Remark.

104 Chapter 11. MARKOV SEMI GROUPS AND TRANSITION FUNCTIONS



Ptolemy Scientific Research Press https://pisrt.org/

The closure Γ of a graph Γ defines a linear operator iff:
∀g 6= 0, (0,g) /∈ Γ

For markovian pregenerators the situation is given by:
Theorem 11.3.6.
Let Ω be a markovian pregenerator, then Ω has a closure Ω which is also a markovian pregenerator.
Proof

We prove that (0.h) ∈ Γ =⇒ h = 0
Let ( fn)⊂D (Ω) with fn −→ 0,Ω fn −→ h. Since by Proposition 3.2, Ω is dissipative we have for
g ∈D (Ω) and λ ≥ 0 :
‖(I−λΩ)( fn +λg)‖ ≥ ‖ fn +λg‖ ,λ ≥ 0

but (I−λΩ)( fn +λg) = fn−λΩ fn +λg−λ 2Ωg−→ λg−λ 2Ωg−λh,n−→ ∞

and ‖ fn +λg‖ −→ ‖λg‖; we deduce the inequality:∥∥λg−λ 2Ωg−λh
∥∥≥ ‖λg‖, valid for all λ > 0 and all g ∈D (Ω), so we get:

λ−1
∥∥λg−λ 2Ωg−λh

∥∥≥ λ−1 ‖λg‖, that is ‖g−λΩg−h‖ ≥ ‖g‖
letting λ goes to 0 we obtain ‖g−h‖ ≥ ‖g‖ for all g ∈D (Ω) and also for all g ∈C (X) because
D (Ω) is dense in C (X); taking g = h gives ‖h‖= 0.
Consequently, Γ is the graph of the closed extension Ω,D

(
Ω
)

of Ω. Let us prove that Ω is
markovian. We prove only condition (c) of Definition 3.1, the other conditions are evident.
Let f ∈ D

(
Ω
)
,λ ≥ 0 and put g = f −λΩ f , there exists ( fn) ⊂ D (Ω) such that fn −→ f and

Ω fn −→Ω f , so if gn = fn−λΩ fn we get gn −→ g;
Ω being markovian, min

x
. fn (x)≥ .min

x
.gn (x) ,∀n. But fn (x)−→ f (x) uniformly in x, this implies

min
x
. fn (x) −→ min

x
. f (x) because fn, f are continuous and X compact; likewise .min

x
.gn (x) −→

.min
x

.g(x) therefore

min
x
. f (x)≥ .min

x
.g(x) and Ω is markovian.�

Definition 11.3.7.
A markovian generator Ω is a closed pregenerator satisfying:
R(I−λΩ) =C (X) , for small λ > 0,R(I−λΩ) being the range of I−λΩ.

Proposition 11.3.8.
(a) Any bounded pregenerator on C (X) is a markovian generator.
(b) For a markovian generator we have R(I−λΩ) =C (X) , for any λ ≥ 0.
Proof
(a) It is well known that any bounded operator is closed. In order to prove that R(I−λΩ) =C (X) ,
for small λ > 0, we solve the equation f −λΩ f = g, for g ∈C (X) and 0 < λ < ‖Ω‖−1 . Indeed

for such λ the operator I−λΩ is invertible with inverse the Neumann series
∞

∑
n=0

.λ nΩn and the

equation f −λΩ f = g, has the solution f =
∞

∑
n=0

.λ nΩng.

(b) First we prove the implication:
λ > 0,R(I−λΩ) =C (X) , and λ < γ =⇒ R(I− γΩ) =C (X)

let g ∈C (X), we want to solve the equation f −λΩ f = g, for f ∈D (Ω),
let us define the linear operator T : C (X)−→D (Ω) by the recipe:

T (h) = λγ−1 (I−λΩ)−1 g+(γ−λ )γ−1 (I−λΩ)−1 h
where the inverse (I−λΩ)−1 exists since R(I−λΩ) =C (X) , and Ω is dissipative. On the other
hand, since Ω is dissipative we have:
‖T h1−T h2‖= (γ−λ )γ−1

∥∥∥(I−λΩ)−1 (h1−h2)
∥∥∥≤ (γ−λ )γ−1 ‖h1−h2‖

but 0 < (γ−λ )γ−1 < 1 so T is a contraction; let f be its fixed point and then T f = f ∈ D (Ω).
Therefore (I−λΩ) f = (I−λΩ)T f = λγ−1g+(γ−λ )γ−1 f
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which gives exactly f −λΩ f = g.�

We end this section with a version of Hille-Yosida Theorem adapted to the markov semigroups
context.
Theorem 11.3.9.
There is a one to one correspondence between markovian generators Ω on C (X) and markov
semigroups St , t ≥ 0, on C (X). It is given by:

(1) D (Ω) =

{
f ∈C (X) : lim

t−→0

St f − f
t

, exists
}

(2) f ∈D (Ω) ,Ω f = lim
t−→0

St f − f
t

(3) St f = lim
n−→∞

(
I− t

n Ω
)−n f , f ∈C (X), t ≥ 0

(4) f ∈D (Ω) , St f ∈D (Ω), and
d
dt

St f = ΩSt f = StΩ f

(5) If g ∈C (X), λ ≥ 0 then the unique solution of the equation

f −λΩ f = g, is given by f =
∞∫
0

e−tSλ tg.dt.

See [4] for the proof.�

11.3 Application

In general the operator Ω,D (Ω) is associated to the following
Cauchy problem: F

′
(t) = ΩF (t) , F (0) = f ∈D (Ω) .

If Ω is a markovian generator and F (t) ∈D (Ω) ,∀t ≥ 0, the Hille-Yosida Theorem gives the
unique solution to this problem in the form F (t) = St f , where St is the semigroup generated by Ω.
With this framework we have:

Theorem 11.4.1.
Let Ω be the generator of a markov semigroup St , t ≥ 0, on C (X) and let
F (t) ,G(t) be functions from [0,∞[ into C (X) such that:
(i) F (t) ∈D (Ω) ,∀t ≥ 0
(ii) G(t) is continuous on [0,∞[

(iii) F
′
(t) = ΩF (t)+G(t), for t ≥ 0

then we have F (t) = StF (0)+
t∫

0
St−sG(s) .ds

Proof
We have

St−s−hF (s+h)−St−sF (s)
h

=

St−s

[
F (s+h)−F (s)

h

]
+

[
St−s−h−St−s

h
.F (s)

]
+[St−s−h−St−s] .F

′
(s)

+[St−s−h−St−s]

[
F (s+h)−F (s)

h
−F

′
(s)
]

for 0≤ s≤ t and 0 < h < t− s, making h goes to 0 we get:

the left hand side goes to
d
ds

St−sF
′
(s)

for the right hand side we have:
the first term goes to St−sF

′
(s) by continuity of St−s

the second term goes to −St−sΩF (s) by (i) and Theorem 3.9
the third term goes to 0 by continuity of u−→ SuF

′
(s) ,u > 0

the fourth term goes to 0 since St−s and St−s−h are contractions
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Consequently for 0 < s < t
d
ds

St−sF
′
(s) = St−sF

′
(s)−St−sΩF (s)

= St−sG(s) by (iii)
since St−s is continuous in s and the same for G(s) by (ii), we deduce the continuity of the function
s−→ St−sG(s); we can perform the following integration

F (t)−StF (0) =
t∫

0
St−sG(s) .ds.�
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12. C0 SEMI GROUP OF CONTRACTIONS

In all what follows X will be a Banach space on the field K= R or C. Let us recall:

Definition 12.1.1 A one parameter family St , t ≥ 0 of linear bounded operators from X into X is a
semigroup if:

(i) S0 = I, the identity operator of X
(ii) St+s = StSs, for every t,s≥ 0

the linear operator A defined by A(x) = lim
t→0

Stx− x
t

, with domain

D(A) =
{

x ∈ X : lim
t→0

St (x)− x
t

, exists
}

is the infinitesimal generator of the semigroup St .

Definition 12.1.2. A C0 semigroup of linear bounded operators on X is a semigroup satisfying:
lim
t→0

Stx = x for every x ∈ X , that is lim
t→0
‖Stx− x‖= 0.

Definition 12.1.3. A C0 semigroup St , t ≥ 0 on X satisfying ‖St‖ ≤ 1,∀t ≥ 0
is called a C0 semigroup of contractions.

The following Theorem gives some useful properties of a C0 semigroup of contractions:

Theorem 12.1.4. Let St , t ≥ 0 be a C0 semigroup of linear bounded operators on X then we have:
(1). For each x ∈ X the function t −→ Stx from [0,∞[ into X
is continuous on [0,∞[.

(2). For all x ∈ X and all t ≥ 0, lim
h−→0

1
h

t+h∫
t

Ssx.ds = Stx

(3). For all x ∈ X and all t ≥ 0,
t∫

0
Ssx.ds ∈ D(A) and

A
(

t∫
0

Ssx.ds
)
= Stx− x
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(4). For all x ∈ X and all t > 0, Stx ∈ D(A) and the function t −→ Stx

is differentiable from ]0,∞[ into X and
d
dt

Stx = A(Stx) = StA(x) ,∀t > 0

(5). For all x ∈ X and all t > s≥ 0, we have:

Stx−Ssx =
t∫
s

A(Sux) .du =
t∫
s

SuA(x) .du

Proof:
(1). By definition 2 it is clear that the function t −→ Stx is continuous at t = 0.
Now take any t > 0 so that for h ≥ 0 we can write St+hx− Stx = St .(Shx− x) which implies
‖St+hx−Stx‖ ≤ ‖St‖ .‖Shx− x‖ ≤ ‖Shx− x‖
since ‖St‖ ≤ 1 by the contraction condition. But lim

h→0
‖Shx− x‖= 0 by definition 2. If h < 0 and

t +h > 0 write St+hx−Stx = St+h.(x−S−hx), then
‖St+hx−Stx‖ ≤ ‖St+h‖ .‖x−S−hx‖ ≤ ‖x−S−hx‖, because ‖St+h‖ ≤ 1. Finally, use the fact lim

h→0
‖x−S−hx‖= 0 to get lim

h→0
‖St+hx−Stx‖= 0.

So for both cases h≥ 0 and h < 0, St+hx−Stx goes to 0 as h−→ 0.
(2). Comes from the continuity of the function t −→ Stx, proved in (1), and usual properties of
Riemann integral for Banach space valued functions.

(3). Fix x ∈ X and h > 0, then we have
Sh− I

h

t∫
0

Ssx.ds =
1
h

t∫
0
(Ss+hx−Ssx) .ds because the operator

Sh− I : X −→ X is continuous. So we write:
1
h

t∫
0
(Ss+hx−Ssx) .ds =

1
h

t∫
0

Ss+hx.ds− 1
h

t∫
0

Ssx.ds and evaluate each integral as follows: making

variable change s+h = u we get
1
h

t∫
0

Ss+hx.ds =
1
h

t+h∫
h

Sux.du =
1
h

t∫
h

Sux.du+
1
h

t+h∫
t

Sux.du and

1
h

t∫
0
(Ss+hx−Ssx) .ds =

1
h

t∫
h

Sux.du+
1
h

t+h∫
t

Sux.du− 1
h

t∫
0

Ssx.ds

=
1
h

t+h∫
t

Sux.du− 1
h

h∫
0

Sux.du, letting h goes to 0 we get
1
h

t+h∫
t

Sux.du−→ Stx and
1
h

h∫
0

Sux.du−→ x

then
Sh− I

h

t∫
0

Ssx.ds−→ Stx− x so we deduce that
t∫

0
Ssx.ds ∈ D(A), and A

(
t∫

0
Ssx.ds

)
= Stx− x.

(4). Let x ∈ D(A) and t,h > 0, then by the semigroup property:
Sh− I

h
Stx = St

Sh− I
h

x =
St+hx−Stx

h
By the definition of D(A) and the continuity of the semigroup we get:

lim
h−→0+

Sh− I
h

Stx = St

(
lim

h−→0+

Sh− I
h

x
)
= StA(x)

This shows that Stx ∈ D(A) and A(Stx) = StA(x) =
d+

dt
Stx

where
d+

dt
Stx is the right derivative of Stx at t.

For the left derivative take 0 < h < t and write t = h+ t−h

so
Stx−St−hx

h
−StA(x) = St−h

(
Shx− x

h
−Ax

)
+St−hAx−StA(x)

since
∥∥∥∥St−h

(
Shx− x

h
−Ax

)∥∥∥∥≤ ∥∥∥∥Shx− x
h
−Ax

∥∥∥∥ because ‖St−h‖ ≤ 1

thus making h−→ 0 gives lim
h−→0+

St−h

(
Shx− x

h
−Ax

)
+St−hAx−StA(x) = 0
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finally lim
h−→0+

Stx−St−hx
h

−StA(x) = 0.so the function t −→ Stx is differentiable from ]0,∞[ into X

and
d
dt

Stx = A(Stx) = StA(x) ,∀t > 0.

(5).For all x ∈ X and all t > s≥ 0, we have to prove that:

Stx−Ssx =
t∫
s

A(Sux) .du =
t∫
s

SuA(x) .du

From point (4) we have
d
dt

Stx = A(Stx) = StA(x) ,∀t > 0 then

we get point (5) by integration from s to t :
t∫
s

d
dt

Stx.dt = Stx−Ssx =
t∫
s

A(Sux) .du =
t∫
s

SuA(x) .du.�

Corollary
If A is the generator of a C0 semigroup of contractions St , t ≥ 0 then
A is a closed operator with a dense domain D(A) .

Proof:
Let us start with some facts about closed operators.

Let X ,Y be normed spaces and T : X −→ Y a linear operator. The graph of T is the subspace Γ of
X×Y defined by Γ = {(x,T (x)) : x ∈ X}.
We say that T is closed if its graph Γ is closed in the product space X×Y endowed with the product
topology.

Remark: Let (xn) be a sequence in X and consider the conditions:
(i) xn −→ x,n−→ ∞

(ii) T (xn)−→ y
(iii) y = T (x)

then it is easy to see that:
T is closed⇐⇒ (i) and (ii) =⇒ (iii).
T is continuous⇐⇒ (i) =⇒ (ii) and (iii) .

It is known that if T : X −→ Y is linear continuous then T is closed.
But the converse is not true in general

(see any standard book on functional analysis).

going back to the proof of the corollary, let x ∈ X and t > 0 then

put xt =
1
t

t∫
0

Ssx.ds; by point (3) of Theorem 4, xt ∈ D(A) and

lim
t−→0+

xt = S0x = x this shows that D(A) is indeed dense in X .

Now we prove that A is closed: let xn ∈ D(A) be such that
xn −→ x and A(xn)−→ y when n−→ ∞

we have to show that x ∈ D(A) and A(x) = y.
By point (5) of Theorem 4, for any t > 0 we have

Stxn− xn =
t∫

0
SuA(xn) .du

but SuA(xn)−→ Suy for each u because Su is a bounded linear operator.

Let t > 0 and ε > 0 then ∃Nε,t ≥ 1 such that n≥ ∃Nε,t =⇒ ‖A(xn)− y‖< ε

t
but Su is a contraction so

n≥ ∃Nε,t =⇒ ‖SuA(xn)−Suy‖ ≤ ‖Su‖‖A(xn)− y‖< ε

t
then for n≥ ∃Nε,t we have
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0

SuA(xn) .du−
t∫

0
Suy.du

∥∥∥∥≤ t∫
0
‖SuA(xn)−Suy‖ .du < t.

ε

t
= ε

so for each t > 0
t∫

0
SuA(xn) .du−

t∫
0

Suy.du−→ 0,n−→ ∞ and we get:

for each t > 0 Stxn− xn −→ Stx− x =
t∫

0
Suy.du

whence
1
t
(Stx− x) =

1
t

t∫
0

Suy.du for each t > 0

letting t −→ 0 gives
1
t
(Stx− x)−→ Ax and by point (2) of Theorem 4,

1
t

t∫
0

Suy.du−→ y so Ax = y

and A is closed.�
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The purpose of this book is to make available to the student some fundamentals
of mathematical analysis. Speci. . . cally, it is intended to make such fundamen-
tals available in a form that meets their need in many applications, like real
analysis, integration, measure theory, and representation theory. The principal
point of view is to develop the basic structures of analysis, under which one
can appropriately go on further in the domain of functional analysis. The book
is intended to be essentially self contained and accessible to advanced un-
dergraduated students intended to Master degree courses. Its prerequisites
are main standards from basics algebra and real analysis. In writing this book,
we care about doing things as little abstract as possible. So, to make easy
the access to the main concepts, each section of each chapter is illustrated
by simple examples and exercises, which are mostly applications to concrete
problems. References of treatises on the domain are given at the end. We
hope that the book will reach the objectives assigned and especially will be
useful to the teatchers.
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