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Abstract

For strongly continuous semigroups on a Hilbert space, we present a short proof of the fact
that the left inverse of a left-invertible semigroup can be chosen to be a C0-semigroup as well.
Furthermore, we show that this semigroup need not to be unique. Moreover, we concentrate
to show the relation between left invertibility of C0-semigroups and exact observability, and
also we discuss the characteristic property of the left invertible semigroups on general Banach
spaces and admissibility of the observation operators for such semigroups.

Keywords : Strongly continuous semigroup, Left inverse, Exact observability, Admissibile ob-
servation operator.

Résumé

Pour les semigroupes fortement continus sur un espace de Hilbert, nous présentons une courte
preuve du fait que l’inverse gauche d’un semigroupe inversible à gauche peut également être
choisi pour être un C0-semigroupe. De plus, nous montrons que ce semigroupe n’est pas
unique. Ensuite, nous donnons la relation entre l’inversibilité à gauche des C0-semigroupes
et l’observabilité exacte, et aussi nous discutons de la propriété caractéristique des semigroupes
inversibles à gauche sur les espaces de Banach généraux et de l’admissibilité des opérateurs
d’observation pour de tels semigroupes.

Mots clé : Semigroupe fortement continu, Inverse à gauche, Observabilité exacte, Opérateur
d’observation admissible.
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List of abbreviations

R : The set of real numbers .
C : The set of complex numbers .
N : The set of natural numbers .
H1[a,b] : The Sobolev space of L2[a,b].
L2[a,b] : The space of square integrable functions on [a,b].
X,Z,Y : Complex Banach or Hilbert spaces of infinite-dimensional.
B(Z,Y ) : The space of bounded linear operators from Z to Y .
B(Z) : The space of bounded linear operators from Z to Z.
D(A) : Domaine of the operator A.
X∗ : The dual of the space X.
X∗∗ : The bidual of the space X.
A∗ : Adjoint of the operator A on the Banach or Hilbert space.
A−1 : The inverse of operator A.
Im A : The image of the operator A.
ker A : The kernel of the operator A.
Gr(A) : The graph of the operator A.
σ(A) : The spectrum of A.
σp(A) : The point spectrum of A.
σc(A) : The continuous spectrum of A.
σr(A) : The residual spectrum of A.
ρ(A) : The resolvent of A.
〈., .〉 : The inner product in Z.
‖A‖ : The norm of A.
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Introduction

The purpose of this study is to develop a research paper of HANS ZWART entitled ”Left-
invertible semigroup on Hilbert spaces” published in the Journal of Evolution Equation, 13(2013)
335-342.
The aim of this work is to study left invertible semigroups and its relation with exact observ-
ability. In [6], Louis and Wexler showed that if a strongly continuous semigroup on a Hilbert
space is left invertible for one or equivalently all positive time instants, then there exists a
left inverse which is also a strongly continuous semigroup. Their proof uses optimal control
and Riccati equations. The present work uses Lyapunov equations. Furthermore, using this
Lyapunov equation, the author showed that any left-invertible semigroup is a bounded pertur-
bation of an isometric semigroup, the results obtained in this work complement those found
in [4, 11] and [12], who mainly concentrate on the relation between left invertibility and exact
observability.
The thesis is organized in three chapters.

Chapter 1 is a reminder on essential notions, first we present some basic and important prop-
erties of linear bounded and unbounded operators, second we introduce basic concepts and
properties of semigroup. Finally we recall some notions from control theory.

In Chapter 2, We present some characteristic properties of the left invertible semigroups on
general Banach spaces and define the concept of admissibility of observation operators for such
semigroups.

In Chapter 3, We first establish necessary and sufficient conditions for a C0-semigroup on
Hilbert spaces to be left invertible. Then we present a proof based on Lyapunov equation of
the fact that the left inverse of a left-invertible semigroup can be chosen to be a C0-semigroup
as well. Finally, we show that any left-invertible semigroup is a bounded perturbation of an
isometric semigroup.



Chapter 1

Preliminaries

In this introductory chapter, we will introduce some basic concepts and well-known results that
facilitate the understanding of this work, in particular we recall

1. Bounded linear operators on Banach and Hilbert spaces.

2. Unbounded linear operators on Hilbert spaces.

3. Semigroups of linear operators.

4. Notions from control theory.

1.1 Bounded linear operators on a Banach and Hilbert spaces

Let Z and Y be two complex Banach spaces, and K the field R or C.

Definition 1.1.1 (Linear Operators)
We call linear operator any application A : Z −→ Y which satisfies

1. ∀x,y ∈ Z, A(x+ y) = Ax+Ay.

2. ∀λ ∈K, ∀x ∈ Z, A(λx) = λA(x) .

Definition 1.1.2 (Bounded operators)
We say that a linear operator A : Z −→ Y is bounded if there exists a constant M ∈R

∗
+ such

that
‖Ax‖ ≤M ‖x‖ , ∀x ∈ Z.

if A is a bounded linear operator, then its norm is defined by

‖A‖ := sup
x,0

‖Ax‖
‖x‖

.
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CHAPTER 1. PRELIMINARIES

The set of bounded linear operators defined from Z to Y is a Banach space denoted by B(Z,Y ),
if Z = Y we denote B(Z) instead of B(Z,Z).

Proposition 1.1.1
Let A, B ∈ B(Z) and λ ∈K, then A+B, λA and AB are also bounded operators. Moreover

‖AB‖ ≤ ‖A‖ ‖B‖.

Definition 1.1.3 (Inverse of an operator )
Let A ∈ B(Z), we say that A is invertible if there exists an operator B ∈ B(Z), which satisfies

AB =BA= I.

B is said to be the inverse of A and we denote it by B = A−1.

Definition 1.1.4 (Left and Right inverse of an operator)
Let A ∈ B(Z).

1. We say that A is left invertible if there exists an operator B ∈ B(Z) such that

BA= I.

2. We say that A is right invertible if there exists an operator B ∈ B(Z) such that

AB = I.

Theorem 1.1.1 (Banach isomorphism)
Let T : Z −→ Y be a linear bounded and bejective operator, then T−1 ∈ B(Y,Z).

Definition 1.1.5 (The resolvent set of an operator )
Let A ∈ B(Z), we say that λ ∈C belongs to the resolvent set of A if A−λI is a bijection from
Z into Z and (A−λI)−1 ∈ B(Z). The resolvent set of A is denoted by ρ(A).

ρ(A) = {λ ∈C : A−λI invertible } .

Definition 1.1.6 (The spectrum of an operator)
Let A ∈ B(Z). The spectrum of A denoted by σ(A) is the complement in C of ρ(A).

σ(A) = {λ ∈C : A−λI non invertible } .
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1.1. BOUNDED LINEAR OPERATORS ON A BANACH AND HILBERT SPACES

Definition 1.1.7
The point spectrum of A is the set of eigenvalues of A, denoted by σp(A), then

σp(A) = {λ ∈ σ(A) : A−λI non injective } .

The continuous spectrum of A denoted by σc(A) is the set

σc(A) =
{
λ ∈ σ(A) : A−λI injective and Im(A−λI) , Im(A−λI) = Z

}
.

The residual spectrum of A denoted by σr(A) is the set

σr(A) =
{
λ ∈ σ(A) : A−λI injective and Im(A−λI) , Z

}
.

Remark 1.1.1

1. The spectrum σ(A) is the disjoint union of three sets

σ(A) = σp(A)∪σc(A)∪σr(A).

2. If the dimension of the space Z is finite, then σc(A) = σr(A) = ∅. Hence σ(A) = σp(A).

3. If the dimension of the space Z is infinite, then σp(A) can be empty.

Proposition 1.1.2
Let A ∈ B(Z), then σ(A) is a closed and bounded nonempty subset of C. Moreover,

σ(A)⊂B(0,‖A‖).

Where B(0,‖A‖) is the closed disc of C with center zero and radius ‖A‖.

1.1.1 Dual of a normed spaces

Definition 1.1.8
Let Z be a normed space over the field K, The space B(Z,K) of continous linear functions
of Z in the field K is called the topological dual of Z, denoted by Z∗. Similarly, we denote
by Z∗∗ the dual of Z∗, which we call bidual of Z. We define a duality between Z and Z∗ by
〈x,f〉= f(x) ∈C, and we have

‖f‖Z∗ = sup
‖x‖≤1

|〈x,f〉|= ‖f‖= sup
‖x‖≤1

|f(x)|.

Theorem 1.1.2
Let Z and Y be two Banach spaces, for all A ∈ B(Z,Y ), there exists a unique A∗ ∈ B(Y ∗,Z∗),
such that

(A∗f)(x) = f(Ax), ∀x ∈ Z, ∀f ∈ Y ∗.

Moreover, ‖A‖B(Z,Y ) = ‖A∗‖B(Y ∗,Z∗).

5



CHAPTER 1. PRELIMINARIES

Proposition 1.1.3
Let Z be a Banach space, for all A,B ∈ B(Z), and for all α ∈K, we have

1. (A+B)∗ = A∗+B∗, and (αA)∗ = αA∗.

2. (AB)∗ =B∗A∗.

3. If A−1 exists and A−1 ∈ B(Z), then (A∗)−1 exists and (A∗)−1 ∈ B(Z∗), and (A∗)−1 =
(A−1)∗.

Theorem 1.1.3

1. Let Z be a normed space and Y a Banach space, then (B(Z,Y ),‖.‖) is a Banach space.

2. The topolgical dual of any normed space Z is a Banach space.

1.1.2 Adjoint of a bounded opeartors on a Hilbert spaces

In this part we suppose that Z and Y are Hilbert spaces on K.

Theorem 1.1.4 (Riesz frechet theorem)
Let f ∈ Z∗ be a linear form, then there exists a unique vector y such that

f(x) = 〈x,y〉 , for all x ∈ Z and ‖ f ‖Z∗=‖ y ‖Z .

Definition 1.1.9
Let A ∈ B(Z,Y ), then there exists a unique operator A∗ ∈ B(Y,Z) such that

∀x ∈ Z,∀y ∈ Y : 〈Ax,y〉= 〈x,A∗y〉.

The operator A∗ is called the adjoint of A.

Example 1.1.1
Let Z = L2([a,b]) and let A : Z→ Z defined by

(Af)(s) =
∫ b
a k(s, t)f(t)dt, with k ∈ L2([a,b]× [a,b]),

we shall compute the adjoint of A. ∀f,g ∈ Z

〈Af,g〉Z =
∫ b

a
Af(x) · g(x)dx=

∫ b

a

∫ b

a
k(x,t)f(t)dt · g(x)dx

=
∫ b

a
f(t)

∫ b

a
k(x,t) · g(x)dxdt

=
∫ b

a
f(t)

∫ b

a
k(x,t)g(x)dxdt

= 〈f,A∗(g)〉 .

Thus, (Af)(s) =
∫ b
a k(s, t)g(x)dt

6



1.2. UNBOUNDED LINEAR OPERATORS ON HILBERT SPACES

Proposition 1.1.4
Let A,B ∈ B(Z), then we have

1. (A+B)∗ = A∗+B∗, and (αA)∗ = αA∗.

2. (AB)∗ =B∗A∗.

3. If A−1 exists and A−1 ∈ B(Z), then (A∗)−1 exists and (A∗)−1 ∈ B(Z), and (A∗)−1 =
(A−1)∗.

4. ‖ A ‖=‖ A∗ ‖

Definition 1.1.10
Let A ∈ B(Z), then

1. A is said to be self adjoint if A= A∗.

2. A is said to be positive if for all x ∈ Z, 〈Ax,x〉 ≥ 0 and we denote the postive operator by
A≥ 0. We write A≥B if A−B is positive.

3. A is said to be isometric if ‖Ax‖= ‖x‖, for all x ∈ Z.

4. A is said to be unitary if A∗A= AA∗ = I.

Remark 1.1.2
The condition 〈Ax,x〉 ≥ 0 automatically implies that A is self adjoint, since in this case A is
self adjoint if and only if 〈Ax,x〉 ∈R.

1.2 Unbounded linear operators on Hilbert spaces

We suppose in this section that Z and Y are Hilbert spaces

Definition 1.2.1 (The Domain of an operator)
A linear operator A from Z to Y is a linear map defined on a vector subspace D(A) of Z called
domain of A such that

D (A) = {x ∈ Z, Ax ∈ Y } .

Definition 1.2.2
• The graph of A is the vector subspace of Z ×Y denoted by Gr(A) and defined by

Gr(A) = {(u,Au); u ∈ D(A)} .

7
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• The kernel of A is the subspace of Z denoted ker(A) and defined by

ker(A) = {u ∈ D(A); Au= 0} ,

and the image of A is the subspace of Y denoted Im(A) and defined by

Im(A) = {Ax; x ∈ D(A)} ,

• We say that A is injective if ker(A) = {0} and that A is surjective if Im(A) = Y.

• The operator A is bijective if it is both injective and surjective.

Definition 1.2.3 (Unbounded operators)
An unbounded linear operator from Z to Y is the pair (A,D(A)), where D(A) is a subspace
vector of Z and A is a linear map from D(A)⊂ Z to Y .

Proposition 1.2.1 [9]
Let A and B be two unbounded linear operators and α ∈ K. Then we have the following
properties

1. D(A+B) =D(A)∩D(B);

2. D(AB) = {x ∈ D(B) :Bx ∈ D(A)};

3. • If α = 0, then D(αA) = Z and αA= 0;

• If α , 0, then D(αA) =D(A) and (αA)x= α(Ax),∀x ∈ D(A).

Definition 1.2.4 (Closed operators)
An unbounded linear operator A :D(A)⊂ Z→ Y is closed if it’s graph

Gr(A) = {(x,Ax) ; x ∈ D(A)} ,

is closed in Z ×Y.

Remark 1.2.1
An operator A is closed if and only if for any sequence (xn)n in D(A) such that lim

n→+∞
xn = x

and lim
n→+∞

Axn = y, then x ∈ D(A) and y = Ax.

Definition 1.2.5 (Extension of an operator)
We say that (A,D(A)) is an extension of (B,D(B)) if D(B)⊂D(A) and Bx= Ax ,∀x ∈ D(B)
we denote B ⊂ A. Moreover B ⊂ A if and only if Gr(B)⊂Gr(A).

Definition 1.2.6 (Adjoint of an unbounded operator)
Let A : Z→ Y be an unbounded operator of dense domain D(A) and let the domain

8



1.2. UNBOUNDED LINEAR OPERATORS ON HILBERT SPACES

D(A∗) = {y ∈ Y such that f : x→ 〈Ax,y〉 is continuous on D(A)}

If y ∈ D(A∗), then there exists a unique vector z ∈ Z, such that

〈Ax,y〉= 〈x,z〉, for all x ∈ D(A).

We denote the unique vector z ∈ Z by z = A∗y, the linear operator A∗ is called the adjoint of
A.

Remark 1.2.2
From the defenition of the adjoint we deduce that if A is the extension of B, then B∗ is the
extension of A∗ and D(A∗)⊂D(B∗).

Theorem 1.2.1 [9]
Let A, B and AB be densely defined operators on the Hilbert space Z. Then

(a) B∗A∗ ⊂ (AB)∗.

(b) If D (B∗) is dense in Z, then B ⊂B∗∗.

Definition 1.2.7 (Invertible unbounded operators)
We say that an operator A :D(A)⊂ Z→ Y is invertible if A is bijective and has an inverse
A−1 : Y →D(A)⊂ Z bounded.

Definition 1.2.8
Let A be a closed operator. We say that the complex number λ is in the resolvent set ρ(A) of
A, if λI −A is bijective from D(A) into Z such that (λI −A)−1 is bounded.
If λ ∈ ρ(A), R(λ,A) = (λI −A)−1 is called the resolvent or resolvent operator of A.
The spectrum of A is the set σ(A) = C\ρ(A).

Remark 1.2.3
We note that in the case of bounded linear operators the spectrum is never empty and the
spectrum is never equal to C, but in the case of unbounded operators the spectrum can be empty
as it can be the set C.

Definition 1.2.9 (Symmetric and self adjoint operators)
• We say that the operator A :D(A)⊂ Z→ Y is symmetric if
〈Ax,y〉= 〈x,Ay〉, ∀x,y ∈ D(A) and D(A) ,D(A∗).

• We say that the operator A is self adjoint if
〈Ax,y〉= 〈x,Ay〉, ∀x,y ∈ D(A) and D(A) =D(A∗).

9
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Example 1.2.1
Let Z = L2(0,1) and Af = if ′ an operator defined on D(A)⊂ Z.

1. Suppose that D(A) = {f ∈ Z : f is absolutely continuous and f ′ ∈ Z}. Calculate A∗ the
adjoint of A.

〈Af,g〉=
∫ 1

0
if ′(t)g(t)dt= [if(t)g(t)]10−

∫ 1

0
if(t)g′(t)dt

= if(1)g(1)− if(0)g(0) +
∫ 1

0
f(t)ig′(t)dt

.

This expression can be written in the form 〈f,A∗g〉 if and only if g is absolutely continuous,
g(1) = g(0) = 0 and g′ ∈ L2(0,1). Then D(A∗) = {g : g is absolutely continuous and
g′ ∈ L2(0,1) and g(1) = g(0) = 0}, and A∗g = ig′.

As A= A∗ and D(A)⊂D(A∗) we can say that the operator A is symmetric.

2. If D(A) = {f ∈ Z is absolutely continuous and f ′ ∈ Z and f(0) = f(1)}. Calculate the
adjoint of A.

〈Af,g〉=
∫ 1

0
if ′(t)g(t)dt= [if(t)g(t)]10−

∫ 1

0
if(t)g′(t)dt

= if(1)g(1)− if(0)g(0) +
∫ 1

0
f(t)ig′(t)dt

.

This expression can be written in the form 〈f,A∗g〉 if and only if g is absolutely continuous,
g(1) = g(0) and g′ ∈ L2(0,1). Then D(A∗) = {g : g is absolutely ontinuous and g′ ∈
L2(0,1) and g(1) = g(0)}, and A∗g = ig′.

As A= A∗ and D(A) =D(A∗) we can say that the operator A is self adjoint.

Definition 1.2.10
We say that the operator A :D(A)⊂ Z→ Y is dissipative if

∀x ∈ D(A), λ > 0, ‖λx−Ax‖ ≥ λ‖x‖.

Theorem 1.2.2
An unbounded linear operator (A,D(A)) in Z is dissipative if and only if

∀x ∈ D(A), (Ax,x)≤ 0.

In the case of a complex Hilbert space, the previous condition is remplaced by

∀x ∈ D(A), Re(Ax,x)≤ 0.

10



1.3. SEMIGROUPS OF LINEAR OPERATORS

1.3 Semigroups of linear operators

Definition 1.3.1 [7]
We say that the familly of bounded linear operators (T (t))t>0 from Z to Z is a semigroup if

1. T (0) = I, (where I is the identity operator).

2. ∀s, t > 0 , T (t+ s) = T (t)T (s).

Definition 1.3.2 [7]
We say that the semigroup (T (t))t>0 is

1. Uniformly continuous if
lim
t→0+

‖T (t)− I‖= 0.

2. Strongly continuous if
lim
t→0+

T (t)x= x, ∀x ∈ Z.

A strongly continuous semigroup is said to be C0-semigroup.

Definition 1.3.3 (Infinetisimal generator) [7]
We call infinitesimal generator of a semigroup (T (t))t>0, the unbounded linear operator A de-
fined by

A : D(A)⊂ Z −→ Z

x −→ Ax= lim
t→0+

T (t)x−x
t

,

where
D(A) =

{
x ∈ Z, lim

t→0
T (t)x−x

t
exists in Z

}
.

Example 1.3.1
Let Z = l2 = {x= (xn)n∈N∗ ; (∑+∞

n=1 |xn|2)<+∞} endowed with the norm

‖x‖Z = ‖(xn)n∈N∗‖Z = (∑+∞
n=1 |xn|2) 1

2 .

Let (T (t))t≥0 be a family of linear operators defined by

T (t)x= T (t)(xn)n∈N∗ = (e−n2txn)n∈N∗, ∀t > 0.

I. We show that (T (t))t≥0 is a C0-semigroup on Z;
1. T (0) = Id, indeed, we have T (0)(xn)n∈N∗ = (e−n2.0xn)n∈N∗ = (e0xn)n∈N∗ = (xn)n∈N∗,
then T (0) = I.

11
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2. We show that T (t+ s) = T (t)T (s), ∀t, s > 0, ∀t, s > 0, we have

T (t+ s)(xn)n∈N∗ = (e−n
2(t+s)xn)n∈N∗ = (e−n

2t−n2sxn)n∈N∗ = (e−n
2te−n

2sxn)n∈N∗ ,

(1.1)
On the other hand we have

T (t)T (s)(xn)n∈N∗ = T (t)(e−n
2sxn)n∈N∗ = e−n

2t(e−n
2sxn)n∈N∗ = (e−n

2te−n
2sxn)n∈N∗ .

(1.2)
From (1.1) and (1.2) we get T (t+ s) = T (t)T (s), ∀t, s > 0.

3. Now we show that limt→0+ ‖T (t)x−x‖= 0, ∀x ∈ Z.
For all x ∈ Z, we have

‖T (t)x−x‖2Z = ‖T (t)(xn)n∈N∗ − (xn)n∈N∗‖2Z = ‖(e−n
2txn−xn)n∈N∗‖2Z ,

= ‖((e−n
2t− 1)xn)n∈N∗‖2Z ,

=
+∞∑
n=1
|((e−n

2t− 1)xn|2,

6

(+∞∑
n=1
|(e−n

2t− 1)|2
)
.

(+∞∑
n=1
|(xn)|2

)
=
(+∞∑
n=1
|(e−n

2t− 1)|2
)
‖(xn)‖2Z .

Then 0 6 lim
t→0+

‖T (t)(xn)n∈N∗ − (xn)n∈N∗‖ 6 lim
t→0+

(∑+∞
n=1 |(e−n

2t− 1)|2
)
‖(xn)‖2Z ,

such that lim
t→0+

(∑+∞
n=1 |(e−n

2t− 1)|2
)
‖(xn)‖2Z = 0.

Then lim
t→0+

‖T (t)(xn)n∈N∗ − (xn)n∈N∗‖= 0,

Thus (T (t))t>0 where T (t)(xn)n∈N∗ = (e−n2txn)n∈N∗ , ∀t > 0 is a C0-semigroup.

II. Determine the infinitesimal generator of this C0-semigroup.
By definition we have Ax= lim

t→0+

T (t)x−x
t

indeed,

T (t)x= (e−n
2txn)n∈N∗ = (e−tx1, e

−4tx2, ..., e
−n2txn, ...),

then T (t)x−x
t

= (e
−tx1−x1

t
,
e−4tx2−x2

t
, ...,

e−n
2txn−xn
t

, ...),

it follows that lim
t→0+

T (t)x−x
t

= ( lim
t→0+

e−tx1−x1
t

, lim
t→0+

e−4tx2−x2
t

, ..., lim
t→0+

e−n
2txn−xn
t

, ...),

= (−x1,−4x2, ...,−n2xn, ...).

Consequently Ax= (−x1,−4x2, ...,−n2xn, ...),

Thus Ax= (Axn)n∈N∗ = (−n2xn)n∈N∗ and D(A) = {(xn)n∈N∗ ∈ l2 : (−n2xn)n∈N∗ ∈ l2}.

12
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1.3.1 Properties of semigroups

Theorem 1.3.1.1
A linear operator A is the infitesimal generator of a uniformly continuous semigroup if and
only if A is a bounded linear operator.

Proof
See [7, page 2]

Theorem 1.3.1.2
Let (T (t))t>0 be a C0-semigroup, then there exists ω ≥ 0 et M ≥ 1, such that :

‖T (t)‖ ≤Meωt, ∀t≥ 0.

Proof
See [7, page 4]

Theorem 1.3.1.3 [1]
Let (T (t))t>0 be a C0-semigroup with generator infinitesimal A then

1. If x ∈ D(A) then, T (t)x ∈ D(A) for all t≥ 0,

2. For all x ∈ Z, we have : lim 1
t

∫ t

0
T (s)xds= x,

3. For all x ∈ Z,
∫ t

0
T (s)x ds ∈ D(A), and A

∫ t

0
T (s)x ds= T (t)x−x,

4. For all x ∈ D(A), T (t)x ∈ D(A), and d

dt
T (t)x= AT (t)x= T (t)Ax,

5. For all x ∈ D(A), T (t)x−T (s)x=
∫ t

s
T (τ)Ax dτ =

∫ t

s
AT (τ)x dτ,

6. T (nt) = T (t)n , for all t≥ 0 and n ∈N,

7. If ω0 = inft>0
(

1
t log‖T (t)‖

)
, then ω0 = limt→∞

(
1
t log‖T (t)‖

)
<∞,

8. ∀ω > ω0, there exists a constant Mω such that ∀t≥ 0, ‖T (t)‖ ≤Mωe
ωt.

This constant ω0 is called the growth bound of the semigroup.

Proof
1) Let x ∈ D(A), show that T (t)x ∈ D(A), for all t≥ 0. We have

lim
s→0+

1
s

(T (s)T (t)x−T (t)x) = lim
s→0+

1
s

(T (t+ s)x−T (t)x)

= T (t) lim
s→0+

1
s

(T (s)x−x)

= T (t)Ax.

13
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Then we deduce that T (t)x ∈ D(A) and A(T (t)x) = T (t)Ax.

2) Let x ∈ Z and ε > 0, as the semigroup (T (t))t≥0 is strongly continuous, we can choose a
constant τ > 0 such that

‖T (s)x−x‖ ≤ ε ∀s ∈ [0, τ ].

for t ∈ [0, τ ] we have

‖1
t

∫ t

0
T (s)x ds−x‖= ‖1

t

∫ t

0
[T (s)x−x] ds‖

≤ 1
t

∫ t

0
‖[T (s)x−x]‖ ds≤ 1

t

∫ t

0
ε ds= ε.

Then
‖1
t

∫ t

0
T (s)x ds−x‖ ≤ ε.

Thus
lim
t→0+

1
t

∫ t

0
T (s)x ds= x.

3) Let x ∈ Z ; t > 0, show that lim
s→0

1
s

(T (s).
∫ t
0 T (r)x dr−

∫ t
0 T (r)x dr) exists. We have

1
s

(T (s).
∫ t
0 T (r)x dr−

∫ t
0 T (r)x dr) = 1

s
(
∫ t
0 T (s)T (r)x dr−

∫ t
0 T (r)x dr)

= 1
s

(
∫ t
0 T (s+ r)x dr−

∫ t
0 T (r)x dr)

= 1
s

(
∫ s+t
s T (s̀)x ds̀−

∫ t
0 T (r)x dr) tel que s̀= s+ r

= 1
s

(
∫ t
s T (s̀)x ds̀+

∫ s+t
t T (s̀)x ds̀−

∫ s
0 T (r)x dr−

∫ t
s T (r)x dr)

= 1
s

(
∫ s+t
t T (s̀)x ds̀−

∫ s
0 T (r)x dr)

= 1
s

(
∫ s
0 T (s̄+ t)x ds̄−

∫ s
0 T (r)x dr) tel que s̄= s̀− t

= 1
s

(
∫ s
0 T (t)T (s̄)x ds̄−

∫ s
0 T (r)x dr)

= 1
s

(T (t)
∫ s
0 T (s̄)x ds̄−

∫ s
0 T (r)x dr)

= 1
s

(T (t)− I)
∫ s
0 T (r)x dr

Then lim
s→0+

1
s

(T (s).
∫ t
0 T (r)x dr−

∫ t
0 T (r)x dr) = lim

s→0+

1
s

(T (t)− I)
∫ s
0 T (r)x dr

= (T (t)− I) lim
s→0+

1
s

∫ s
0 T (r)x dr

= (T (t)− I)x.
Thus ∫ t

0
T (t)x ds ∈ D(A and A

∫ t

0
T (t)x ds= T (t)x−x.

14
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4) Let x ∈ D(A), show that the right derivative of T (t)x exists. We have
d

dt
T (t)x = lim

τ→0+

T (t+ τ)−T (t)
τ

x

= lim
τ→0+

T (t)T (τ)−T (t)
τ

x

= lim
τ→0+

T (t)(T (τ)− I)x
τ

x

= T (t) lim
τ→0+

(T (τ)− I)x
τ

x= T (t)Ax.

Then the right derivative exists, we have also

d

dt
T (t)x = lim

τ→0+

T (t)−T (t− τ)
τ

x

= lim
τ→0+

T (t− τ)T (τ)−T (t− τ)
τ

x

= lim
τ→0+

T (t− τ)(T (τ)− I)
τ

x

= lim
τ→0+

T (t− τ). lim
τ→0

(T (τ)− I)
τ

x

= T (t)Ax.

Then the left derivative exists. Thus
d

dt
T (t)x= AT (t)x= T (t)Ax.

5) Let x ∈ D(A), we integrate (3) we obtain

T (t)x−T (s)x =
∫ t
s

d
dτ T (τ)x dτ

=
∫ t
s AT (τ)x dτ

=
∫ t
s T (τ)Ax dτ

6) Easy to check by recurrence.

7) Let t0 > 0 be a fixed number and M = supt∈[0,t0] ‖T (t)‖, then for every t ≥ t0, there exists
n ∈N such that nt0 ≤ t≤ (n+ 1)t0. Consequently

log‖T (t)‖
t

= log‖Tn(t0)T (t−nt0)‖
t

≤ n log‖T (t0)‖
t

+ logM
t

= log‖T (t0)‖
t

.
nt0
t

+ logM
t

.

15
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The latter is similar or equal to log‖T (t0)‖
t

+ logM
t

, if log‖T (t0)‖ is positive.

and it is smaller than or equal to log‖T (t0)‖
t

.
t− t0
t

+ logM
t

, if log‖T (t0)‖ is negative.
Thus

limsup
t→+∞

log‖T (t)‖
t

≤ log‖T (t0)‖
t0

<+∞.

and since t0 is arbitrary, we have that

limsup
t→+∞

log‖T (t)‖
t

≤ inf
t>0

log‖T (t)‖
t

≤ liminf
t→+∞

log‖T (t)‖
t

.

Thus
ω0 = inf

t>0
log‖T (t)‖

t
= lim
t→+∞

log‖T (t)‖
t

<+∞.

8) If ω > ω0, there exists a t0 such that log‖T (t)‖
t

< ω for t≥ t0 that is,

‖T (t)‖ ≤ eωt for t≥ t0

But
‖T (t)‖ ≤M0 for 0≤ t≤ t0

and so with Mω =M0, for the case that ω > 0,
and Mω = e−ωt0M0 for the case that ω < 0,
we obtain the stated result.

Proposition 1.3.1.1 [7]
Let (T (t))t>0 be a C0-semigroup, then its infinitesimal generator A is closed and D(A) is dense
in Z.

Proof
1) Let x ∈ Z, show that there exists a sequence (xε)ε>0 such that xε ∈ D(A),∀ε > 0 and
lim
ε→0

xε = x.

By Theorem 1.3.1.3 we have ∫ s

0
T (t)x dt ∈ D(A);s > 0.

Let xε = ε−1 ∫ ε
0 T (t)x dt, then xε ∈D(A).

On the other hand we have

lim
ε→0

xε = lim
ε→0

ε−1 ∫ ε
0 T (t)x dt,

= lim
ε→0

1
ε

(
∫ ε
0 T (t)x dt−

∫ 0
0 T (t)x dt),

= T (0)x,
= x.
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Then lim
ε→0

xε = x ∈ Z, so there exists (xε)ε>0 ∈ D(A) such that lim
ε→0

xε = x. Thus D(A) = Z.

2) Show that A is closed. Let (xn) be a sequence in D(A) which converges to x ∈ Z such that
lim
n→0

Axn = y, let us show that x ∈ D(A) et Ax= y. By Theorem 1.3.1.2, there exists ω ≥ 0 and
M ≥ 1 such that, for all t≥ 0,

‖T (t)Axn−T (t)y‖ ≤Meωt‖Axn− y‖,

and
lim

n→+∞
Axn = y ⇒ lim

n→+∞
T (t)Axn = T (t)y.

As (xn) ∈ D(A) we have
T (t)xn−xn =

∫ t

0
T (s)Axn ds.

Then we obtain

lim
n→+∞

(T (t)xn−xn) = lim
n→+∞

∫ t

0
T (s)Axn ds=

∫ t

0
T (t)y ds,

and lim
t→0+

T (t)x−x
t

= lim
t→0+

1
t

∫ t

0
T (s)y ds= y.

Consequently x ∈ D(A) and Ax= y. Then A is a closed operator.

Lemma 1.3.1.1 [7]
If (T (t))t>0 is a C0-semigroup of invertible operators, then (T−1(t))t>0 is also a C0-semigroup.
Moreover if A is the infinitesimal generator of (T (t))t>0 then −A is the generator infinitesimal
of (T−1(t))t>0.

Proof
Let (T (t))t≥0 be an invertible C0-semigroup, (T−1(t))t≥0 exists. We assume (S(t))t≥0 =
(T−1(t))t≥0,
Let us show that (S(t)) is a semigroup

S(t+ s) = T−1(t+ s) = (T (t)T (s))−1 = T−1(s)T−1(t) = S(s)S(t).

Let us show that (S(t))t≥0 is strongly continuous. For s > 0, ImT = Z (surjective).
Let x ∈ Z and s > 1, there exists y ∈X such that T (s)y = x, so for t < 1 we have

‖T−1(t)x−x‖ = ‖T−1(t)T (t)T (s− t)y−T (s)y‖

= ‖T (s− t)y−T (s)y‖ −→ 0 when t−→ 0.

Then, (S(t))t≥0 is strongly continuous. Finally, for x ∈ D(A) we have

lim
t→0

T−1(t)x−x
t

= lim
t→0

T (t)T
−1(t)x−x

t
= lim
t→0

x−T (t)x
t

=−Ax.

Thus −A is the infinitesimal generator of (T−1(t))t≥0.
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Theorem 1.3.1.4 [1]
If (T (t))t≥0 is a C0-semigroup with infinitesimal generator A on a Hilbert space Z, then
(T ∗(t))t≥0 is the C0-semigroup with infinitesimal generator A∗ on Z.

Lemma 1.3.1 [1]
Let (T (t))t≥0 be a C0-semigroup with infinitesimal generator A and with growth bound ω0. If
<(λ)> ω > ω0, then λ ∈ ρ(A), and for all z ∈ Z the following result hold

R(λ,A)z = (λI −A)−1z =
∫ ∞

0
e−λtT (t)z dt and ‖R(λ,A)‖ ≤ M

σ−ω
;σ = <(λ)

.

1.3.2 Stability of semigroups

Definition 1.3.2.1 [7]
We say that the semigroup (T (t))t≥0 is

1. Exponentially stable if there exists a constant M ≥ 1 and α > 0 such that

‖T (t)‖ ≤Me−αt for all t≥ 0,

equivalently if

‖T (t)x‖ ≤Me−αt‖x‖ for all t≥ 0 and for all x ∈ Z.

2. Uniformly stable if
‖T (t)‖→ 0 when t→+∞

3. Strongly stable if
‖T (t)x‖→ 0 when t→+∞, for all x ∈ Z.

Remark 1.3.2.1
The uniform stability is equivalent to exponential stability and uniform stability implies the
strong stability, but the reciprocal in general is not verified in infinite dimension.

Lemma 1.3.2.1 ( Datko lemma) [1]
Let Z be a Hilbert space, the semigroup (T (t))t≥0 is exponentially stable if and only if for each
y ∈ Z we have ∫ +∞

0
‖T (t)y‖2 dt <+∞

Theorem 1.3.2.1
Suppose that A is the infinitesimal generator of C0-semigroup (T (t))t≥ on Z.
Then the following properties are equivalent

18
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(i). (T (t))t≥0 is exponentially stable;

(ii). There exists positive operator W ∈ B(Z) such that
〈Ax,Wx〉+ 〈Wx,Ax〉=− 〈x,x〉 ,∀x ∈ D(A);

(iii). There exists a positive operator W ∈ B(Z) such that
〈Ax,Wx〉+ 〈Wx,Ax〉 ≤ − 〈x,x〉 ,∀x ∈ D(A).

Proof
(1) =⇒ (2). As (T (t))t≥0 is exponentially stable, let the operator W given by

Wx=
+∞∫
0
T ∗(t)T (t)xdt, W is well defined. Indeed, we have

‖Wx‖ = ‖
+∞∫
0
T ∗(t)T (t)xdt‖

≤
+∞∫
0
‖T ∗(t)T (t)x‖dt

≤
+∞∫
0
‖T ∗(t)‖‖T (t)‖‖x‖dt≤

+∞∫
0
‖T (t)‖2‖x‖dt

≤
(
M2

+∞∫
0
e−2αtdt

)
‖x‖ ≤ cst‖x‖,

then W is bounded, moreover

〈x,Wx〉 =
〈
x,

+∞∫
0
T ∗(t)T (t)xdt

〉

=
+∞∫
0
〈x,T ∗(t)T (t)x〉dt

=
+∞∫
0
〈T (t)x,T (t)x〉dt

=
+∞∫
0
‖T (t)x‖2dt≥ 0

〈x,Wx〉 = 0, then ‖T (t)x‖ = 0 almost everywhere on [0,+∞[, and since (T (t))t≥0 is strongly
continuous, then ‖T (t)x‖= 0 and therfore x= 0.
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Let us show that W verifies the Lyapunov equation.

〈Ax,Wx〉+ 〈Wx,Ax〉 =
〈
Ax,

+∞∫
0
T ∗(t)T (t)xdt

〉
+
〈

+∞∫
0
T ∗(t)T (t)xdt,Ax

〉

=
+∞∫
0
〈Ax,T ∗(t)T (t)xdt〉+

+∞∫
0
〈T ∗(t)T (t)x,Axdt〉

=
+∞∫
0
| 〈T (t)Ax,T (t)x〉+ 〈T (t)x,T (t)Ax〉 | dt

If x ∈ D(A), then T (t)Ax= AT (t)x. Thus

〈Ax,Wx〉+ 〈Wx,Ax〉=
+∞∫
0
| 〈AT (t)x,T (t)x〉+ 〈T (t)x,AT (t)x〉 | dt.

If x ∈ D(A), then d

dx
T (t)x= AT (t)x. Thus

〈Ax,Wx〉+ 〈Wx,Ax〉 =
+∞∫
0

∣∣∣〈 d
dxT (t)x,T (t)x

〉
+
〈
T (t)x, ddxT (t)x

〉∣∣∣dt
=

+∞∫
0

d
dx(〈T (t)x,T (t)x〉)dt.

we have
lim
τ→∞

∫ τ

0

d

dt
(〈T (t)x,T (t)x〉)dt=−‖x‖2,

then
〈Ax,Wx〉+ 〈Wx,Ax〉=−‖x‖2 =−〈x,x〉 .

(2) =⇒ (3) obvious.
(3) =⇒ (1). Let W be a positive symmetric solution of the Lyapunov equation and let

V (t,x) = 〈WT (t)x,T (t)x〉 .

Since W ≥ 0, then V (t,x)≥ 0 for t≥ 0.
For x ∈ D(A), then V (.,x) is differentiable with respect to t and

d

dt
V (t,x) =

〈
d
dtWT (t)x,T (t)x

〉
+
〈
WT (t)x, ddtT (t)x

〉
=
〈
W d

dtT (t)x,T (t)x
〉

+
〈
WT (t)x, ddtT (t)x

〉
= 〈WAT (t)x,T (t)x〉+ 〈WT (t)x,AT (t)x〉

= 〈AT (t)x,WT (t)x〉+ 〈WT (t)x,AT (t)x〉 ≤ −‖T (t)x‖2.
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then we obtain
d

dt
V (t,x)≤−‖T (t)x‖2.

Integrate the two sides of the above inequality from 0 to s (s > 0)

V (s,x)−V (0,x)≤−
∫ s

0
‖T (t)x‖2dt.

Where
0≤ V (s,x)≤ V (0,x)−

∫ s

0
‖T (t)x‖2dt.

Thus ∫ s

0
‖T (t)x‖2dt≤ V (0,x).

i.e., ∫ s

0
‖T (t)x‖2dt≤ 〈x,Wx〉 , ∀x ∈ D(A)

Since the domain D(A) is dense then ∀x ∈ Z, ∃ (xn)n≥1 ∈ D(A) such that lim
n→∞(xn) = x,

then we obtain lim
n→+∞

∫ s
0 ‖T (t)xn‖2dt≤ lim

n→+∞
〈xn,Wxn〉 , ∀x ∈ Z

implies ∫ s

0
‖T (t)x‖2dt≤ 〈x,Wx〉 , ∀x ∈ Z,

then ∫ s

0
‖T (t)x‖2dt <+∞.

By Datko’s lemma (T (t))t≥0 is exponentially stable.

1.3.3 Contraction and isometric semigroups

Definition 1.3.3.1 (Contraction semigroup) [1]
(T (t))t≥0 is a contraction semigroup on a Hilbert space Z if it is a C0-semigroup that satisfies an
estimate ‖ T (t) ‖≤ 1 for all t≥ 0, equivalently if ‖T (t)x‖ ≤ ‖x‖ for all t≥ 0 and for all x ∈ Z.

We shall now give necessary and sufficient conditions for a closed, densely defined operators to
be the infinitesimal generator of a contraction semigroup.

Theorem 1.3.3.1 [1]
Let A be a closed, densely defined operator with domain D(A) on a Hilbert space Z. Then
A−ωI is the infinitesimal generator of a contraction semigroup (T (t))t≥0 on Z if and only if
the following conditions hold for all real α > ω

‖(αI −A)z‖ ≥ (α−ω)‖z‖ for z ∈ D(A);
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‖(αI −A∗)z‖ ≥ (α−ω)‖z‖ for z ∈ D(A∗).

Corollary 1.3.3.1 [1]
Necessary and sufficient conditions for a closed, densely defined operator on a Hilbert space to
be the infinitesimal generator of a C0-semigroup satisfying ‖T (t)‖ ≤ eωt are

<(〈Az,z〉)≤ ω‖z‖2 for z ∈ D(A)
<(〈A∗z,z〉)≤ ω‖z‖2 for z ∈ D (A∗)

Lemma 1.3.3.1 [1]
(A−ωI) is the infinitesimal generator of the contraction semigroup (e−ωt ‖ T (t) ‖) on the Hilbert
space Z if and only if A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 satisfying
‖T (t)‖ ≤ eωt.

Definition 1.3.3.2 (Isometric Semigroup)
We say that the semigroup (T (t))t≥0 is isometric if ‖ T (t)x ‖=‖ x ‖ for all t≥ 0 and ∀x ∈ Z.

1.3.4 Perturbation of Semigroups

Theorem 1.3.4.1 (Bounded perturbation Theorem) [3]
Let (A,D(A)) be the infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Banach space Z
satisfying :

‖T (t)‖ ≤Meωt for all t≥ 0 and some ω ∈R,M ≥ 1

.
If B ∈ B(Z), then C = A+B with D(C) =D(A) is the infinitesimal generator of a C0-semigroup
(TB(t))t≥0 satisfying

‖TB(t)‖ ≤Me(ω+M‖B‖t) for all t≥ 0

.

Corollary 1.3.4.1 [3]
Let (T (t))t≥0 be a C0-semigroup with generator A on Z and (TB(t))t≥0 the semigroup with
generator A+B for B ∈ B(Z). The semigroup (TB(t))t≥0 is the unique solution of the equation

S(t)x= T (t)x+
∫ t

0
T (t− s)BS(s)xds where x ∈ Z

in the class of strongly continuous operators on Z. This C0-semigroup satisfies the following
equation for every x ∈ Z

TB(t)x= T (t)x+
∫ t

0
T (t− s)BTB(s)xds. (1.3)
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1.4 Notions from control theory

Let Z, U and Y be a Hilbert spaces. We consider the following class of infinite-dimensional
systems with input u and output y :

ż(t) = Az(t) +Bu(t), t≥ 0, z(0) = z0,

y(t) = Cz(t).

Σ(A,B,C) denotes the state linear system, where A is the infinitesimal generator of the C0-
semigroup (T (t))t≥0 on a Hilbert space Z, the state space. B is a bounded linear operator from
the input space U to Z, C is a bounded linear operator from Z to the output space Y .
We consider Σ(A,B,C) for all initial states z0 ∈ Z and all inputs u ∈ L2([0, τ ];U). The state is
the mild solution of

z(t) = T (t)z0 +
∫ t

0
T (t− s)Bu(s)ds, 0≤ t≤ τ

To avoid clutter, we shall use the notation Σ(A,B,−) when the operator C do not play a role
and Σ(A,−,C) when B do not play a role.

Definition 1.4.1 (Exact controllability) [1]
For the state linear system Σ(A,B,−) we define the following concepts

a). The controllability map of Σ(A,B,−) on [0, τ ] (for some finite τ > 0 ) is the bounded
linear map Bτ : L2([0, τ ];U)→ Z defined by

Bτu :=
∫ τ

0
T (τ − s)Bu(s)ds

b). Σ(A,B,−) is exactly controllable on [0, τ ] (for some finite τ > 0 ) if all points in Z can
be reached from the origin at time τ , i.e., if ImBτ = Z (Bτ is surjective).

Theorem 1.4.1 [1]
The state linear system Σ(A,B,−) is exactly controllable on [0, τ ] if and only if any one of the
following conditions hold for some γ > 0 and all z ∈ Z

i.
∥∥∥Bτ∗

z
∥∥∥2

2
:=
∫ τ
0
∥∥∥(Bτ∗

z
)

(s)
∥∥∥2
U
ds≥ γ‖z‖2Z2,

ii.
∫ τ
0 ‖B∗T ∗(s)z‖

2
U ds≥ γ‖z‖2Z .

Definition 1.4.2 (Exact observability) [1]
For the state linear system Σ(A,−,C), we define the following concepts
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a). The observability map of Σ(A,−,C) on [0, τ ] (for some finite τ > 0 ) is the bounded linear
map Cτ : Z→ L2([0, τ ];Y ) defined by

Cτz = CT (·)z

b). Σ(A,−,C) is exactly observable on [0, τ ] (for some finite τ > 0 ) if the initial state can be
uniquely and continuously constructed from the knowledge of the output in L2([0, τ ];Y ),
i.e., Cτ is injective and its inverse is bounded on the range of Cτ .

Theorem 1.4.2 [1]
Σ(A,−,C) is exactly observable on [0, τ ] if and only if any one of the following conditions hold
for some γ > 0 and for all z ∈ Z

i. ‖Cτz‖22 :=
∫ τ
0 ‖(Cτz)(s)‖2Y ds≥ γ‖z‖2Z ,

ii.
∫ τ
0 ‖CT (s)z‖2Y ds≥ γ‖z‖2Z ,

iii. kerCτ = {0} and Cτ has closed range.

Lemma 1.4.1 (Duality between conrollability and observability) [1]
For the state linear system Σ(A,−,C), we have the following duality result
Σ(A,−,C) is exactly observable on [0, τ ] if and only if the dual system Σ(A∗,C∗,−) is exatly
controllable on [0, τ ].

Definition 1.4.3 (Admissibility of the observation operator C) [12]
Let Z and Y be two Hilbert spaces and (T (t))t≥0 be a C0-semigroup on Z with generator A.
C ∈ B(D(A),Y ) is said to be admissible for (T (t))t≥0 if for some (and hence any) t > 0, there
exists Kt > 0 such that ∫ t

0
‖CT (s)x‖2ds≤K2

t ‖x‖2, ∀x ∈ D(A)

.

An extension concept of admissibility is as follows.

Definition 1.4.4 [12]
Let Z and Y be two Hilbert spaces and (T (t))t≥0 be a C0-semigroup on Z with generator A.
C ∈ B(D(A),Y ) is said to be infinite-time admissible for (T (t))t≥0 if there exists a constant
K > 0 such that ∫ ∞

0
‖CT (s)x‖2ds≤K2‖x‖2, ∀x ∈ D(A).
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Remark 1.4.1
If (T (t))t≥0 is expenentially stable, the notion of admissibility and infinite-time admissibility
are equivalent. Let ‖T (t)‖ ≤M1ewt, ∀t≥ 0. If C is admissible for (T (t))t≥0, then there exists
a constant M > 0 such that

‖CR(λ,A)‖ ≤ M√
<λ

, ∀ <λ > ω. (1.4)

In what follows in chapter 2, we say that C satisfying (1.4) is a Weiss class operator.
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Chapter 2

Characteristic of left invertible semigroups
and admissibility of observation operators

2.1 Introduction

In this chapter we discuss the characteristic properties of the left invertible semigroups
on general Banach spaces and admissibility of the observation operators for such semigroups.
We obtain a sufficient and necessary condition about their generators. In their paper [12]
Gen Qi Xu and Ying Feng Shang showed that for the left invertible and exponentially stable
semigroup in Hilbert space there is an equivalent norm under which it is contractive. Based on
these results they proved that for any observation operator satisfying the resolvent condition is
admissible for the left invertible semigroup if its range is finite-dimensional. In addition they
gave a sufficient condition of exact observability of the left invertible semigroup.

Moreover, from [6] we have illustrated the relation between the exact controllability and the
right inverse of a C0-semigroup, then by duality we deduce some results about the left inverse
of a C0-semigroup.

2.2 Characteristic property of the left invertible semigroups

In this section we shall investigate the characteristic property of generators of left invertible
semigroups. We shall give necessary and sufficient conditions for a C0-semigroup in Banach
space to be left invertible. For the sake of completeness, we start by defining the left invertible
semigroup.

Definition 2.2.1 [12]
Let (T (t))t≥0 be a C0-semigroup on Banach space X. If there exist some t0 > 0 and a constant
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c > 0 such that
‖T (t0)x‖ ≥ c‖x‖, ∀x ∈X

then (T (t))t≥0 is said to be left invertible semigroup.

Theorem 2.2.1 [12]
Let (T (t))t≥0 be a C0-semigroup on a complex Banach space X and A be its generator. Then
the following statements are equivalent.

1. (T (t))t≥0,is a left invertible semigroup;

2. There exist two constants α > 0 and c > 0 such that

‖T (t)x‖ ≥ ce−αt‖x‖, ∀x ∈X, t > 0;

3. There exists a constant t0 > 0 such that

inf
‖x‖=1,x∈X

‖T (t0)x‖> 0.

Theorem 2.2.2 [12]
Let (T (t))t≥0 be a C0-semigroup on a complex Banach space X and A be its generator. Then
the following statements are equivalent.

1. (T (t))t≥0 is a left invertible semigroup;

2. There exists an equivalent norm ‖.‖∗ on X such that, for some real number α, −(A+αI)
is dissipative on (X,‖.‖∗).

Remark 2.2.1
Note that in a Banach space X we can always define an equivalent norm on X such that a
uniformly bounded semigroup becomes a contraction semigroup, but for a Hilbert space it is not.
However, if (T (t))t≥0 is an exponentially stable and left invertible semigroup on a Hilbert space,
we can do it. For a precise description see Theorem 2.3.1 in Section 3.

Corollary 2.2.1 [12]
Let (T (t))t≥0 be a left invertible semigroup on Banach space X with generator A. If σr(A) = ∅,
then (T (t))t≥0 can be embedded in a C0-group.

As consequence of Theorem 2.2.2, we have the corollary.

Corollary 2.2.2 [12]
Let (T (t))t≥0 be a C0-semigroup on Banach space X with the generator A. Then the following
statements are equivalent.
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1. (T (t))t≥0 is a isometric semigroup;

2. A and −A are both dissipative operators and Im(I −A) =X.

As a direct result of Corollaries 2.2.1 and 2.2.2 we have the following corollary.

Corollary 2.2.3 [12]
Let (T (t))t∈R be a C0-group on Banach space X with the generator A. Then the following two
assertions are equivalent.

1. (T (t))t∈R is an isometric group;

2. A and −A are both dissipative operators and Im(I ±A) =X.

The following theorem gives invariability of left invertible semigroups on Banach spaces under
the bounded perturbation.

Theorem 2.2.3 [12]
Let (T (t))t≥0 be a left invertible semigroup on Banach space X with generator A. If B is a
bounded linear operator on X, then the semigroup (TB(t))t≥0 generated by A+B is also a left
invertible semigroup.

Proof
Let A be the generator of C0-semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤ Meωt and B be a lin-
ear operator. By the perturbation theory of C0-semigroups (see Theorem 1.3.4.1 Chapter 1),
A+B generates a C0-semigroup (TB(t))t≥0 satisfying ‖TB(t)‖ ≤Me(ω+M‖B‖)t, t ≥ 0. More-
over, (TB(t))t≥0 satisfies the integral equation (1.3) (see Corollary 1.3.4.1 Chapter 1).
Using the integral equation (1.3) we get the estimate

∥∥∥∥∥
∫ t

0
T (t− s)BTB(s)z0

∥∥∥∥∥≤ tM2‖B‖e(2ω+M‖B‖)t‖z0‖, ∀z0 ∈X, t≥ 0.

Since (T (t))t≥0 is a left invertible semigroup, according to Theorem 2.2.1, there exist constants
c > 0 and α > 0 such that

‖T (t)z0‖ ≥ ce−αt‖z0‖, ∀z0 ∈X,t > 0.

Let M1 =M2‖B‖e(2ω+M‖B‖) and t0 <min
{

1, c

2M1
e−α

}
, z0 ∈X then we have

‖TB (t0)z0‖ ≥ ‖T (t0)x‖−
∥∥∥∥∥
∫ t

0
T (t− s)BTB(s)

∥∥∥∥∥
≥
(
ce−αt0 − t0M1

)
‖z0‖ ≥

(
ce−α− t0M1

)
‖z0‖

≥ 1
2ce
−α‖z0‖, ∀z0 ∈ X,

which means that (TB(t))t≥0, is a left invertible semigroup. The proof is then complete.
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Corollary 2.2.4 [12]
Let (T (t))t≥0 be a left invertible semigroup on Banach space X with generator A. If σr(A) = ∅
and B is a linear bounded operator, then A+B generates a C0-semigroup which can be embedded
in a C0-group.

2.3 Admissibility of observation operator

In this section we shall discuss the admissibility of observation operators for left invertible
semigroups. In the existing results on the admissibility, a result shows that if B ∈ B(U,D(A))
satisfies the condition

‖R(λ,A)B‖ ≤ M√
<λ

, <λ > ω,

then the control operator B is admissible for (T (t))t≥0. There is no result on the observation
operator for the left invertible semigroups. However, the following proposition shows that the
left invertible semigroup can become a contraction semigroup.

Theorem 2.3.1 [12]
Let (T (t))t≥0 be an exponentially stable and left invertible C0-semigroup on Hilbert space Z.
Then there exists an equivalent inner product on Z such that (T (t))t≥0 is an exponentially stable
and contraction semigroup.

Proof
Let (T (t))t≥0 be an exponentially stable and left invertible C0-semigroup. Then there exist
positive constant M, c, α and δ such that ce−αt‖x‖ ≤ ‖T(t)x‖ ≤Me−δt‖x‖, ∀t ≥ 0,x ∈ Z.
Define an inner product on Z by

〈x,y〉1 =
∫ ∞

0
〈T (t)x,T (t)y〉dt, ∀x,y ∈ Z

then we have
‖x‖21 =

∫ ∞
0
‖T (t)x‖2 dt

Clearly, ‖x‖1 is an equivalent norm on Z. In the sense of this norm we have

‖T (t)x‖21 =
∫ ∞

0
‖T (s)T (t)x‖2 ds=

∫ ∞
t
‖T (s)x‖2ds

≤
∫ ∞

0
‖T (s)x‖2ds = ‖x‖21

That is (T (t))t≥0is an exponentially stable and contraction semigroup on Z.

For the contraction semigroups, the following result is due to Jacob and Partington, which is
probably one of the most important results in the area of admissibility.
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Lemma 2.3.1 [12]
Let (T (t))t≥0 be a C0-semigroup of contraction on a separable Hilbert space with generator
A and let C ∈ B(D(A),C). Then C is infinite-time admissible if and only if C satisfies the
condition that there exists a constant M > 0 such that

‖CR(λ,A)‖ ≤ M√
<λ

, <λ > 0,

Let A be the generator of a left invertible C0-semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤M1eωt.
We can choose a real α > ω such that Tα(t) = e−αtT (t) is exponentially stable and contraction
semigroup.
As a direct result of this lemma , we have the following result.

Theorem 2.3.2 [12]
Let (T (t))t≥0 be the left invertible C0-semigroup on Hilbert space Z. Let C ∈ B(D(A),Cn).
Then C is admissible if and only if C satisfies the condition that, for positive contants M and
ω,

‖CR(λ,A)‖ ≤ M√
<λ

, <λ > ω,

This theorem shows that the Weiss class operators are admissible for the left invertible
semigroups if Y is a finite-dimentional Hilbert space. However if Im C and hence Y is infinite-
dimentional, then the question of admissibility becomes more complicated. As a result the
resolvent condition (1.4) is not a sufficient condition of admissibility for the left invertible semi-
group.

Finally we close this section by giving a sufficient condition of exact observability for the left
invertible semigroup.

Theorem 2.3.3 [12]
Let (T (t))t≥0 be the left invertible semigroup on Hilbert space Z. Let C ∈ B(D(A),Y ) be a weiss
class operator. If there exists a τ > 0 such that

‖CT (τ)x‖ ≥ δ‖x‖, ∀x ∈ D(A)

then the system Σ(A,−,C) is exactly observable in finite time.

Proof
Suppose that a Weiss class operator C ∈B(D(A),Y ) satisfies the condition that there exists a
constant δ > 0 such that

‖CT (τ)x‖ ≥ δ‖x‖, ∀x ∈ D(A).
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Then for any x ∈ D(A), it holds that

δ2
∫ τ

0
‖T (t)x‖2 dt≤

∫ τ

0
‖CT (τ)T (t)x‖2dt

≤
∫ ∞

0
‖CT (τ)T (t)x‖ ≤ e4ατ

(1− e−τ )2M
2K2‖x‖2

Note that the semigroup (T (t))t≥0 is left invertible. Denote

ε= inf
t∈[0,τ ]

inf
‖x‖=1

‖T (t)x‖.

Then we get

δ2ε2τ‖x‖2 ≤
∫ τ

0
‖T (t)x‖2 dt≤

∫ τ

0
‖CT (τ)T (t)x‖2 dt

=
∫ 2τ

τ
‖CT (t)x‖2 dt

The proof is then complete.

2.4 Exact controllability and right inverse of a C0-semigroup

In this section we discuss the relation between the exact controllability and the right inverse of
a C0-semigroup, then by duality we pass to the left inverse of a C0-semigroup using Lyapunov’s
equation defined under the following Theorem .

Theorem 2.4.1 [6]
Assume that A generates a C0-semigroup (T (t))t≥0 on the Hilbert space Z. Then the following
conditions are equivalent :

(i) There exists a Hilbert space U and an operator B ∈ B(U,Z) such that the pair (A,B) is
exactly controllable;

(ii) (T (t))t≥0 admits a right-inverse C0-semigroup (S(t))t≥0 on Z, i.e., T (t)S(t) = I (the
identity on Z) for all t≥ 0;

(iii) (T (t))t≥0 is surjective for all t≥ 0; and

(iv) There exists t0 > 0 such that T (t0) is surjective.

From Theorem 2.4.1 we obtain some new information about the unique self-adjoint solution
K ∈ B(Z) of the Lyapunov equation

2<〈Ax,Kx〉=−‖x‖2, ∀x ∈ D(A), (2.1)
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where A generates an exponentially stable C0-semigroup (T (t))t≥0. It is well known that K is
defined by

Kx=
∫ +∞

0
T ∗(t)T (t)xdt, ∀x ∈ Z

We may use the relation between exact controllability and Lyapunov equations to derive from
Theorem 2.4.1 the following corollary

Corollary 2.4.1 [6]
Assume that A generates an exponentially stable C0-semigroup (T (t))t≥0 on the Hilbert space
Z. Then the following conditions are equivalent :

(i) The unique self-adjoint solution K of the Lyapunov equation (2.1) is coercive;

(ii) (T (t))t≥0 admits a left-inverse C0-semigroup on Z;

(iii) There exists t0 such that T (t0) admits a bounded linear left-inverse.
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Chapter 3

Left-invertible semigroups on Hilbert spaces

3.1 Introduction

In [6] Louis and Wexler showed that if a strongly continuous semigroup on a Hilbert space
is left invertible for one (or equivalently all) positive time instants, then there exists a left
inverse which is also a strongly continuous semigroup. Their proof uses optimal control and
Riccati equations. In this chapter we present a shorter proof which uses Lyapunov equations.
Furthermore, using this Lyapunov equation, we can show that any left-invertible semigroup
is a bounded perturbation of an isometric semigroup, see Theorem 3.2.3. Moreover, we show
that a C0-semigroup is left invertible if and only if minus its generator can be extended to an
infinitesimal generator of a C0-semigroup.

3.2 Left Invertible Semigroups

Definition 3.2.1 (Left Invertible Semigroups)
We say that the C0-semigroup (T (t))t≥0 is left invertible on the Hilbert space Z if there exists
a C0-semigroup (S(t))t≥0 such that S(t)T (t) = I for all t≥ 0.

Definition 3.2.2 (Left Invertible Semigroups)
The C0-semigroup (T (t))t≥0 is left invertible if there exists a function t 7→ m(t) such that
m(t)> 0 and for all z0 ∈ Z there holds

m(t)‖z0‖ ≤ ‖T (t)z0‖ , t≥ 0 (3.1)

Proposition 3.2.1
Let (T (t))t≥0 be a C0-semigroup on the Hilbert space Z. Then tho following are equivalent

1. (T (t))t≥0 is left invertible,
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2. There exists a t0 > 0 such that T (t0) is left invertible, i.e., there exists a m0 such that for
all z0 ∈ Z there holds m0 ‖z0‖ ≤ ‖T (t0)z0‖.

Proof
1.(=⇒)

(T (t))t≥0 is left invertible semigroup, then there exists a function m(t) such that ∀z0 ∈ Z there holds

m(t)‖z0‖ ≤ ‖T (t)z0‖ ,∀t≥ 0,

it follows that there exists t0 > 0 and m0, such that ∀z0 ∈ Z there holds m0‖z0‖ ≤ ‖T (t)z0‖.

2.(⇐=)
There exists t0 > 0 such that T (t0) is left invertible, then by Theorem 2.2.1 there exists two
constants α,c > 0 such that ‖T (t)z0‖ ≥ ce−αt‖z0‖, ∀z0 ∈ Z,t > 0, then there exists a function
m(t) = ce−αt > 0, such that ∀z0 ∈ Z we have ‖T (t)z0‖ ≥ m(t)‖z0‖, then (T (t))t≥0 is left
invertible.
Before giving the main result, we need the following Lemma.

Lemma 3.2.1
Let A1,A2 be the infinitesimal generators of the C0-semigroups (T1(t))t≥0 and (T2(t))t≥0, re-
spectively. Then X ∈ B(Z) satisfies the Sylvester equation

〈A1z1,Xz2〉+ 〈z1,XA2z2〉= 0, z1 ∈ D (A1) , z2 ∈ D (A2) (3.2)

if and only if
T ∗1 (t)XT2(t) =X, for all t≥ 0 (3.3)

Moreover, if X is (boundedly) invertible, then

X−1T ∗1 (t)XT2(t) = I, for all t≥ 0

Thus,
(
X−1T ∗1 (t)X

)
t≥0

is the left inverse of (T2(t))t≥0.

Proof
(=⇒)We see that (3.3) is equivalent to 〈T1(t)z1,XT2(t)z2〉= 〈z1,Xz2〉, for all z1, z2 ∈ Z.
If (3.2) holds, then for z1 ∈ D(A1) and z2 ∈ D(A2) we have

d

dt
〈T1(t)z1,XT2(t)z2〉= 〈A1T1(t)z1,XT2(t)z2〉+ 〈T1(t)z1,XA2T2(t)z2〉= 0

then we have∫ t

0

d

dt
〈T1(s)z1,XT2(s)z2〉= 〈T1(t)z1,XT2(t)z2〉−〈T1(0)z1,XT2(0)z2〉= 0,∀z1 ∈ D(A1), z2 ∈ D(A2).

34



3.2. LEFT INVERTIBLE SEMIGROUPS

hence
〈T1(t)z1,XT2(t)z2〉= 〈z1,Xz2〉∀z1 ∈ D(A1), z2 ∈ D(A2). (3.4)

Now since the domains D(A1) and D(A2) are dense it follows that
∀z1 ∈ Z, there exists a sequence (ωn) ∈ D(A1) such that lim

n→∞ωn = z1. and,
∀z2 ∈ Z,there exists a sequence (ζn) ∈ D(A2) such that lim

n→∞ζn = z2.

We remark that (3.4) is true for (ωn) ∈ D(A1) and (ζn) ∈ D(A2) i.e., 〈T1(t)ωn,XT2(t)ζn〉 =
〈ωn,Xζn〉 ∀n ∈N.
Passing to the limit we get

lim
n→∞〈T1(t)ωn,XT2(t)ζn〉= lim

n→∞〈ωn,Xζn〉 ⇒ 〈T1(t)z1,XT2(t)z2〉= 〈z1,Xz2〉, ∀z1, z2 ∈ Z.

So we conclude that (3.2) holds.

(⇐=) If(3.3) holds, we show that 〈A1z1,Xz2〉+ 〈z1,XA2z2〉= 0, z1 ∈ D (A1) , z2 ∈ D (A2)
We substitute the value of X into equation (3.2), we get

〈A1z1,Xz2〉+ 〈z1,XA2z2〉= 〈A1z1,T
∗
1 (t)XT2(t)z2〉+ 〈z1,T

∗
1 (t)XT2(t)A2z2〉,∀z1 ∈ D(A1), ∀z2 ∈ D(A2)

= 〈T1(t)A1z1,XT2(t)z2〉+ 〈T1(t)z1,XT2(t)A2z2〉,∀z1 ∈ D(A1), ∀z2 ∈ D(A2)

= 〈A1T1(t)z1,XT2(t)z2〉+ 〈T1(t)z1,XA2T2(t)z2〉,∀z1 ∈ D(A1), ∀z2 ∈ D(A2)

= d

dt
〈T1(t)z1,XT2(t)z2〉,∀z1 ∈ D(A1), z2 ∈ D(A2)

= d

dt
〈z1,Xz2〉,∀z1 ∈ D(A1), ∀z2 ∈ D(A2).

But
d

dt
〈z1,Xz2〉= 0, ∀z1 ∈ D(A1), z2 ∈ D(A2)

Thus
〈A1z1,Xz2〉+ 〈z1,XA2z2〉= 0, z1 ∈ D(A1), ∀z2 ∈ D(A2)

So we conclude that (3.3) is true.
Moreover

if X is boundedly invertible =⇒X−1T ∗1 (t)XT2(t) =X−1X

=⇒X−1T ∗1 (t)XT2(t) = I

Thus X−1T ∗1 (t)X is the left inverse of (T2(t))t≥0.

Now we can formulate and prove the main result of this chapter.
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Theorem 3.2.1
Let A be the infinitesimal generator of the C0-semigroup (T (t))t≥0 on the Hilbert space Z. Then
(T (t))t≥0 is left invertible if and only if −A can be extended to an infinitesimal generator of a
C0-semigroup.

Proof
(1=⇒2)
Assume that (T (t))t≥0 is left invertible, then there exists a C0-semigroup (S(t))t≥0 such that
S(t)T (t) = I. Let A2 with domain D(A2) be the infinitisimal generator of (S(t))t≥0. For z ∈ Z,
we have that

S(t)z− z = S(t)z−S(t)T (t)z = S(t)(z−T (t)z)

For z ∈ D(A) =D(−A), we obtain, also using the strong continuity of (T (t))t≥0,

−Az = lim
t→0
−
{
T (t)z− z

t

}
= lim
t→0

z−T (t)
t

= lim
t→0

S(t)T (t)z−T (t)z
t

= lim
t→0

(S(t)− I)T (t)z
t

= lim
t→0

(S(t)− I)z
t

= lim
t→0

S(t)z− z
t

= A2z,

Then ∀z ∈ D(A) =D(−A)⇒ z ∈ D(A2) ,i.e., D(−A)⊂D(A2),
and ∀z ∈ D(A), −Az = A2z⇒−A⊂ A2, then we have A∗2 ⊂−A∗.

(2=⇒1)
Assume now that A2 is the infinitesimal generator of the C0-semigroup (S(t))t≥0 and that A2

is an extension of −A ,i.e., D(−A) = D(A) ⊂ D(A2) and ∀z ∈ D(A), −Az = A2z, then we
deduce from the definition of the adjiont that −A∗ is the extension of A∗2 (A∗2 ⊂ −A∗) and
D(A∗2)⊂D(A∗). For z1 ∈ D(A∗2) and z2 ∈ D(A), we have

〈A∗2z1, z2〉+ 〈z1,Az2〉= 〈A∗2z1, z2〉+ 〈A∗z1, z2〉

= 〈A∗2z1, z2〉+ 〈−A∗2z1, z2〉= 0.

By Lemma 3.2.1, we conclude that S(t)T (t) = I, for all t≥ 0.

Theorem 3.2.2
Let (T (t))t≥0 be a C0-semigroup on the Hilbert space Z with infinitesimal generator A. Then
the following are equivalent.

1. (T (t))t≥0 is left invertible;
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2. The system Σ(A,−, I) is exactly observable in finite-time;

3. There exists a Hilbert space Y and an operator C ∈ B(Z,Y ) such that Σ(A,−,C) is exactly
observable in finite-time;

4. There exists an ω ∈ R, a Hilbert space Y , an operator C ∈ B(Z,Y ), and a positive sym-
metric operator X ∈ B(Z) such that X is (boundedly) invertible and satisfies the Lyapunov
equation

〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=−〈Cz1,Cz2〉 , (3.5)

for all z1, z2 ∈ D(A);

5. There exists a C0-semigroup (S(t))t≥0 such that S(t)T (t) = I for all t≥ 0.

Proof
(1 =⇒ 2)

Since (3.1) holds⇔ There exists a function m(t)> 0,∀z0 ∈ Z,m(t)‖z0‖ ≤ ‖T (t)z0‖, t≥ 0;

⇒∀t0 > 0,∀z0 ∈ Z,
∫ t0

0
m2(t)‖z0‖2dt≤

∫ t0

0
‖T (t)z0‖2dt;

⇒∀t0 > 0,∀z0 ∈ Z,
∫ t0

0
m2(t)dt‖z0‖2 ≤

∫ t0

0
‖T (t)z0‖2dt;

⇒∀t0 > 0,∃m> 0,∀z0 ∈ Z,
∫ t0

0
m2(t)dt‖z0‖2 =m‖z0‖2 ≤

∫ t0

0
‖T (t)z0‖2dt;

⇒ The systemΣ(A,−, I) is exactly observable in finite-time.

(3 =⇒ 4)
First, the infinitesimal generator A− ωI = B is generated by the semigroup e−ωtT (t) = S(t),
therefore B+ωI = A is generated by the semigroup eωtS(t) = T (t).
Choose ω ∈ R larger than the growth bound of (T (t))t≥0. Then we have that the semigroup
(e−ωtT (t)) is exponentially stable, i.e., there exists a constant K ≥ 1 and α > 0, such that

‖(e−ωtT (t))‖ ≤Ke−αt, ∀t≥ 0.
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Now for z ∈ Z we have

m‖z‖2 ≤
∫ t0

0
‖CT (t)z‖2dt=

∫ t0

0
‖CeωtS(t)z‖2dt=

∫ t0

0
e2ωt‖CS(t)z‖2dt

≤m1

∫ t0

0
‖Ce−ωtT (t)z‖2dt,

≤m1

∫ t0

0
e−2ωt‖CT (t)z‖2dt,

≤m1

∫ ∞
0

e−2ωt‖CT (t)z‖2dt,

=m1

∫ ∞
0
‖Ce−ωtT (t)z‖2dt,

≤m1

∫ ∞
0
‖C‖2‖e−ωtT (t)z‖2dt,

≤m1

∫ ∞
0
‖C‖2K2e−2αt‖z‖2dt,

=m1‖C‖2
∫ ∞

0
e−2αtdt‖z‖2,

=m1M‖z‖2.

Define 〈z1,Xz2〉=
∫∞
0 e−2ωt〈CT (t)z1,CT (t)z2〉dt, then we have

a)X is symmetric since in one hand we have

〈z1,Xz2〉=
∫ ∞

0
e−2ωt〈CT (t)z1,CT (t)z2〉dt= 〈Xz2, z1〉, ∀z1, z2 ∈ Z. (3.6)

on the other hand we have

〈z1,Xz2〉=
∫ ∞

0
e−2ωt〈CT (t)z2,CT (t)z1〉dt= 〈z2,Xz1〉, ∀z1, z2 ∈ Z. (3.7)

From(3.6) and (3.7) we obtain 〈Xz2, z1〉= 〈z2,Xz1〉, ∀z1, z2 ∈ Z.
b) By the above relation

m‖z‖2 ≤m1

∫ ∞
0

e−2ωt‖CT (t)z‖2dt≤m1M‖z‖2, ∀z ∈ Z

equivalently
m〈z,z〉 ≤m1〈z,Xz〉 ≤m1M〈z,z〉, ∀z ∈ Z

then
m

m1
〈z,z〉 ≤ 〈z,Xz〉 ≤M〈z,z〉, ∀z ∈ Z (3.8)

which (3.8) is equivalent to
m

m1
≤X ≤MI

Thus X is a bounded operator with bounded inverse.
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c) Now we can show that X is a solution to the Lyapunov equation

〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=−〈Cz1,Cz2〉 , ∀z1, z2 ∈ D(A)

We have

〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=
∫ ∞

0
e−2ωt〈CT (t)(A−ωI)z1,CT (t)z2〉dt

+
∫ ∞

0
e−2ωt〈CT (t)z1,CT (t)(A−ωI)z2〉dt

=
∫ ∞

0
〈Ce−ωtT (t)(A−ωI)z1,Ce

−ωtT (t)z2〉dt

+
∫ ∞

0
〈Ce−ωtT (t)z1,Ce

−ωtT (t)(A−ωI)z2〉dt

=
∫ ∞

0

d

dt
〈Ce−ωtT (t)z1,Ce

−ωtT (t)z2〉dt

= [〈Ce−ωtT (t)z1,Ce
−ωtT (t)z2〉dt]+∞0

=−〈Cz1,Cz2〉.

Thus X is a solution to the Lyapunov equation (3.5).
(4 =⇒ 5)
We rewrite the Lyapunov equation (3.5) to the Sylvester equation

We have (3.5)⇔ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=−〈Cz1,Cz2〉 , ∀z1, z2 ∈ D(A)

⇒ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉+ 〈XX−1C∗Cz1, z2〉= 0, ∀z1, z2 ∈ D(A)

⇒ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉+ 〈X−1C∗Cz1,Xz2〉= 0, ∀z1, z2 ∈ D(A)

⇒ 〈(A−ωI +X−1C∗C)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉= 0, ∀z1, z2 ∈ D(A)

Since this can be seen as (3.2) with A1 = A− ωI +X−1C∗C and A2 = A− ωI, and since a
bounded perturbation of an infinitisimal generator is still an infinitesimal generator, we obtain
by Lemma 3.2.1 that the semigroup generated by A−ωI is left invertible, and

X−1T ∗1XT (t)e−ωt = I,

Where (T1(t))t≥0 is the semigroup generated by A−ωI+X−1C∗C. Thus, S(t) =X−1T ∗1Xe
−ωt

is the left inverse of T (t).

(5 =⇒ 1) Is clear by definition.

Remark 3.2.1
We remark that the Theorem 3.2.2 also holds for C ∈ B(Z,Y ) for which Σ(A,−,C) is exactly
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observable in infinite-time, provided we have for all z0 ∈ Z that
∫∞
0 ‖CT (t)z0‖2dt < ∞, or

equivalently∫∞
0 ‖CT (t)z0‖2dt < m‖z0‖2 for some m independent of z0. Just define X in part 4 as

〈z1,Xz2〉=
∫ ∞

0
〈CT (t)z0,CT (t)z2〉dt

and take ω = 0. The condition
∫∞
0 ‖CT (t)z0‖2dt <∞ for all z0 ∈ Z is known as infinite-time

admissibility or output stability.

In the proof of Theorem 3.2.2 3⇒ 4 we used that e−ωtCT (t)z0 is square integrable on [0,∞).
Even when (T (t))t>0 is exponentially stable, this does not imply that C is bounded. The class
of operators C :D(A) 7→ Y for which this holds is called admissible. Hence it may seem that if
item 3 holds for an admissible C, then item 1 will hold as well. The following example shows
that this does not hold for general admissible output operators.

Example 3.2.1
Consider the left-shift semigroup on L2(0,1), i.e.,

(T (t)f)(η) =


f(η+ t) η+ t ∈ [0,1]

0 η+ t≥ 1

with the observation at η = 0, i.e.,
Cf = f(0)

We show that (T (t))t≥0 is not left invertible ;
For t ∈ [0,1] we have

‖T (t)f‖2 = 〈T (t)f,T (t)f〉L2(0,1) =
∫ 1

0
|(T (t)f)(s)|2ds=

∫ 1

0
|f(t+ s)|2ds= ‖f(t)‖2

then
‖T (t)f‖= ‖f(t)‖

On the other hand we have

‖T (t)f‖= ‖f(t)‖

equivalently ‖eAtf‖= ‖f(t)‖

then ‖f(t)‖= ‖eAtf‖ ≤ ‖eAt‖‖f‖

hence ‖T (t)f‖= ‖f(t)‖ ≤m0‖f‖, t ∈ [0,1] with m0 = ‖eAt‖

there exists t ∈ [0,1] such that ‖T (t)f‖ ≤m0‖f‖, thus (T (t))t≥0 is not left invertible,
But since∫ 1
0 |CT (t)f |2dt= ‖f‖2 , then

the operator C is admissible and exactly observable in finite-time.
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It is well-known that the left inverse need not to be unique. However, since in item 5 the left
inverse is a C0-semigroup, it might be expected that this extra structure induces uniqueness.
The following example shows that the left-inverse semigroup in item 5 of Theorem 3.2.2 need
not to be unique.

Example 3.2.2
As Hilbert space Z we take L2(0,∞)⊕L2(0,1). Furthermore, we take

A1

 f1

f2

=
 −ḟ1

−ḟ2



with domain

D (A1) =


 f1

f2

 ∈ Z | f1 ∈H1(0,∞),f2 ∈H1(0,1) and f1(0) = αf2(0),f2(1) =
√

2f2(0)

 ,
where H1(Ω) denotes the Sobolev space of L2(Ω)-functions whose (distribustional) derivative
lies in L2(Ω). The operator A2 is defined similarly,

A2

 g1

g2

=
 −ġ1

−ġ2



with domain

D (A2) =


 g1

g2

 ∈ Z | g1 ∈H1(0,∞), g2 ∈H1(0,1) and g1(0) = 0,
√

2g2(1) = g2(0)

 ,
It is not hard to show that these operators generate strongly continuous semigroups on Z.

For
 f1

f2

 ∈ D(A), there holds

〈
A1

 f1

f2

 ,
 f1

f2

〉+
〈 f1

f2

 ,A1

 f1

f2

〉=
∫ ∞

0
−ḟ1(x)f1(x)dx+

∫ ∞
0

f1(x)(−ḟ1(x))dx

+
∫ 1

0
−ḟ2(x)f2(x)dx+

∫ 1

0
f1(x)(−ḟ2(x))dx

=−[|f1(x)|2]∞0 − [|f2(x)|2]10
=−0 + |αf2(0)|2− 2|f2(0)|2 + |f2(0)|2 ≤ 0,

for 0≤ α≤ 1. Thus, for these values of α, A1 generates a contraction semigroup.
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For
 g1

g2

 ∈ D(A), there holds

〈
A1

 g1

g2

 ,
 g1

g2

〉+
〈 g1

g2

 ,A1

 g1

g2

〉=
∫ ∞

0
−ġ1(x)g1(x)dx+

∫ ∞
0

g1(x)(−ġ1(x))dx

+
∫ 1

0
−ġ2(x)g2(x)dx+

∫ 1

0
g2(x)(−ġ2(x))dx

=−[|g1(x)|2]∞0 − [|g2(x)|2]10
=−0 + |g1(0)|2− |g2(1)|2 + |g2(0)|2

=−
∣∣∣∣∣ 1√

2
g2(0)

∣∣∣∣∣
2

+ |g2(0)|2 ≤ 0.

Next we show that (3.2) is satisfied for X = I for all α.〈
A1

 f1

f2

 ,
 g1

g2

〉+
〈 f1

f2

 ,A2

 g1

g2

〉=
∫ ∞

0
−ḟ1(x)g1(x)dx+

∫ ∞
0

f1(x)(−ġ1(x))dx

+
∫ 1

0
−ḟ2(x)g2(x)dx+

∫ 1

0
f2(x)(−ġ2(x))dx

=−[f1(x)g1(x)]∞0 − [f2(x)g2(x)]10
=−0 + 0− f2(1)g2(1) + f2(0)g2(0)

=−
√

2f2(0) 1√
2
g2(0) + f2(0)g2(0) = 0,

where we used the boundary conditions. Hence by Lemma 3.2.1 we obtain T ∗1 (t)T2(t) = I, thus
A∗1 generates the left inverse (T ∗1 (t))t≥0 of (T2(t))t≥0. but because of its dependance on α it is
not unique.

Theorem 3.2.3
Let (T (t))t≥0 be a C0-semigroup on the Hilbet space Z with generator A. Then the following
are equivalent

1. (T (t))t≥0 is left invertible;

2. There exists a bounded operator Q and an equivalent inner product such that A + Q

generates an isometric semigroup in the norm.

Proof
(1=⇒2)
Suppose that (T (t))t≥0 is left invertible. By Theorem 3.2.2, ∃ ω ∈ R, a Hilbert space Y ,
C ∈ B(Z,Y ) and an operator X ∈ Z boundedly invertible, such that

〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=−〈z1, z2〉 ,∀z1, z2 ∈ D(A) (3.9)
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Now we can write this equation as

(3.9)⇔ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉=−1
2 〈z1, z2〉−

1
2 〈z1, z2〉 , ∀z1, z2 ∈ D(A)

⇔ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉+
1
2〈XX

−1z1, z2〉+
1
2〈z1,XX

−1z2〉= 0,

⇔ 〈(A−ωI)z1,Xz2〉+ 〈z1,X(A−ωI)z2〉+
1
2〈X

−1z1,Xz2〉+
1
2〈z1,XX

−1z2〉= 0,

⇔ 〈(A−ωI + 1
2X
−1)z1,Xz2〉+ 〈z1,X(A−ωI + 1

2X
−1)z2〉= 0, ∀z1, z2 ∈ D(A).

By defining Q=−ωI+ 1
2X
−1, taking as new product 〈z1, z2〉new = 〈z1,Xz2〉, then the equation

〈(A−ωI + 1
2X
−1)z1,Xz2〉+ 〈z1,X(A−ωI + 1

2X
−1)z2〉= 0, ∀z1, z2 ∈ D(A)

becomes in the following form

〈(A−ωI + 1
2X
−1)z1, z2〉

new
+ 〈z1,(A−ωI + 1

2X
−1)z2〉

new
= 0, ∀z1, z2 ∈ D(A),

then using Lemma 3.2.1 we obtain S∗(t)S(t) = I.
Thus, the semigroup (S(t))t≥0 generated by A+Q is isometric.
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