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Chapter 1

Positive Measures

1. Algebras of Sets

This section is intented to give the basic structures on sets, needed for the
definition and properties of measures. We start with the following:

Preliminaries:

Let X be a set, and let P (X) be the power set of X. If I is any nonempty
set, a function f : I — P (X) defines a family {4;, i € I} of subsets of X, with
A; = f (i) € P(X). For such family we perform the union and the intersection
by:

UAi:{.%‘ZEiEI,ZEEAi}

ﬂAzi{IEVZEI,IL‘GAI}

Let us recall the frequently used De Morgan’s Laws:

(UAi) =NA7, (Oz‘h‘) = UA}
valid for any family {A;, ¢ € I}, where A¢ denotes the complement of the set A.
Definition 1.1.

Let A be a family of subsets of X.

We say that A is an algebra on X if:

(1) X,¢ arein A

(2) For every subset A in A, the complement A° of A isin A

(3) For every subsets A,Be A, AUBec A

Example 1.2.

(a) For any X the power set P (X) is an algebra

(b) Let X be aset and let A be the family given by A = {4 C X : A or A° finite}.
It is not difficult to check that A is an algebra, using the De Morgan’s Laws
given in the Preliminaries

(c¢) If A is an algebra and if A,B € Athen ANBe A

(d) For any finite sequence Ay, ..., A, in A the union L?Ai and
the intersection 6Ai are in A.

Definition 1.3.
Let F be a family of subsets of X.
We say that F is a o—field or o—algebra on X if:
(1) X, ¢ are in F
(2) For every subset A in F, the complement A° of A is in F
(3) For every sequence (A,,) of subsets A,, € F, %An eF

The pair (X, F), where X is a set and F a o—field on X is called a measurable
space and sets A in F are called measurable sets.



Examples 1.4.
(a) For any X the power set P (X) is a o—field on X.
(b) Let X be an infinite set and let F be the family given by F = {A C X : A or A° countable}.
Then it is not difficult to prove that F is a o—field on X
(use the De Morgan’s Laws given in the Preliminaries).
(¢) Every o—field on X is an algebra, but the converse is not true as is shown
by the following:
take X = Z, the integers and the algebra A = {A C X : A or A° finite},
put A, = {n},n > 0; then A, € A¥n >0, but ngoA" ¢ A.

Remark 1.5.
(a) If F is a o—field on X, then for every sequence (A,) in F, N4, € F.
(b) For every sequence (A,) such that A; N A; = ¢, for i # j

we denote the set UA,, by > A,.

2. Exercises

1. Prove that the family F is a o—field on X, if and if the following
conditions are satisfied:
(a) 9 € F
(b) For any finite sequence A1, ..., A, in F, Fin eF

(¢) For every sequence (A,) such that A4; N A; = ¢, for i # j. we have
A, eF

n

2. For every sequence (4,), define the sequence (B,,) by the following recipe:
By = A17 By = AQ\Al, B3 = Ag\ (A1 U AQ) R Bn\ (zgnAl>
Prove that UA, =Y B,.

3. Generations

Lemma 3.1.
Let F;, i € I be an arbitrary family of oc—fields
(resp. algebras). Then the family NF; is a o—field (resp. algebra).

Proof. Straightforward.H
Corollary 3.2.
Let H be a family of subsets of a set X
Then there exist a smallest c—field on X containing H, denoted by o (H).
Smallest is taken in the sens of the inclusion ordering.
o (H).is called the o—field generated by H.
Proof. Let 3= {F: F o —field on X, with H C F}
then by Lemma 3.1, f@jf is a o—field on X and it is clear that:

o(H)= 0 Fm



Example 3.3.

(a) Let H be a family given by one subset A, H = {A}

then o (H) = {4, 4%, ¢, X}.

(b) If 7 is the family of one point sets given by Z = {{z} : =z € X}

then we have o (Z) = {A C X : A or A° countable}(see Example 1.4 (b))

Definition 3.4.(Product o—field)

Let (X1, F1), (X2,F2) be measurable spaces. Consider on the product set
X1 X X5 the family R = {A1 X Ag: Ay € F1,As € .7:2}
The product o—field on X; x X5 is defined by 1 @ Fo =0 (R) .
The measurable space (X7 x Xo, F1 ® Fa) is called the product of (Xi,71),
(Xa, F2).

Definition 3.5. (Borel o—field )

Let X be a topological space. The Borel o—field of X is the o—field gener-
ated by the family of all the open sets of X.
It is denoted by Bx. Sets in Bx are called Borel sets of X. One can see that
Bx is also generated by the closed sets of X.

Proposition 3.6.

The Borel o—field Brof R is generated by the open intervals of R.
In fact By is generated by the family {]—oo,t[,t € R}.

Proof. Every open set of R is the union of a sequence of open intervals.ll

Definition 3.7. (Monotone family)
Let M be a family of subsets of a set X. M is said to be monotone if:
(¢) For any sequence (A,) with A1 C Ay C ... C 4,, C ..., we have UA,, € M

(#) For any sequence (A4,) with 41 D A3 D ... D 4,, D ..., we have N4,, € M

Example 3.8.
(a) Any o—field is a monotone family
(b) Let A be an algebra, then A is a o—field iff A is a monotone family.

Lemma 3.9.
Let M, i € I be an arbitrary class of monotone families
Then the family NM; is a monotone family.

K3

Proof. Straightforward.l

Corollary 3.10.

Let H be a family of subsets of a set X
Then there exist a smallest monotone family on X containing H, denoted by
M (H). Smallest is taken in the sens of the inclusion ordering.

M (H).is called the monotone family generated by H.

Proof. Let J = {M: M monotone family on X, with H C M}
then by Lemma 3.9, Mﬂ j./\/l is a monotone family on X and it is clear that:
€

MH)= 0 ME



Theorem 3.11.
Let A be an algebra on the set X. Then the o—field generated by A is identical
to the monotone family generated by A.

Proof. Put M = M (A), B=o0(A). Then M C B (Example 3.8. (a) ).

To show that B C M it is enough to prove that M is an algebra

(see Example 3.8. (b))

First we prove that B € M = B € M. Tothisendlet M' = {Be M: B¢ e M}
Then we have A € M’ C M. Moreover M’ is monotone and so M = M.

It remains to prove that M is stable by intersection. For each A € M, consider
the family Myq = {BeM: ANB e M}, then My is a monotone family
with M4 C M. Moreover if A € A, we have A C M4, so we deduce that
My = M. On the other hand it is clear that A € Mp iff B € M 4, therefore
A e Mp for every A € Aand B € M. Finally Mg = M, for all B € M. This
proves that M is an algebra.ll

4. Exercises

3. Let A be a family of subsets of a set X. If FE is any subset in X, we define
the trace of A on E by the family ANE = {ANE,Aec A}.
Prove that o (ANE) = o (A)NE.
4. Let S be a family of subsets of a set X. We say that S is a semialgebra if it
satisfies:

(a) ¢, X arein S

(b) If A,B arein S then ANBisin S

n
(¢) If Aisin S then A° = > Ay, where the sets Ay are pairwise disjoint in
1

S.
Prove that the algebra generated by the semialgebra S is the family

A= {A : A =55k, where the Si are pairwise disjoint in S.

1
5. Let R the set of real numbers equiped with the usual topology, prove that

the family of all intervals is a semialgebra.

6. Let 51,52 be semialgebras on the set X and consider the family & =

{Sl NSy, S1€81,5 € SQ} .

Prove that S is a semialgebra and that the algebra generated by S is identical

to the algebra generated by S; and Ss.

7. Let (X3, F1), (X2, F2) be measurable spaces. Prove that the family {A; x Ay : Ay € Fi, Ay € Fo}
is a semialgebra.on X7 x X, (see exercise 4.).



5. Limsup and Liminf

Let X be a set, and let P (X) be the power set of X. We assume that P (X)
is endowed with the inclusion ordering C. then:

Definition 5.1.
For any sequence (4,) in P (X), we define the sets limsupA,, and liminfA4,, by:
n n

limsup4, = N U A
" PAn n>1kSn " F

liminfA, = U N A
n n>1k>n

Similarly let R, < be the ordered real number system and:

Definition 5.2.

For any sequence (a,) in R, we define the numbers lim supa,, and lim infa,,
n n

in R = [~00, o] by:
lim supa,, = inf supay
n n2lp>np
liminfa,, = supinf a
n n>1k2>n

Definition 5.3.
If fn : X — R us a sequence of functions from a set X into R, we define
the functions limsupf,, and liminf f, from X into R by:
n n

<limnsupfn> (@) = limsup (o (2)

(lim inf f") (z) = liminf (f, (z))
6. Exercises

8. Prove that for any sequence (A,,) in P (X) we have:
liminfA, C limsup4,

<lim iann>c = limsup A¢,
limsupAn> = liminfA¢
9. Let I4 be the indicator function of the set A, i.e I4(x) =1if z € A and

Ip(z)=0ifz ¢ A.
Prove that for any sequence (A,) in P (X) we have:

Diim supa,, = limsupla, and liminta, = lint;’ianAn
n n n )



7. Positive Measures

Let (X,F) be a measurable space.

Definition 7.1.
A positive measure p on F is a set function
p: F — [0 oo] such that:

(1) p(¢) =0

(74) For every pairwise disjoint sequence (A,) in F:
L (ZAn) =Y pu(4,) (o—additivity of p).

The triple (X, F, u) is called measure space.
Let us observe that for a finite pairwise disjoint sequence

A, 1 <k <nin F, we have: u (ZAk> => p(Ag).
1 1

Example 7.2.

(a) Let X be a set and fix zy € X. Define 1 on P (X) by:

AeP(X), u(A) = 1Ia(zo) (see exercise 9 defining the function 14). Iy (z0)
is called Dirac measure at zg.
To prove the o—additivity of i, observe that Is~4, = > 14, for pairwise disjoint

sequences (A,,).
(b) For A C X put u(A) = oo if A is an infinite set and p (A) = n if A is a finite
set with n elements. This measure is called the cardinality measure on P (X).

Proposition 7.3.
Let (X, F, 1) be a measure space and let A, B be in F, then:
(a) ACB= pu(A) <u(B).
(b) ACBand p(A) <oo= pu(B\A) =u(B)—p(4).
(B\A is the difference set B N A°)
Proof. If A C B, then B = (B—A)UA and p(B) = u(B\A) + 1 (A), by
additivity; so p (B) > p(A) .If moreover p(A) < oo we deduce that:
p(B\A) = p(B) —p(A) .1

Proposition 7.4. Let (X,F,u) be a measure space. Then for any sequence
(A,) in F we have:

] (UAn) <> u(A,) (sub o—additivity of p).
Proof. Define the sequence (B,) by the following recipe: B; = A, By =
AQ\Al, Bs = A3\ (A1 @] Ag) R Bn\ (g Az) , then UA,, = ZBn and B,, C An,

VYn. So u (UAn) =L (ZBn) = Y u(Bn);by Proposition 7.3(a) p(B,) <
w(A4y),vn.l ! !



Proposition 7.5. (sequential continuity of a measure)

Let (X, F,u) be a measure space. If (4,) is a sequence in F, then we have

(a)if Ay C A C...C A, C ... C A=UA, then pu(A4) = Limu (4,)

b)if Ay DAy D ... DA, D....DA=0nNA, and if u(A,,) < oo for some ngy

then p (A) = Limp (A4,)

Proof. (a) Define the sequence (B,,) by:

B1 = A17 BQ = AQ\Al, Bg = Ag\AQ, ,Bn = An\An—h so we have A = ZBn
n

and p (A) = > p (Bn) = 2 p (An\An 1) = Lim 3 pu (Ap\Ag 1) = Limp (Z Ak\Ak1>;
n n mog=1 n k=1
but > Ax\Ar_1 = A, by construction and we deduce that u(A) = Limu (4,) .
1 n

(b) We can assume ng = 1, so u(A,) < oo for all n. On the other hand we
have A;\A; C A;\A2 C ... C A1\A, C ... UA1\A, = A1\A. By (a) we deduce

p(A1\A) = Limp (A1\A,,). Since u(A4,) < oo for all n we get, by Proposition

7.3(0), p(A\A) = p (A1) — p(A) and p(A1\A,) = p (A1) — p(A,), whence
w(A) = L%'lmu (A,) .1

Example 7.6. The condition (b) above is essential as is shown by taking p the
counting measure on N and taking 4, = {p: p > n}; indeed we have NA,, = ¢,
n

so i (¢) = 0 but p (A,) = oo, for all n, and then Lglm,u (4,) = co.l

Proposition 7.7. (Borel-Cantelli Lemma)
Let (X,F, ) be a measure space. Let (A,) be a sequence in F such that:

> (Ay) < oo, then: p | limsupA, ) =0

n n
Proof. Put B, = U Ag, then B,, is decreasing and limsupA4,, = N B,. Since
k>n n n>1

w(Br) = 1 (kL>J Ak) < S u(4y) <> u(A,) < oo for all n, we deduce, from
=n k>n n

Proposition 7.5 (b), that p (lim supAn> = Limp (B,) < Lim Y p(4,) =0,
n n o k>n
because Y p(Ay) is the remainder of a convergent series.ll
k>n
Proposition 7.7. (Borel-Cantelli Lemma)
Let (X, F, u) be a measure space. Let (A,) be a sequence in F such that:

S (Ay) < oo, then: p (hm supAn> =0

n n
Proof. Put B,, = kL>J Ay, then B, is decreasing and limsupA,, = Qan. Since
Zn 1 nz

n

pw(Bn) = i (kg Ak) < S u(Ay) <> u(A,) < oo for all n, we deduce, from
zn k>n n

Proposition 1.6.5 (b), that u (hm supAn) = Limp (By,) < Lim Y pu(A,) =0,
n n n k>n
because Y 11 (Ay) is the remainder of a convergent series.ll
k>n



8. Complete Measures

Definition 8.1.

Let (X, F, ) be a measure space and let N be a subset of X, we say that
N is a null set if there is A € F, with p (A) = 0 such that N C A. Let N be
the family of null subsets of X. The space (X,F,p) is said to be complete if
N C F i.e every null set is mesurable.
Examples 8.2.
(a) The counting measure on any set X is complete since in this case ¢ is the
only null set.
(b) If pg is the Dirac measure at s on (X,F) (Example 7.2.(a)), every subset
N not containing s is a null set
Lemma 8.3.

The family N is closed by countable union.

Proof. Let (Nj) be a sequence in N, then for each k there is Ay € F, with
p (Ag) = 0 such that N C Ag. So N = L’gNk - LkJAk; by the sub o— additivity

of p we have p (UAn) <>u(4,) =001

Tt is possible to complete any measure space (X, F, 1) according to the following:

Theorem 8.4.

Let (X, F, ) be a measure space and let A/ be the family of null subsets of
X. Let us put:

Fo={ECX: E=FUN, FeF, NeN}

po (E)=pg(FUN)=pu(F),if E=FUN,FeF, NeN
Then: Fy is a o—field on X containing F, and N

o is a well defined measure on Fq that coincides with p on F.

The measure space (X, Fo, o) is complete.
Proof. First Fy is a o—field
it is clear that ¢ and X are in Fy
let £ € Fy with E=FUN, FeF, NeN and let A € F, such that u(A4) =
0,N C A; then we have E = FCNN°® = (F°NN°NA)+ (F-NN°NA®) =
(FCNN°NA)+ (Fen A°); since FCNN°NAeN and FENA¢ e F
we have F° € Fy. Finally Fy is closed by countable union and this comes from
the same property for the family A (Lemma 8.3).
To finish the proof, we consider the set function p,. First it is well defined,
indeed suppose the set £ € Fy can be written as £ = F; U Ny = Fy U Ny,
then Fy N F§ C Ny U Ny and Fo N FY C Ny U Ny which gives p (Fy NFY) =
pw(FaNFY) =0, s0 p(Fy) = p(Fs) and pg (E) = po (FUN) = p(F) is well
defined.
To prove the o—additivity of p, let (Fy,) be a pairwise disjoint sequence in Fp,
and write B, = F, UNy, k> 1, with F, € F, N, € N.
Then we have > Ej, = Y F, UY Ny, with > N, € N (Lemma 8.3).

k k k k

and p (ZEk) =u (ZFk> =Y pu(Fr) = D po (Ex), since p is o—additive.
k k & k

Finally we prove that (X, Fo, 1) is complete. Let My be a p, null set in X, so

10



there is Fy € Fo with ugy (Eo) = 0 and My C Ey; write Ey = FUN, F € F,
N e N with pg (Eo) =p(F)=0and N C A€ F,u(A) =0, so My C FU A,
with p (F'U A) = 0; this proves that My € N/ C Fy and My is Fy measurable.ll

9. Exercises

10. A family o of subsets of X is o—additive if:
(1) ¢ and X arein o
(2) If (A4,) is an increasing sequence in ¢ then UA,, € o
n
(3

) For any A, B in 0 we have:

ACB=BNA‘co

ANB=¢= A+Bco

(a) prove that any o—field is a o—additive family

(b) let p, A be two measures on the same measurable space (X, F) such that

w(X)=X(X) < o0.
Prove that the family 0 = {A € F: u(A) = A(A)} is o—additive.
Let C be a family of subsets of X then there exists a smallest c—additive family
on X containing C called the c—additive family generated by C.
11. Let & be a family of subsets of X closed by finite intersection
Prove that the o—field generated by < coincides with the o—additive family
generated by .

11



Chapter 2

Outer measures Extension of measures
1. Outer measures

Definition 1.1.
An outer measure on a set X is a set function
A:P(X) — [0 oo] such that:
(1) A(¢) =0
(2) if A C B then A(A) <\ (B)
(3) if (E,,) is any sequence in P (X) then A (%En> <SS A (En)

Remark.1.2.
It is not difficult to see that if A is additive then A is a positive measure on
P(X).
Example.1.3.

(a) Any positive measure on P (X) is an outer measure.

(b) Define A on P (X) by A(¢) =0 and A(E) = 1if E # ¢; if X has more
than one point then A is an outer measure but not a measure.
We can say that the notion of outer measure is a natural generalization of
that of positive measure. We will see below that an outer measure acts as a
true measure on a some specific family of subsets of X. Let us start with the
following:

Definition 1.4.
Let A be an outer measure on X. A subset £ C X is said to be outer
measurable or A—measurable if we have:

forevery AC X, AMNA) =XANE)+X(ANE")

Example.1.5.

(a) A subset E C X with A (F) = 0 is A—measurable.

(b) X, ¢ are A—measurable for every outer measure \.

(c) .Let A be defined on X by A(¢) =0, A(X) =2, A(F) =1 for E # ¢, X.

Then A is an outer measure and ¢, X are the only A—measurable sets.
Now we go to the important assertion:

Theorem.1.6.

Let A be an outer measure on X

and let F be the family of the A—measurable sets.

Then F is a o—field and the restriction of A to F is a positive measure.

Proof. see [7].

12



2. Exercises

12. Let X\ be an outer measure on X and let H be a A—measurable set. Let A\
be the restriction of A to P (H), prove that:

(a) Ao is an outer measure on P (H).

(b) A C H is Ap—measurable iff A is A—measurable.
13.Let A be an outer measure on X and let A be a A—measurable set. If B C X
is a subset with A (B) < oo, prove that:

AMAUB)=X(A)+ A (B)—-X(ANDB)

3. Extension of Measures

We start this section with the construction of an outer measure from a
measure defined on an algebra of sets.
Definition 3.1.

Let A be an algebra on X. A positive measure on A is a set function
p: A — [0 oo such that:
(i) p(d) =0
(#4) For every pairwise disjoint sequence (A,,) in A with %An € A

L (ZAn) =Y u(4,) (o—additivity of p).

Any measure on an algebra A gives rise toan outer measure according to:
Theorem.3.2.

Let 12 be a measure on an algebra A.
For each subset E C X define A (F) by the recipe:

A(E) = inf {Zu (A,): EC %JA”, (4,)c A

the lower bound being taken over all sequences (4,) C A.

Then A is an outer measure whose restriction to A coincides with p.
Moreover the sets of A are A—measurable.

Proof. see [7].

Definition 3.3. (0—finite measures)
Let (X,F,u) be a measure space. We say that the measure p is o—finite if
there is a sequence (A,) in F, such that UA,, = X and p(A,) < oo, Vn.

n

A measure p on an algebra A is o—finite if there is a sequence (4,,) in A such
that UA,, = X and p(A,) < oo, Vn.
n

Example 3.4.

(a) Any finite measure p, i.e p(X) < 0o, is o—finite
(b) The counting measure on N or on any infinite
countable set is o—finite but not finite.

(c) we will see later that the Lebesgue measure on R
is a non trivial c—finite measure.

13



Now we give the main extension theorem:
Theorem 3.5.

Let 1 be a measure on an algebra A of subsets of X.
Then g can be extended to a measure &t on the o—field o (A) generated by A.
Moreover if y is o—finite on A the extension & is unique.
Proof.
Let ©* be the outer measure given by Theorem. 3.2 and let F be the o—field
of p*—measurable sets. By the same theorem we have A C F and p* coincides
with g on A. So we have o (A) C F. By Theorem. 1.6 p* acts as a true measure
on F. Then it is enough to take 7 as the restriction of u* to o (A). We prove the
uniqueness in the case u finite. Suppose the existence of two extensions p,, p5 for
p and consider the family M = {A € 0 (A) : p; (A) = po (A)}. Tt is not difficult
to prove that M is a monotone class which contains A (use the finiteness of the
measures) So we have A C M C o (A) and since A is an algebra the monotone
class generated by A is idendical to the o—field generated by A (Theorem 3.10,
Chap. 1) We deduce that M = o (A). We leave the o—finiteness case to the
reader.ll
Theorem 3.6.
Let p be a o—finite measure on an algebra A of subsets of X.
Let @ be the unique extension of p to the o—field o (A) generated by A. If
B € o (A) with 1 (B) < oo, then:

Ve > 0 there is A, € A such that @ (BAA.) <€
where BA A, is the symmetric difference (BN A%) U (A. N B°).

Proof. By Theorems 3.2 and 3.5 the unique extension i has the form:

o (B) = inf {Z,u (A4,): B C L#An, (A,) C A }
If Beo(A Witﬁ 7 (B) < oo, Ve > 0 3(A,) € A such that B C %An and
Zn:,u (A) < (B) + §.then use the fact that %An = li]{In JLIJT A, and Jtl\jAn cA;
put By = UA, then 7 (UAW) = timg (Bx) = limp (By).
So for some Ny we have i (%An) < I (Bn,) + §, then the set A, = By, is in
A and works.l

4. Exercises

14. An outer measure p* on X is regular if for any A C X there is a
p*—measurable set E such that A C E and p* (4) = p* (E).
(a) If p* is regular then for any sequence (A,,) of subsets of X we have

w* <limniann> < limninfu* (4,).

(b) If moreover the sequence (A,,) is increasing then p* (limA,,,) = limyp* (A,) .

14



15. Let (X, F, 1) be a measure space. Define p* on P (X) by the recipe:
p(E)y=inf{pu(A): Ae F EC A}

(a) Prove that p* is an outer measure.

(b) Prove that VE C X 3JA € F such that E C A and p* (E) = p(4).

(c) Let us define p* on P (X) by the recipe:
. (E)=sup{u(Ad): AeF EC A}

Prove that VE C X, in either case u, (E) < oo or p, (F) = oo, there isA € F

such that E C A and p, (E) = p(4).

(d) Prove that p, (E) < p* (F),VE C X and if F is p*—measurable

then p, (E) = p* (E) If p, (E) = p* (F) < oo then E is p*—measurable.

5. Lebesgue Measure on R

Measure on the Algebra generated by the semialgebra of intervals

Let us recall that a family S of subsets of a set X is a semialgebra if it satisfies:
(a) ¢, X arein §
(b) If A,B arein S then ANBisin S

(c¢) If Aisin S then A° = )" Ay, where the sets Ay, are pairwise disjoint in S
1

(see Chapter 1 exercise 4)
We recall also that the algebra generated by the semialgebra S is the family

{A : A =>"5k, where the S}, are pairwise disjoint in S.}
1

It is easy to prove that the family Z of all intervals of R is a semialgebra. Let
A be the algebra generated by Z. It is well known that the borel o—field Bgr

of R is generated by A or simply by Z. Now if A € A has the form A = > I,
1

where the I, are pairwise disjoint in Z, put p(A) = > A (Ix), where A (I) is the
1

lengh of the interval I. Then g is unambiguously defined on A. Moreover p is
a o—finite measure on the algebra A. By Theorems 3.2 and 3.5 the unique
extension 71 of p to the o—field o (A) = Bg generated by A has the form:

o (B) = inf {Z,u (A4,): BCUA,, (A,)CA }
The completion of the measure space (R, Bg, fz) is the Lebesgue space (R, Lg, %)
(see Theorem 8.4, Chap.1). In fact each set E € L has the foorm E = BUN,
where B € Bg and N is a g—null set. Let us note the following approximation
result:
Theorem 5.1.

Let E € L, then we have:

Ve > 0 there is a closed set F' and an open set G such that:
FCECGandu" (G\F)<e
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Chapter 3

Measurable Functions

1. Preliminaries

Definition.1.1.

Let X,Y be non empty sets.
To each function f: X — Y it corresponds the preimage function
f71:P(Y) — P(X) defined by: BeEP(Y), f 1 (B)={z€ X : f(z) € B}.
Also if S is any subfamily of P (Y) put f~!(S) = {f~*(B),B € S}.
Proposition.1.2.

The preimage function has the following properties:

(a) /71 (UB:) = Uf =" (Bi) and £~ (0B;) = 0f 7 (By)
for any family (B;) C P (Y)

(b) f7H(B°) = (f~1(B))", for any B € P (Y)

() BCC = f1(B)C f~1(C) for any B,C in P (Y).
Proof. straightforward.ll

Proposition.1.3.
Let (X,F),(Y,G) be measure spaces and f : X — Y a function. Define
the families:
R ={f"1(G):Geg}=1"(9)
By={BCY:f'(B)eF}
Then Ry is a o—field on X and By a o—field on Y’
Moreover we have f~1 (By) C F.

Proof. We prove first that R is a c—field on X.

X € Ry since X = f1(Y)and Y € G.

Let A € Ry with A = f~!(G) for some G € G, then A° = f~1(G°)
since G° € G, we deduce that A° € R;.

Let (A,) be a sequence in Ry with A, = f~!(G,,) for some G, € G;
by Proposition. 1.2 (a) we have UA,, = Uf~1(G,) = f~! <UGn)
since UG,, € G, we deduce that UA,, € Ry. So Ry is a o—field on X.
The reader can do the remains by the same way.ll

2. Measurable Functions Properties

Definition.2.1.

Let (X,F),(Y,G) be measure spaces and f: X — Y a function. We say that
f is measurable if f~1 (G) C F.This means that:

f71(G) € F for every G € G.
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Theorem.2.2.

Let f: X — Y be a function and & a family of subsets of Y.

Then we have o (f71(9)) = /7! (¢ (9)).

This means that: the o—field o (f~*(S)) generated by f~'(S) coincides with
the preimage of the o—field o (S).

Proof. § C o (S) = f1(S) C f71(0(9)) and f~1(0(Q)) is a o—field,
since the preimage of a o—field is a o—field by Proposition.1.3.

So we deduce that o (f~1(S)) C ff1 (0 (3)). Now consider the o—field
By={BcCY:[f! (B) co(f1(Q)}. B e By, then f~1(B)Co(f1(9)),
so f71(By) Co (f71(S)). But S C By, and then o (3) C By,

so we get f1(0(3)) C 71 Bf)Ca(f 1(%))..

Proposition.2.3.

Let (X,F),(Y,G) be measurable spaces and f : X — Y a function.
Suppose there is a family ' of subsets of YV with ¢ (3) = G and satsfying
f71(S) € F.Then f is measurable with respect to (X, F),(Y,G).

Proof. Since f~! () C F we have o (f71(S)) C F.

By Theorem.2.2 o (f~1(Q)) = 7! (¢ (Y)), but 0 (I) =G

and so f~1(G) c F.1

Examples.2.4.

(a) Let f: X — R be a function from (X, F) into (R, Br).The Borel o—field
Br is defined in Proposition 3.6, chap.1. For f to be measurable it is enough
that f=1 (]—o0o,t[) € F (the intervals |—oo,t[ generates Bg)

(b) Let X be a topological space with a countable base (U,,), endowed with its
Borel o—field By . It is well known that By is generated by the family (U,,) and
any open set is the union of a subfamily of (U,,). So for a function from (X, F)
into (Y, By) to be measurable it is enough that f~! (U,) € F for every n.

(c) Let XY be topological spaces endowed with their Borel o—fields Bx, By.
A function f: X — Y is measurable with respect to Bx, By iff f~!(G) € Bx
for every open set G C Y. In particular any continuous function is measurable.
(d) Let T4 : X — R be the indicator function of the set A, i.e I (z) = 1 if
x € Aand Is(z) =0if x ¢ A. We have I;' (Br) = {4, A°, X, ¢}, then I, is
measurable from (X, F) into (R, Bg) iff A € F.

(
B
(

Now we state some important properties of measurable functions.

Proposition.2.5.

Let (X,F),(Y,G),(Z, H) be measurable spaces and
f: X —Y,g:Y — Z measurable functions. Then the composition function
go f: X — Z is measurable from (X, F) into (Z, H)
Proof. We have (g o f)71 (H) = (ffl ngl) (H) = (9 ( ))
Since g is measurable g=' (H) C G, so f~! (¢~ (H )) C f71(G). But f is
measurable then f~! (G) € F. We deduce that (go f)™" (H) € F and go f is
measurable.ll
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Proposition.2.6.

Let (X X Y, F ® G) be the product of the measurable spaces (X, F), (Y, G)
(see Definition 3.4. Chap.1). Then the projection 7y (z,y) = = is measur-
able from (X x Y,F ® G) into (X, F). Similarly the projection 3 (z,y) = y is
measurable from (X x Y, F ® G) into (Y, G).

Proof. By Definition 3.4 Chap.1 the o—field F ® G contains the family
{AxB: AcF, BcG} Wegetm;' (A)=AxY € F®G for every A € F
and 7,1 (B) = X x B € F®G for every B € G. So m; and 7y are measurable.l
Proposition.2.7.

Let (Z,H) be a measurable space and let f : Z — X X Y be a function
with fi=mof:Z — X and fo =790 f: Z — Y. Then f is measurable
from (Z,’H) into (X x Y, F ® G) if and only if f; is measurable from (Z, H) into
(X,F) and fo is measurable from (Z,H) into (Y, G).

Proof. The <if> part comes from the measurability of 71 and 7o (Proposition
2.6) and the measurability of the composition function (Proposition 2.5).

We prove the <only if> part:. Since the family {Ax B: A€ F, B € G} gen-
erates the product o—field F ® G it is enough to prove that f~! (A x B) € ‘H
(Proposition 2.3). Since f; and f, are measurable we have

it (A) =(miof) 7 (A) =1 (AxY)eH

and fy ' (A) = (m0 /)" (B)=f'(X xB) e H
fTPAXY)N YN X xB)=f 1 (AxY)N(XxB)=f1(AxB)eHN
Remark. 2.8.

Let Let X be a topological space. Let us recall that the Borel o—field of X
is the o—field generated by the family of all the open sets of X.

It is denoted by Bx. Sets in Bx are called Borel sets of X. If X, Y are topological
spaces whose product X x Y is endowed with the product topology then on the
space X X Y one may put two o—fields that are Bx ® By and Bxgy. An
interesting question is when do we have Bxgy = Bx ® By. It is known that if
X and Y are separable metric spaces then Bxgy = Bx ® By . This result is of
particular importance when X =Y =R :

Theorem.2.9.

The space R is separable, since the countable set Q of rational numbers
is dense. So the set R? with the product topology is separable and we have
Br2 = Br ® Bg.

As a consequence of this Theorem we have:
Proposition. 2.10.

Let f,g : X — R be measurable functions from (X, F) into (R, Bg). Then

the following functions f + g, f.g, sup (f, g), inf (f, g) are measurable.

Proof. Since the functions f, g are measurable, the function ¢ : X — R? de-

fined by ¢ (z) = (f (x), g (x)) is measurable with respect to F and Bgz (Proposition.2.7).
On the other hand the functions S, P, M, m : R? — R given by: S (u,v) = u+w,

P (u,v) = ww, M (u,v) = sup (u,v), m (u,v) = inf (u,v) are continuous and so
measurable with respect to Bg2 and Bgr. Now we have Sop = f+g, Pop = fg,

Moy = sup(f,g), mo e = inf(f,g); the conclusion comes from Proposi-
tion.2.5.H
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Corollary. The family M (X,R) of measurable functions from (X,F) into
(R, Bgr) is a vector space on the field R and even an algebra of functions.

Definition.2.11.

Let {f;,i € I'} be a family of functions defined on a set X such that each f; :
X — E; sends X into the measurable space (E;, F;). The o—field generated
by the family {f;,i € I} is defined as the smallest o—field F on X making each
function f; measurable from (X,F) into the space (F;, ;). We denote this
o—field F by o {f;,i € I'}; in other words o {f;,i € I} is the smallest o—field F
on X containing all the families f;* (F;),i € I.
Examples.2.12.
(a) Let X be a set and take {f;,i € I} = {I4,A € P(X)} where I4 is the
indicator function, then o {I4,A € P (X)} =P (X).
(b) Let X be a topological space. The Baire o—field on X is defined as the
o—field By (X) generated by all continuous functions f; : X — R, that is the
smallest o—field on X making each continuous function f; : X — R measurable
with respect to By (X) and Bg.
(¢) If in Example (b) the space X is a metric space whose topology is defined
by the distance d then By (X) coincides with the Borel o—field Bx on X.
Indeed we have By (X) C Bx since Bx makes each continuous function measur-
able as easily may be seen. On the other hand let F' be a closed set in X and
consider the continuous function f : X — R given by f (z) = d(z, F). Then
we have F={zx € X : f(z) =0} = f~1(0) € By (X); so By (X) contains
all the closed sets of X and then Bx C By (X) since Bx is generated by the
family of closed sets in X (see Definition 3.5 Chap.1).
(d) Let (X x Y, F ®G) be the product of the measurable spaces (X, F), (Y, G).
Then the projection 71 (x,y) = = and the projection 75 (z,y) = y are measur-
able on (X x Y, F ® G) (Proposition.2.6). Then 7;* (A) = AxY € F® G for
everyAG}"andWQ_l(B):XXB€f®gf0reveryB€g.
We deduce that o {1, 72} C F ® G. On the other hand we have:
(ANt (B) = (A x Y)N(X x B) = AxB € F®G. So every set of the form
AxBwithAe Fand BeEGisino{m,m}. Butc{AxB: Ae F,Beg}=
F®G, finally F®G C o {my,m2}. Then F®G = o {m1, m2}.
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3. Exercises

20. Let X be a non empty set. Determine the o—field F generated by the
constant functions f : X — R. Let & be the family of measurable functions
from (X, F) into (R, Bg), prove that < is isomorphic to R.

21. Let f be a measurable function from (X, F) into (R, Bg), prove that |f]
is measurable. Let E be a set not Lebesgue measurable (see section 5 for the
definition of Lebesgue measurable sets). Consider the function f : R — R
defined by f (x) = zlgc — xlg, prove that f is not Lebesgue measurable but |f|
is measurable.

22. Let {(X;,Fi),1 < i <n} be a finite family of measurable spaces and form

the product set X = 11[X,» = X1 X Xo X -+ x X,,. We denote by p; : X — X,

the projection from X onto X; given by p; (z1, 2, - -, x,) = ;. Consider the
o—field o {p;, 1 < i < n} generated by the functions {p;, 1 <1 < n} and denoted

by iRF® - QF, = é;@]-'z The space <X, (%).7-"1) is called the product of the
spaces (X;, F;),1 <i<n.

(a) Prove that Q%}"i is generated by the subsets of X of the form

A=A XAy x---xA,, A, € F; 1 <i<n.

(b) Let (Y,G) be a measurable space and let g : ¥ — 17fIX,» be a function, prove

that ¢ is measurable with respect to (Y, G) and (X, (%.7-"1> if and only if p;og
1

is measurable from (Y, G) into (X;,F;) for each 1 < i <n.

23. Let X be a non empty set and let { f;,¢ € I} be a family of functions defined
on X such that each f; : X — F; sends X into the measurable space (E;, BB;).
Suppose that X is endowed with the o—field o {f;,1 <i <n} generated by
the functions {f;,1 <i < n} (see Definition 2.11). Let (Y, G) be a measurable
space and let g : Y — X, prove that g is measurable with respect to (Y, G) and
(X,0{fi,1 <i<mn})if and only if f; o g is measurable from (Y, G) into (E;, B;)
for each 1 < i <n.

4. Measurable Funcjions with values
in R R,C

Definition.4.1

(a) The set R is the real numbers system endowed with the Borel o—field Bg.
(b) The set R is defined as {R, —oco, +0o0}. The o—field we need on R is given
by o {Br, —00,00} and denoted by Bg.

(¢) It is well known that the set C of complex numbers can be identified with
the product space R x R; so we can identify the Borel o—field Bewith Bgr«r,
which is Bg ® Bg by Theorem.2.9.
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Notations. 4.2.

Let (X,F) be a measurable space. In the sequel.we will use the following

notations:

M (X, R) is the family of measurable functions f from (X, F) into (R, Bg).

M (X,C) is the family of measurable functions f from (X, F) into (C, Bc)

We already have seen that M (X,R) is a vector space on the field R (see the
Corollary of Proposition.2.10).

It is not difficult to prove the same for M (X, C)

Arithmetic in R. 4.3.

We will agree with the following conventions in R = {R, —oo, +-00} :
0-(+o0) = (£00)-0=0
(+00) + (+00) = +00
(—00) + (—00) = —o
a =+ (£oo) = +oo,Va € R
(=1) - (#00) = (F0)

Definition. 4.4.

Let (X, F) be a measurable space.

A function f: X — R is measurable from (X, F) into (R, B@) if:

f~1(B) € F,VB € Bg, and f~! (+00) € F, f~ ! (~0) € F
this comes from the fact that By = ¢ {Bg, —00, 00} and Proposition 2.3.

We denote by M (X ,@) the the family of measurable functions f from (X, F)
into (R, B@).
Proposition. 4.5.

The o—field By is generated by all the intervals of the form [—oo,t [.
Proof. Use the fact that Bg is generated by all the open intervals by
Proposition 3.6.Chap.1l
Corollary.

A function f: X — R is measurable from (X, F) into (R, Bg) if:

7t ([~oo,t]) € F,VteR.
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Definition. 4.6.

Let (X,F),(Y,G) be measurable spaces and E C X a subset of X.
If f: X — Y is a function. We say that f is measurable on F if the restriction
of f to E considered as a function from (E, E N F) into (Y, G) is measurable.

Example. 4.7.

If f,g are in M (X, R), then the function f+ g is measurable on the set E with:
B = ({f = 0o} N {g = —o0}) U ({f = —oc} N {g = oo})

Let ¢ be the restriction of f + g to E then we have

¢ is well defined on E and {p <t} ={f+g<t}NE € ENF.

5. Sequences of Measurable Functions

Definition. 5.1. (simple function)

Let f : X — R be a function from X into R. The function f is simple
if it takes a finite number of values, that is, f is simple if the set f(X) is a
finite subset of R. So if f(X) = {a1,a9,...,a,} and A; = {z: f (z) = a;},i =
1,2,...,n, then {Ay, Ay, ..., A, } is a partition of X and the function f can be

written as f () = Xn:ai.IAi (), where I, is the indicateur function of the set
Aji=1,2,... n. '
Proposition. 5.2

A simple function f (+) = Zn:ai.IAi (+) is measurable from (X, F) into (R, Br)
A EFi=12 .n

Proof. We have f~!{a;} = A; € F,i=1,2,...,n; so if B € Bg and
np = {i: a; € B}, we deduce that f~1 (B) = 'eU A, eFl
np

Notation. 5.3. We denote by £ the family of measurable simple functions
from (X, F) into (R, Br)
Proposition. 5.4.
Let s,t be in £ and A € R, then:
the functions s + ¢, s- ¢, A - s, sup (s,t), inf (s,t) are in £.

n m
Proof. Write s(-) =Y a;.1a, (-), t(-) = > b;.Ip; (), then we have:
1 1

n

s+t= Z Z (ai—&—bj).IAmBj
i=1j=1

s-t=3% (aibj) La,nB;, - 5= (Aa;) .Ia,
=

) j=1 1
(so the family £ is an algebra on R.)

n o m n o m

sup (Svt) = Z Z sup (aia b]) 'IAimBj? inf ($7t) = Z Z inf (aiv bJ) 'IAq‘,ﬁBj

i=15=1 i=1j=1
Since {A; N B;j, 1<i<n, 1<j<m}isa partition of X we get the result.ll
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Proposition. 5.5. B
Let (fn) be a sequence of functions in M (X, R) or either in M (X, R) then:

the functions supf, and inff, are in M (X , ﬁ) .

Proof. For any ¢t € R we have {supfn <ty =nN{fn <t} whence the mesura-
n n

bility of supf,. Since inf f,, = —sup — f,, we deduce the mesurability of inf f,,.l
n n n n

Corollary. 1. -
Let (f») be a sequence of functions in M (X,R) or either in M (X, R) then:

the functions lim supf, and liminf f,, are measurable
n n

Proof. Comes directly from the proposition above since lim supf,, = 11;f1 sup fx
n nzlkg>
and liminf f,, = sup inf f,.H
n nzlk)Zn
Corollary. 2. -
Let (f») be a sequence of functions in M (X, R) or either in M (X,R) then:

The set C' = {z : limsupf, () = liminff, (:c)} belongs to F.

Proof. Observe that C' is the convergence set of the sequence (f,). Put :

Oy = <{x . limsupf, (z) = oo} N {x  liminff, (z) = oo}>

n

Cy = ({x + limsupf, (z) = —oo} N {x  liminff, (v) = —oo}>

C3 =<z limsupf, (z) € R} N {ac : limsupf, (z) = liminff, (x)}
n n n
Then Cq and C5 and C5 are in F and C = C; U Cy U C5.
Corollary. 3. B
Let (f,,) be a sequence of functions in M (X, R) or either in M (X,R)
Suppose that: limf,, (z) = f (z) € R exists for each z € X. Then f € M (X, @) .
n

Proof. The convergence set C = {x : limsupf, (z) = liminff, (m)} given in
n n

Corollary 2 is equal to X here.
So the function f () is equal to limsupf, () = liminff, (z),Vz € X. Then f

is measurable by Corollary 1.1

The following theorem is fundamental and will be used in the construction of
the integral of a measurable function.

Theorem. 5.6.

Let f e M (X, R) be such that f (z) € [0, 00], V& € X.Then:
there exists a sequence (s, )of positive measurable simple functions
from (X, F) into (R, Bg) with:

(l) 0 S Sn S Sn+1

(1) h,ILnS” () = f(z), Vo € X.
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Proof. For each n > 1 and each x € X, define s, by:

-1
Sul@) = o i < f () < i = 1,2, 2"

Sp () =nif f(x )_

we can use a consolidated form for s,,:
n2'; 1

sn(@) =X 5 Tpi-1 1L f()2n}
= { o _f(a><2n}
recall that 14 is the function defined by I4 (z) =1if x € A and I4 (z) = 0 if

x ¢ A.
Then (s,,) is an increasing sequence of positive simple functions (check it!).
Let us prove that limsn (z) = f(z), Vo € X:

if f(x) < oo then for every n > f(x) we have 0 < f(z) — s, (z) < S0

hmsn( )= f(x)

1f f(z) = oo then f(x) > n for every n and so we have s, () = n for all n
whence lims,, (z) = co.l

Definition. 5.7.
Let femMm (X E). Define the positive measurable functions f*, f~ by:
=sup (f,0), f~ = —inf (f,0)
Remark. 5.8.
It is easy to check that:
f=f—f
[fl=r"+7"
Proposition. 5.9.
Let f € M (X,R). Then there exists a sequence (s,) of measurable simple
functions from (X, F) into (R, Bg) with liTr’nsn () = f(x), Vo e X.

273

Proof. We have f = fT — f~ where f*, f~ are simple positives.
By Theorem. 5.6.there exist simple posmve functions s,,, s,, such that:

n» n

lims,, () = f* (z), Vz € X and lims,, (z) = f~ (z), Vz € X. Then s, = s, — s,
is measurable simple and lims,, (z) = f* (z) — f~ (z) = f (x), Vo € X.I
Corollary.

Let f € M (X,R) and suppose f bounded. Then there is a sequence (s,) of
measurable simple functions converging uniformly to f on X.

Proof. By the Proposition above it is enough to consider the case f positive.
Since f is bounded there is n such that n > f(x) for every z € X. So there
exists a sequence (s;,) of positive measurable simple functions

with 0 < f(z) — s () < 2—m,Vx € X,Vm > n, from which we deduce the

uniform convergence of s, to f on X.A
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6. Convergence of Measurable Functions

Let us recall that if (X, F, i) is a measure space, a subset N of X is a null
set if there is A € F, with u (A) = 0 such that N C A.
In this section we describe different type of convergence of measurable functions
and the relations between them.

Definition. 6.1.

Let P be a property depending on a variable x € X, that is P may be true
or false according to z. We say that P is true almost every where if there is a
null subset NV of X such that P is true for any x outside N.

Examples. 6.2.

(a) A function f: X — R is said to be finite almost every where if there is a
null subset N of X such that f (z) € R Vo € X\N. If moreover f € M (X,R)
then {f = oo} € F and the condition of finiteness almost every where may be
written simply as p{f = oo} = 0.

(b) .A function f : X — R is said to be bounded almost every where if there
is a constant M > 0 and a null subset N such that |f (z)| < M,Vx € X\N. If
moreover f € M (X,R) then {|f| > M} € F and the condition of boundedness
almost every where may be written simply as p {|f| > M} = 0.

(c). Let f,g : X — R be functions. We say that f = g almost every where
if there is a null subset N such that f(z) = g(z),Vz € X\N. If moreover
f € M (X,R), the condition may be written as u {f # g} = 0.

Abbreviation. almost every where with respect to p is abbreviated to: y—a.e

Definition. 6.3.
Let f, : X — R be a sequence of functions. We say that f,, converges y—a.e if

the set N = < limsupf, # liminf fn} is a null set. In other words f, converges

p—a.e if for each © € X\ N the real sequence f,, (x) converge to the real number
f (x), that is: Ve > 0,3m (e, ) > 1 such that Vn > m (e, z), |fn () — [ (z)] <e.

Definition. 6.4.

Let f, : X — R be a sequence of functions. We say that f, is a Cauchy
sequence p — a.e if there is a null subset N such that for each z € X\N the
real sequence f, (z) is a Cauchy sequence in R, that is satisfies the following
condition:

Ve > 0,3M (e,z) > 1 such that Vn,m > M (e, ), | fn (x) — fim (z)| < €

Proposition. 6.5.
Let f, : X — R be a sequence of functions. The following conditions are
equivalent:
(a) The sequence f, converges to u — a.e to a function f: X — R
(b) fn is a Cauchy sequence p — a.e

Proof. For each x outside of a null set f,, (x) is a Cauchy sequence in R, so the
Proposition results from the validity of the same properties in R.H

Now let us come to the convergence of measurable functions.
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Proposition. 6.6.

Let f, be a sequence of functions in M (X,R) converging u — a.e on X.
Then there is f € M (X,R) such that f, converges p — a.e to f.
Conversely if there is f : X — R such that f,, converges 1t — a.e to f, then f
is measurable on a set E with p (E°) = 0.

Proof. Take F = {z : limsupf, (x) = liminf f, (x)} and take f defined by:
f(z) =liminff, (z) for z € E and f (z) =0 for x € E°

(see Definition 4.6 for the measurability of f on E ).l
Definition. 6.7. (uniform convergence p — a.e)

Let f, : X — R be a sequence of functions. We say that f,, converges
uniformly p — a.e to the function f: X — R if there is a null set IV such that
fn converges uniformly to f on X\N, that is:

Ve > 0,3M (e) > 1 such that Vn > M (€), |fn (z) — f (z)] < e,Vz € X\N
We say that f,, is a Cauchy sequence for the uniform convergence p — a.e if
there is a null set IV such that:

Ve > 0,3M (e) > 1 such that Yn,m > M (¢),|fn () — fm (z)| < €,Vx €
X\N
let us observe that the integer M (¢) does not depend on .

Remark. 6.8.

In most of our discussion, especially in integration theory, we frequently use
a complete measure space (X, F, ) as our basic space.
So in this case every null set is in F and this avoids some cumbersome measur-
ability character of functions.

The following Theorem localizes the points of the space X where the convergence
of a sequence fails to be uniform. Let us start with an example:

Example. 6.9.

Consider the space X = [0, 1] endowed with the Lebesgue measure y and let
fn : X — R be the sequence of functions given by f, () = 2",z € [0,1]. The
sequence converges pointwise to the function f given by f (z) =0for 0 <z < 1,
and f (z) = 1 for z = 1, but the convergence is not uniform (why?). However for
€ > 0, we see that the sequence f;,, converges uniformly on the interval [0, 1-— %],
intuitevely the points where the uniform convergence fails are localized in the
set B=[1-5,1] and p(B) <e.

Theorem. 6.10. (Egorov)

Let (X, F,u) be a measure space, with p(X) < oo. Let f,, f € M (X, @)
be functions finite p — a.e.

Suppose that the sequence f,, converges p — a.e to f on X. Then we have:

For every € > 0 there is B € F such that u(B) < e

and f, converges uniformly to f on X\B.

Proof. Without losing general hypothesis, we can assume that:
fn, f take values in R and f,, converges everywhere to f on X.
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Let E" = 0 {If; — fI < L}, since f,, f are measurable we get E™* € F,¥n,m.
j>n
Moreover it is clear that EJ' C EJ%; C ... C nglE}? Since f,, converges

everywhere to f on X, we have L;lETT = X,¥Ym > 1.
nz
So X\E' D X\E’,1 D ...D 0, (X\E™) = ¢ for each m > 1. Since p(X) <

oo we deduce that limy (X\E?") = 0; so for each m > 1 there is n (m) > 1 such

that (X\Em

#(B)< 5 u(X\E,,)) < X oo = e Sou(B) < cand X\B =
m>1 m>12m

therefore |f, (z) — f(z)] < L,Vz € X\B,Vn > n(m) and then the uniform

m’

convergence of f,, to f on X\B.W

m)> then we have:

€ m
) < 5 Now put B = Y X\E

m
mglEn(m)’

Remark. 6.11.

Egorov’Theorem is not valid in the case p infinite as is shown by the follow-
ing:
Take for (X, F, u) the space (N, P (N), p) with p the counting measure;
if f, = I{12,....n}y then f, (k) converges to 1 for each k € N; nevertheless there
is no F' C N such that p (F') < € and f, converges uniformly to 1 on X\ F
(indeed take 0 < € < 1).

Remark. 6.12.
It is not difficult to prove the equivalence of the following assertions:
(a) fn converges almost uniformly
(b) fn is a Cauchy sequence for the almost uniform convergence.
Definition. 6.13.
Let (X, F, 1) be a measure space, and let f,, f € M (X,R)
be functions finite p — a.e.
(a) the sequence f, converges almost uniformly if:
Ve > 0 dB € F such that p(B) < € and f,, converges uniformly to f on X\B.
(b) the sequence f,, is a Cauchy sequence for the almost uniform convergence if:
Ve > 0 3B € F such that u (B) < € and f,, is a Cauchy sequence for the uniform
convergence on X \B.

Here is a specific type of convergence of measurable functions:

Definition. 6.14.
Let f,,feM (X, @) be functions finite p — a.e..

We say that the sequence (f,,) converges in measure to f if:
Ve > 0, 1i7r]nu{m e (@)= f(z)>€}=0

Notation: f, - f

Proposition. 6.15.
The almost uniform convergence implies:
(a) The convergence p — a.e
(b) The convergence in measure
Proof. By almost uniform convergence we have:
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Vk > 1,3F, € F, with u (Fg) < %, and f,, converges uniformly on X\ Fj.
Take F = QFk then FF € F, p(F) = 0. If x € X\F, there is k such that
x € X\Fg, so limf, () = f (x) and proves (a).
By almost uniform convergence we have:
Vo > 0,3F5 € F, with p (Fs) < 4, and f,, converges uniformly on X\ Fj.
Put E, (¢) = {z:|fn(z) — f(2)| > €}, then E, () = E, () N Fs + E, () N
X\ Fs; we deduce that p(E, (€)) < 0 + (B, () N X\Fs). Now since f, con-
verges uniformly on X\Fs there is N (¢,0) > 1 such that for n > N (e, ),
w(En ()N X\Fs) = 0. This proves that Ye > 0,limu (E, (¢)) = 0 whence
fo = £
Proposition. 6.16.

Let (X, F, u) be a measure space, with p (X) < co. Then:
The convergence p — a.e implies the convergence in measure.
Proof. By Egorov Theorem (6.10) convergence p — a.e implies almost uni-
form convergence from which the convergence in measure comes by Proposition.
6.15.1
Proposition. 6.17.

If f, > f then f, is a Cauchy sequence for the convergence in measure that
is:

ve> 0, limp{z : |fp (2) = fm (2)] > €} =0
Moreover if also f, —— g then f =g pu — a.e.
Proof. Since [fy () — fin ()] < |fa (2) — f (@) + | () — fn (@)], we deduce
that:
s (@) = fn @) > €} € {as £ @) = F@)] > §10{e s [fun (@) — £ (@)] > §)
and we have:
,LL{:E : |fn (I) - fm (l’)| > 6} <
pla | fo (@) = f(@)] > 5} + p{z: |fm (2) = f ()] > 5}
so limp | (0) = fn (2)] > ¢} <
timp (< | (@) — £ @) > §} +lmp o< [fn (2) — £(@)] > 5} =0
now suppose f, LN g; it is clear that
{o: 1/ (@) g (@)] >0} = U{e:|f(x) — g (@) > 1}
and {z: |f(z) —g(z)] > 1} C
{z:|f (@)= fi (@) > 5=} U{z:|fi (2) — g ()] > 5=}, Vk,n; then
plo:lf @) g @) > 1} <
plo 17 @) = Je @] > &+ {e: 1 @) - g @) > &
the right side goes to 0 as k — oo, for each n since f, —— f and f, —— g,
so p{z:|f(z) = g(x)] > 1} =0 for all n and then
p{z:|f(x)—g(x)] >0} =0 whence f =g u—a.c.ll
Lemma. 6.18.
Every Cauchy sequence in measure f,, contains a subsequence f,, satisfying
Cauchy condition for the almost uniform convergence (Definition 6.13(b)).
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Proof. Left to the reader.l

Theorem. 6.19.
Every Cauchy sequence in measure f,, converges in measure to a measurable
function f

Proof. By Lemma 6.18, f, contains a subsequence f,, satisfying the Cauchy
condition for the almost uniform convergence. So from Remark.6.12 the subse-
quence f,, converges almost uniformly to some measurable function f and then
fn,, converges in measure to f by Proposition. 6.15 (b). But f,, itself converges
in measure to f, indeed we have:

{z:|fa (@) = f (@) > e} C{a|fu (@) = fa, (@) > §}0{z : |f (@) = fu, (2)] >
and pfz : [fn (x) = f ()| > €} <

piz | fo (@) = fan (@) > 5} +p{z |f (2) = far (2)] > 5}

so if n,k — oo, p{x:|fn (@) — fa, (x)] > 5§} — 0, since f, is Cauchy se-
quence in measure and p {z : |f () — f5, (z)| > §} — 0 because f,, converges
in measure to f .1

7. Exercises

24. (a) Prove that in any measure space the uniform convergence implies the
convergence in measure.

(b) In the counting measure space (N,P(N),u) the uniform convergence is
equivalent to the convergence in measure.

25. In the space (N, P (N), u) consider the sequence of indicator functions

fn =1I{12,..n); Prove that f, converges p — a.e but does not converge in mea-
sure.What do we deduce about Proposition. 6.16.

26. Let f,,f € M (X,K) be functions finite y — a.e.. Suppose f,, con-
verges pointwise to f and there is a positive measurable function g satisfying
1i7gﬂﬂ {g > €,} = 0 for some sequence of positive numbers ¢, with lirrlnen = 0.

Then if |f,| < g,Vn, prove that f,, converges in measure to f.

27. Let f: X — R be measurable in the space (X, F, ) and put:
M((f)=inf{a>0: p{|f]>a} =0} Prove that |f| < M (f) u— a.e.
Prove that li7ILIlM (fn—f)=0iff 1iTanfn = f uniformly p — a.e.

28 Let f,,f : X — R be measurable functions in the space (X, F,u) and
suppose that f,, converges in measure to f ; if ¢ : R — R is a uniformly

continuous function prove that the sequence go f,, converges in measure to go f
B

29
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Chapter 4

INTEGRATION

1. Preliminaries

Introduction.
Let (X, F,u) be a measure space. This chapter concerns the Lebesgue in-

tegration process / f.du of numerical measurable functions on X with respect

X
to the measure p. Such classes of functions have been introduced with their
convergence properties in sections 1-3 of chapter 3.
If X is the closed interval [a, b] in the real system R, it is also possible to define
b

the Riemann integral /f.dx of some function f : [a,b] — R (e.g continuous

a
function).
If the Lebesgue integration process is applied to a sequence of Riemann inte-
grable functions, it leads to a kind of convergence properties less restrictive and
easier in applications than those needed in the Riemann process framework. Let
us recall:

Classes of functions.1.1. (see sections 1-3 of chapter 3.)

€ ={s: X — R, s simple measurable}

& ={s €& spositive}

My ={f:X —[0,00], f measurable}

M@R)={f: X — R, f measurable}

M(C)={f:X — C, f measurable}
Let us recall that if f € M, there is an increasing sequence s,, in €4
with: 1i7rlnsn (x) = f(z), Vo € X.

2. Integration in &,

Definition.2.1. .
Let s € £ with s(-) = >"a;.1a, (+), where I4 is the Dirac function of the set A,

1
and the sets A;,1 < i < n form a partition of X in F.
The integral of s with respect to p is defined by:

/3~dM = 21:%/1 (4i)
X
with the convention 0 - co = 0.

Remark.2.2. N .
Suppose s € £, with s(-) = > a;.1a, () = > bj.Ip, (-), where {A;,1 <i < n}
i=1 j=1

and {B;,1 < j < m} are partitions of X. Then we have:
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Ai={zeX: s(z)=a;}and Bj={zr € X : s(z)=0,}

s0 a;.Ia;,nB; (-) = bjla,np, (-) for 1 <i<n,1 <j <m.

0, () = SarLaon, () and Sada, ()= 5 5 e lao, O
j=1 i=1

i=1j=

likewise ) b;.Ip, () = > > b;j.la,ns, (-) and the terms in the two double sums

j=1 i=1j=1
are equivalent so > a;.pu (A4;) = > > ai.pu(A4; N By)
z:lm n ==t n m
and zzlbj 4 (By) = lejlbj 1t (A; N Bj) then Z:lai.u (A;) = ij w(Bj)
j= j=li i= j=1

we deduce that the integral /s.d,u =Y a;.u(4;) is well defined.
1

X
Proposition.2.3.
Let s,¢ be in £&; and ¢ > 0 then we have:

(1) /(s +1t).dy= /s.du + /t.du
X X X
/c.s.d,u = c./s.d,u

X X

(2) If s <t then /s.du < /t.du
X X

B EeFand s(-) = > a;.1a, (1) we have s.Jg = > a;.1a,np (-) and
iz i=1

/S.IE.du = /s.du =Y a;.u(4;NE)
X E !

Proof. Put s(-) = > a;. 14, (-), t(-) = > b;.0p, (-), then
i=1 j=1

(1) s+t =>(a;i +bj) Ia,np,, c.s = ) caila,

i.J i=1

% -J 2] 2]

but SSan S (A0 By) = S anp (Ad) :/s.du
=1 =1 i=1

X
j=1 i=1 j=1 e
so/(s+t ).dp = /sdp—i—/td,u,51mllarly/csdﬂ—c/sdﬂ
X X

()Ifs<t thent—s>0andt—s+(t—s)
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S0 /t.du = /s.du + / (t—s).du> /s.du. Point (3) is obvious.l
X X b'e X
Theorem.2.4.
Let (sp) be an increasing sequence in &, .
If r € & is such that r < sup.s,,, then:
n

/r.du < sup./sn.dp

X X

Proof. Since s, is increasing, the sequence / Sn.dp is increasing in [0, 00|
b's

by Proposition 5.2.3(2) so sup./sn.du exists in [0,00]. Let 0 < ¢ < 1 and

X
put E, = {s, >cr}. Since s, < sp4+1 we have E,, C E,41. On the other

hand for « € X we have c.r (z) < r(x) < sup.s,(z), therefore there is n

with s, () > ecr(xz) and this gives X = UE” Now put r = > a;.Ig,

and taking integrals, we obtain /Sn.du > /c.r.IE".du (since s, > c.r.ig,
X X

on X), then [s,.du > ¢> o;.pu(A;NE,),Vn. This implies sup. [ s,.dy >
X ‘ "ox

lim . <C.ZO&¢.,U, (A; N En)) = cy op(4;) = c./r.d,u, because p(A4; NEy,)
2 (2 X
goes to u (4;) since E,, is increasing to X. Making ¢ — 1 we get the proof.l

Corollary.
Let s,,t, be two increasing sequences in £ such that sup.s,, = sup.t,
n n
then sup./sn.du = sup./tn.du
n n

X X
Proof. We have sup.s,, = sup.t,, =— s < sup.t,, Vk; from the Theorem we

n n n

get /sk.du < sup./tn.du, this gives sup./sk.du < sup./tn.du. By the same
n k n

X X X b'e
way we prove the reverse inequality.ll

Now we are in a position to extend the integration process from the class £
to the class My = {f: X — [0,00], f measurable}.
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3. Integration in M

Definition.3.1.
Let f € M4, we know by Theorem. 5.6. that for some increasing sequence
Sp, in &4 we have lim.s,, (z) = f (z), Vo € X.
n

We define the integral of f with respect to p by /f.d,u = Sup./sn.d,u.
X "X
This integral is well defined, that is, it does not depend on the sequence s,, in
&4 converging to f (corollary of Theorem.2.4. ).
Definition.3.2.
Let f € M4 and F € F. We define the integral of f over E by:

/ fodp = / f.Ip.dp

gfhere (f;;) () = f(z) for x € F and (f.Ig) (z) =0 for x € E°

Proposition.3.3.
The integral in M has the following properties:
If f,ge My,c>0,and FE,F € F, then:

(1) /(f+9) .du=/f~du+/g~du
X

X X
X/c.f.d,u = c.k/f.d,u
(2) If f < g then /f.du < /g.d,u and /f.du < /g.d,u
X X E E

(3)ECF:>E/f.du§/f.du

F

(4) If f =0 on E then /f.dp, =0 even if ;i (E) = oc.
B

(5) If 4 (E) =0 then /f.du: 0 even if f = 0o on E.
B

Proof. All properties are consequence of Definitions 3.1-3.2.1H

Theorem.3.4.
Let f € M, then we have:

/f.dﬂ:sup. /s.du: se€frands< f
X

X

Proof. If s € £; and s < f then /s.du < /f.du
X X
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SO sup. /s.du: se&yands< f S/f.d,u.
X

But by Definition 5.3.1.we have /f.du = sup. /sn.du, sp €&y and s, < f

X X
from this we deduce the proof of the Theorem.H

Theorem.3.5. (Beppo-Levy monotone convergence Theorem)
Let (f,) be an increasing sequence in M, then:

hmfn = fe M, and /f dp = hm/fn dp, in other words:

hm/fn dp = /hm fndu

Proof. We know that limf, = f € M, (see chapter 4, section 2) and since
n
(/fn)

is increasing we have /fn du < /fn+1 dp < /f.d,u, Vn. So a = lim/fn du
. X X X ! X

exists

andag/f.d,u. Let s € £ with s < fand for 0 < c< 1put E, = {f, > c.s}.

We haveXEn C E, 41 since f,, < fna1 and UE, = X because c.s < f = sup f,.

On the other hand f,, > 0 —> fo > c.5.1n, , V. "

Now put s = Y «a;.l4, and taking integrals, we obtain /fn.du > /c.s.IE”.d,u
i
X

(since f, > c.s.Ig, on X), then /fn.du > ey ;. (4; N Ey), Vn. This implies

a= lim./fn.d,u > lim. <C.Zo¢¢.u (4; ﬂEn)> =cYy o pu(4;) = c./sd,u7 be-
3 1 X
cause p (A4; N E,) goes to 1 (A;) since E,, is increasing to X. Making ¢ — 1 we

getaZ/sduforalls€5+withsgf,soazsup /sdu,se&r,sgf =
X X

/f.d,u by Theorem.5.3.4, then a = /f.du.l

Remark. Theorem.3.5.is not valid in general for decreasing sequences (f,,) as
is shown by the following example: let (R, Bg, ) be the Borel measure space

and fp, = I}, o[, then f,, decreases to 0 but lim./fn.du =oc.l
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Lemma 3.6. (Fatou Lemma)
Let (f,) be any sequence in M, then:

/lim inff,, du < lim inf/fn du
X X
Proof. Put Fj, = 1I;fk fn then Fj is increasing in M to liminff,,

so by Theorem.5.3.5, lilgn./Fk.d/i = /lim inf f,, dp.
X X

But Fj, < f,,Vn > k, which implies /Fk.du < ngfk/fn dp and then
X X

making k — oo we get liin./Fk.d,u = /liminffn dp < h;?ligfk/f" dy =
n A (P
X X X

liminf/fn du.1
X

4. Exercises

29.(a) Let (N, P (N), 1) be the counting measure on N.
If f:N—[0,00[ is given by f (i) = a; ¢ € N prove that:

/f.du =2 a;
N

(b) Let p = 04, be the Dirac measure on the power set P (X) of X.
then for any f: X — [0, 00|, /f.d,u = f (o).

b
30.Let (f,,) be any sequence in M, prove that Y f,, € M, and:
/an dp = Z/fn.du
X

n

(Hint > f; increases to > f, and use Theorem.3.5).
1 n

31.Let f € My

a) Prove that the set function v : A — [ f.du, defined on F is a positive
m
A

measure

(b) If g € M. prove that /g.dy = /f.g.d,u
X b
(Hint: check (b) for g € £4 and apply Theorem 3.5 for g € M)
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32.Let (f,) be a sequence in My with limf, (z) = f(z), Vo € X for some

f € M, .Suppose sup/fn.du < 00, and prove that /f.du < o0

X X
(Apply Fatou Lemma 3.6)

33.Let (f5) be a decreasing sequence in M such that

/fno.du < 00, for some ng > 1

Prove that lim/fn dp = /lim fndp

X X
(Hint: apply Theorem 3.5 to the increasing positive sequence (fr, — fn) 7 > o)

34.Let the interval ]0, 1] of real numbers be endowed with Lebesgue measure.
Apply Fatou Lemma to the following sequence:
fo@) =n0<z<land f,(z)=01>2>1

5. Integration of Complex Functions

Definition.5.1.
Let £; (i) be the subset of M (X, C) defined by:

£ () = fGM(X,C):/\fI-du<oo

X
where M (X,C) = {f X — C f measurable} (see Definitions 1.1 and 1.2)
if f=wu+1v e Ly (u) we define the integral of f by:

/f.duz/udu—!—z/vdu /*d,u /uﬁdu—ki/v*.du—i/v’.du
X X

thls integral is Well deﬁned since u+ u ,v*, v~ are less then |f].

If f is real valued, we have v = 0 and /f.du = /u+.du — /u_.d,u
X X X
Definition.5.2.

If f € M (X,R) we define the integral of f by: /f.d,u = /f‘*‘.du - /f_.du
X X X

provided that /f“‘.du < 0o or /f‘.du < 0o

X X
Proposition.5.3.
L1 (p) is a vector space on the field C and we have

/(Oéf+59) dp = a/f-dwrﬁ/g-du
X X

X
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Proof. Use the following facts:

laf + Bg| <lal.[f[+15].]g| and

f=utiv=ut —u +ivt —iv",g=z+iw=2" — 27 +iwt —iw~
then apply Definition 5.1.H
Lemma.5.4.

Let f,g be in £1 () such that f = g u — a.e. then /f.du = /g.du
X X
Proof. Let E={x: f(z) =g (x)} then u(E°) =0

on the other hand we have /f du = /g dp = 0 by point (5) Proposition 3.3

EC
applied to the integrals of f+ f=,97,97, since f.Igr = g.Ir we deduce that

/f.du = /g.du that is /f.du = /g.du.l
E E X

X

By the same way one can prove:
Proposition.5.5.

(1) If f, g are real valued in £4 (1) and f < g.uu — a.e. then /f.d,u < /g.du
X

(2) /f.d,u < /\f| dp for all fin £y (u).
X

X

(3) If e My and/f.du:()thenf:O,ufa.e.onE
DI fels(n and/f.d,u:OforallEe]:thensz,u—a.e.

(5) If f € M (X,R) and /\f|.dp,<oothen p{lf] = +oc} =0,

i.e f is finite p — a.e.

Corollary.
Let f,g be in L1 (p):

(a) /f.du:/g.dﬂVE6]-':>f:g.u—a.e.
E E

(b) If f, g are real valued then /f.du < /g.d,u, VE € F = f<g.u—a.e.
E
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6. The Banach Space L; ()

Definition 6.1

The binary relation f =g p — a.e is an equivalence relation on £ ()

Let Ly (i) be the quotient of £1 (1) by this equivalence relation, that is Ly ()
is the set of equivalence classes in £q () .

It is well known that L; (p) is a vector space on R with the operations defined
by: class(z) +class(y) =class(z + y) and «.class(x) =class(a.z) .

In the sequel we consider elements of L () as functions although they are
classes of functions.

If f €Ly (u), formula || f|| = / |f|dp defines a norm on Ly (u)
X

Theorem.6.2
Endowed with the norm || f|| = / |f|dp the space L (i) is a Banach space.
Proof. Let (f,) be a Cauchy Seoﬁlence in Ly (u) then we have:
Vj >1,3N; > 1 such that n,m > N; = ||fn — ful < 2%
let us define the strictly increasing subsequence n; < no < ng < .... by the

following recipe:
ny = Nl,ng = max (’I'Ll + I,NQ) yeeeey Ny = INAX (nj_l + I,Nj) yees

1 .
then we have: ||fn.+1 — fn7|| < —.,..Vj =1,2,..
o0
now consider the functions: g = Z | Ty fnj| and g= > ’ Jnjor — fnj’
j=1

k o 1
llgll < _El | fryir = Fs|| < Z g z 57 < Land also [lg <1
j: = :
so ¢ is integrable = g is ﬁnite w—a.e
let us define the function f : X — Rby f (z) = fo, (@)+ > (fa,.s (2) — fn, (2))
j=1

then
we have obviously f (z) = lim .f,, ()
1—>00

now let us observe that the sequence ( fnj) is cauchy since it is a subsequence
of (f,) which is cauchy so

Ve>0,.3N. > 1:nj,m >N = ||fo, — fi|| :/X|fnj — fm|-dp < €

by Fatou lemma 3.6 applied for n; we get /X.linrlljnf |fnj — fm| dp = /X |f = fml] -dp <
hmmf |fn] fm| dp < limsup/X. |fn]. — fm| dp < €. So f € Ly (u) and
lim./ |f — fm|-dp=0.1

moJx

Now we give one of the most famous convergence theorem of Lebesgue inte-
gration theory
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Theorem.6.3 (Lebesgue’s dominated convergence theorem)
Let (f.) be a sequence in L; (i) such that:

(a) fn converges p — a.e to a function f

(b) there is g in L; (p) such that Vn >1 |f,]| <|g| u—a.e

Then the function f is in Ly (@) and lim/ |fn—fldu=0
nJx
in particular lim/ fndu= / fdu
n X X

Proof. Put E = {z: f, (z) converges to f (z)} U {% {Ifn] < \g|}}

then p (E€) =0

We can assume that f,, converges everywhere to a function f

and that |f,| < |g| everywhere Vn > 1

(if necessary replace f, by F,, = f,Ig and g by G = glg)

first since |f,| < |g| everywhere Vn > 1 and f, converges everywhere to f we
deduce that

Ifl <lgland |f, — f] <2gs02g—[fn—f]>0
applying Fatou lemma 3.6 to the function 2¢g — |f,, — f | we get:

/ Jiminf [2g — |f, — f]] .dp = / [29. —limsup | f, — f@ dp = / 2g.du <
x D'e n X
liminf./ 29 — |fn— fl] dp = / 2g.dp—.lim sup./ |fn — f|.dpand so/ 2g.du <
n X X n X X
/ 2g.dp— lim sup./ |frn — f|-dp, this gives 0 < —.lim sup./ |fn — f|.du that
X n X n X

is limsup./ |fn— fl.dp=0.10
n X

Theorem.6.4 (Bounded convergence theorem)

Suppose p (X) < co. Let (fy) be a sequence in Ly (p1) such that

|[ful < M p— a.e for some constant M > 0 then the conclusions of Theorem
6.3 are valid.

Application.6.5 (continuity of integrals depending on a parameter)

Let T be an interval of R and f : X x T'— R a function such that:
(a) for each t € T the function x — f (z,¢) is in Ly (u)
(b) there is g in L; (p)such that|f (z,t)| < |g(x)] p—a.eforallt €T

then we have hm f(z,t) du = /f x,tg) du

e
Application.6.6 (Derivative of integrals depending on a parameter)
Let T be an open set of R and f : X x T'— R a function such that:

(a) for each t € T the function x — f (z,t) is in Ly (p)
(b) the function ¢ — f (z,t) derivable on T for each z € X

d
(c) there is g € Ly (u) 'dtf(x,t) <l|g(z)] p—aeforallteT
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Then the function ¢ — /f (z,t) dp is differentiable on T
X

d d
and 4 [ £ ) du= [ 51 (a.0) do
X X

Application.6.7 (Change of variable formula)

Let (X, F,u) be a measure space and let (Y, G) be a measurable space:

If p: X — Y is a measurable mapping from (X, F) into (Y, G) then:

(1) the set function v : G — [0,00] given by G € G, v (G) = p (¢~ (G))

is a measure on (Y, G)

(2) for every function g : Y — C, v—integrable the function goy is u—integrable
and

(%) /g.du = /g o w.di

Y X

(xx) /g.du = / gowp.duVE €G.
E e HE)
As a particular case take (Y,G) = (R, Bgr) and ¢ : X — R, u—integrable
put v (B) = i (B) = pu (¢~ (B)) for B € B

then we get from(xx) : / p.dy = /t.dﬂ

= 1(B) B
Application.6.8
Let (X, F, u) be a measure space and let f € M then

the set function v : F — [0, 00] given by: A € F,v (A4) = /f.du
A

is a positive measure on F and we have:

/g.dz/ = /f.g.du, for every g € M.
X

X

7. The L,-Spaces

Let (X, F, 1) be a measure space. This section concerns a short description
of the L,-spaces with some important convexity inequalities.
Definition 7.1
Let £, (1) be the subset of M (X, C) defined by:

£y = FeMX.C): [IfF dp < o0
X

for some real number 0 < p < occ.
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Definition 7.2

Two real positive numbers 0 < p,q < 1 such that p + ¢ = pq or equivalently
1 1

— + — =1 are called conjugate exponents. If p — 1 then ¢ — oo so 1,00 are

p
considered as conjugate exponents.

Theorem 7.3
Let f,g € M4 and let 0 < p,q < 1 be conjugate exponents then we have:
1 1
p q
(1) Holder’s inequality: /f.g.du < /fp.du ) /gq,dﬂ
X X X
1 1
p p p
(2) Minkowski’s inequality: /(f +g)? du < /fp.d,u + /gp.d,u
X X b'e

Remark: Using Minkowski’s inequality it is not difficult to prove that £, (u)
is a vector space over C.

Definition 7.4 Let 0 < p < oo be a positive real number

The binary relation f =g p — a.e is an equivalence relation on £, (1)

Let L, (1) be the quotient of £, (1) by this equivalence relation, that is L, (1)
is the set of equivalence classes in £, (1) .

It is well known that L, (1) is a vector space on R with the operations defined
by: class(z) +class(y) =class(z + y) and «.class(x) =class(a.z) .

In the sequel we consider elements of L, () as functions although they are
classes of functions.

Theorem 7.5

1
1 1 € Ly ), formata 1, = { [ 17 }?

defines a norm on L, (1) and with respect to this norm L, (1) is a Banach space.
(mimic the proof made for L; Theorem 6.2)
Definition 7.6 The Hilbert Space Ly (1)

N —

For p = 2 it is not difficult to see that the norm |[/f|, = {/ f|2du} is
X

induced by the inner product (f,g) = / f-g.dp , which makes Lo (1) a Hilbert
X

space.

8. The Space L

Definition 8.1 Let (X,F, u) be a measure space.

Let f € M, we define the essential supremum of f by:
B B a>0:pu[f>al=0

ess Squ_{ oo if pu[f >a] >0,Ya>0

41



if f e M(X,C) we put Ny (f) = ess —sup|f]
Remark.
For f € M (X,C) we have:
ac{a>0:pl|fl|>a]=0} = |f|<a p—ae
Lemma.8.2
For f € M (X,C) we have:
pllfl > Neo (f)] = 0, that is | f| < Noo (f) p—a.e

Definition 8.3
Let Lo () be the subset of M (X, C) defined by:
Loo (1) = {f € M(X,C) : N (f) < o0}

It is easy to prove that the binary relation f = g u — a.e is an equivalence
relation on Lo () and N (f) = N (9) if f =g p—a.e
Let Lo (1) be the quotient of Lo, (1) by this equivalence relation, that is Lo (1)
is the set of equivalence classes in Lo ().
Also one can prove that L. (@) is a vector space on R with the operations
defined by: class(f) +class(g) =class(f + g) and a.class(f) =class(a.f).
In the sequel we consider elements of Lo, () as functions although they are
classes of functions and
Definition 8.3

For any fin Lo (p) define || f|| . by Noo (h) where h is any function satisfying
[ =h p—a.ethen Lo (1) is a vector space on C and || f||  is a norm on Lo (1) :

Theorem 8.4
L (1) endowed with the norm | f||, defined above is a Banach space.

An important property of the sequences (f,,) in the spaces L, is the following:
Theorem 8.5

Let (fy) be a cauchy sequence in L, that is a sequence (f,)

satisfying Lllné [ fn. = fmll, = 0 then:

(1) For 1 < p < o0, the sequence (f,,) contains a subsequence ( fnj)
converging u — a.e to a function f € L,

(2) For p = oo the sequence (f,) itself
converges uniformly p — a.e to a function f € L.

9. Duality of the L,-Spaces

Recall.
1 Let X, Y be normed spaces. A linear operator T' from a normed space X into
a normed space Y is said to be bounded if there is a constant M > 0 such that:

1T (@) < M-|Jlz]|, Ve € X

This definition means that if B is a bounded subset of X, the set {T' (x),z € B}
is bounded in Y. For instance if B = {z : ||z| < 1} then ||T (2)| < M,Vz € B.
2 Let T be a bounded operator from X into Y. Define:
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T
1T :sup{| ||(33)|| xe X,z # 0}
x

my = sup{[|T (2)|| : = € X, ||zf| = 1}

my = sup{[|T (2)|| : = € X, [J=f| < 1}

mg = sup{|[T (z)|| : z € X, [l=]| <1}
Then m; = mg = m3 = ||T|| < oo and we have:

1T @) < T[]}, Ve € X
3 If X is a normed space the strong dual of X is the Banach space X* of
continuous linear functionals on X. If x € X and z* € X*, we denote z* (z) by
(x*, x).
Definition 9.1
Let (X, F, 1) be a measure space and let 1 < p, ¢ < 0o be conjugate exponents.
For g fixed in L, let us define the functional ¢, on L, by:

gLy —C, felL, wg(f)=/Xf-g-du
It is clear that ¢, is well defined and we have:

Theorem 9.2
(a) ¢, is linear continuous on L, for any 1 < p < oo.

Moreover if p > 1 we have H@QH = lgll,

where ||, || = sup {||¢, (/)] : f € Ly, /]| < 1}
(b) If p is o—finite (Definition 3.3 Chapter 2) then we have
[eqll = llgllc for p=1.
Theorem 9.3 (L, Duality)
Let (X,F, ) be a measure space with p o—finite
and let ¢ : L, — C be a continuous linear functional on L,
If 1 < p < oo there is a unique g € L, for ¢ conjugate exponent of p such that

o (f) = /X f.g.dp Vf € L and |lgl| = |lg]],

In other words the strong dual (L,)" of L, is linearly isometric to L, for ¢
conjugate exponent of p.
Remark
(a) For p=1 Theorem 9.3 is not true in general if y is not o—finite
as is shown by the following example:
take X = {a,b}, p(a) =1, n(¢) =0, p(b) = p(X) = o0
then p is not o—finite. In this case we have

Ly ={f:{a,b} — C,such that f (b)) =0} =C

_ . | f:{a,b} — C,such that | -,

so L1 = (L1) —(C,butLoo—{ sup (£ (a), f (b)) < o0 }—(C.
(b) The Theorem 9.3 is not true in general for the space Lo, even if p is finite

in other words we have Ly C (Lo )" and the inclusion is strict in general.
Here is an example:
(c) Let [0,1] the unit interval endowed with the Lebesgue p and let C'[0, 1]
be the space of real continuous functions on [0,1] equipped with the uniform
norm || f|| = sup{|f (x)|,x € [0,1]}. Let us observe that if f, g are continuous
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and satisfying f = g p© — a.e then f = g everywhere, indeed let F' C [0, 1]
be measurable with p(F) = 0 and f(z) = g(z) Vz € [0,1]\F, so the set
A={zxel0,1]:]|f(x)—g(z)| >0} = F, but A is open by the continuity of
f,g, then since p(F) = 0 the equality A = F implies FF = ¢ and so f = ¢
everywhere on [0,1]. Consequently the class of f for the equivalence relation
f =g p—aeisreduced to only f. Since any f € C'[0,1] is bounded we have
C[0,1] € Lo

Now let us consider the linear functional ¢ : C'[0,1] — R given by ¢ (f) =
f(0), ¢ is continuous since [¢ (f)| < |[f[| = sup {|f ()|, = € [0,1]} and []| < 1.
By Hahn-Banach Theorem, ¢ can be extented to a continuous linear functional

on all of Lu.; if there were some g € Ly such that ¢ (f) = / fgduVf € Ly,
[0,1]

we would have f (0) = fgduVfeC|o,1].
[0,1]

Taking f (z) = cos(nz) we get f(0) =1 = / cos (nx).g.dpy Vn > 1, this
[0,1]
leads to a contradiction since by the Riemann-Lebesgue Lemma ,(see The-

orem 10.6 below) we have lim / f(x) cos(nx).dx =0.

10. Riemann Integral and Lebesgue Integral

In this section we consider a bounded function f : [a,b] — R,defined on
the interval [a, b] with values in R.

10.1 Definition (Darboux sums)

Let m = {I1, I3, ..., I,;} be a finite partition of [a, b] into intervals.
Put m =inf {f (z),z € [a,b]} and M =sup{f (z),z € [a,b]}

mg =inf {f (z),z € It} and My =sup{f (z),z € I;}, 1 <k <n.
We define the lower and upper Darboux sums of f

with respect to the partition 7 by:
k=n

S (f) = _meA(I) and S, ZMk
k=1
where A (I) is the lengh of the 1nterva1 I

10.2 Definition (Lower integral and Upper integral)
The Lower integral of f is defined by:
S(f) = supS (f)
The Upper integral of f is defined by:
S(f) =inf S,
where the sup and inf are taken over the finite partitions 7 of [a,b] .
It is clear that S(f) < S (f). We say that f is integrable if S(f) = S (f).
b

We define the Riemann integral of f on [a, b] by /f (x) de =S(f) = S (f).
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10.3 Theorem
A bounded function f : [a,b] — R is Riemann integrable if and only if it is
continuous g — a.e, in this case the Riemann integral is equal to the Lebesgue
integral, that is we have:

b

/f (x) dx = / f dp, where p is the Lebesgue measure on [a, b].
[a,b]

10.4 Theorem
Let fp:[a,b] = R be Riemann integrable functions and assume that f,, converges
uniformly to f on [a,b]. Then f is Riemann integrable

andhm/ fndz—/fdx

If we replace uniform convergence by pointwise convergence, then the above
Theorem shows that the limit function f does not have to be Riemann inte-
grable. Therefore the above theorem is not true if we replace uniform con-
vergence by pointwise convergence. There is however a version of the above
theorem for pointwise convergence if we add the hypothesis that the limit func-
tion is Riemann integrable. This theorem is called Arzela’s Theorem for the
Riemann integral, which is a special case of the Bounded Convergence Theorem
of Lebesgue for the Lebesgue integral.

10.5 Theorem (Arzela’s Theorem). Let f, f,:[a,b] — R be Riemann inte-
grable functions and assume that f,, converges pointwise to f on [a,b]. If there

exists M such that |f, ()| < M for all n > 1.Then 1im/ fondx= / f da.

10.6 Theorem (Riemann-Lebesgue Lemma)

If f is an intégrable function on the interval [a, b], then :
b
lim . [ f(z)cos(nz).dez=0and lim / f(z)sin(nz).de =0

a
The proof is easy if f is bounded or if f is C' using intégration by parts.
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Chapter 5

INTEGRATION IN PRODUCT SPACES
Product Measure and Fubini Theorem

In this chapter we give without proofs the most important results on product
spaces useful in applications.Proofs are classical and in general simple.

1. Preliminaries and Notations

1.1 In all what follows, (X, F,u), (Y, G,v) will be fixed measure spaces.

1.2 Let us recall that the product o—field F ® G on X x Y is generated by the
family {A x B, with A € F, B € G}, (Definition 3.4 Chapter 1)

1.3 The set R will be endowed with its Borel o—field Bg. The set R? endowed
with the o-field Br2=Br ® Br(Theorem2.9Chap.3)

2. Product Measure

2.1 Definition

For any subset E C X xY and any (z,y) € X x Y, define:
the section of E at z, E, ={y €Y, (z,y) e X xY}
the section of F at y, By, ={z € X, (z,y) € X xY}

2.2 Proposition
For every E € F® G, E, € Gand E, € F.

2.3 Theorem
Suppose that the measure p and v are o—finite
then for every ' € F ® G, we have:
the function x — v (E,) is F measurable
the function y — 1 (Ey) is G measurable

Moreover we have /1/ (Ey) du = /,u (Ey) dv
X e

Corollary.(Product measure)
Under the conditions of Theorem 1.6 the set function p ® v defined on F ® G
by:

/L@V(E):/V(EI) duz/ﬂ(Ey) dv, E€c F®§G

X Y
is a o—finite measure on F ® G. Moreover y ® v is the unique o—finite measure

on F ® G satisfying p ® v (A x B) = u(A).v(B) for every A € F,B € G.

3 Integration in Product Spaces

3.1 Definition Let f : X xY — R be any function and (z,y) € X xY, define:
fo: Y — Rby f. (y) = f(x,y) (section of f at x)
fy: X — Rby f,(x) = f(z,y) (section of f at y)
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3.2 Proposition
Let f: X XY — R be F ® G-measurable then
fz is G-measurable and f, is F-measurable

3.3 Theorem (Fubini)
Suppose that the measure p and v are o—finite and f: X XY — R is F ® G-
measurable positive then:

the function z — /f (x,y) dv is F-measurable

the function y — / f(z,y) du is G-measurable

and we have:
/fa:y du@y—/d,u/fxy du—/dl//fa:y
XXY
3.4 Theorem (Fubini)
For every f € Ly (1 ® v) we have:

a/fa:y )dv e Ly (u and/fxy du € Ly (v)

/fxy du@l/—/du/fmy dV—/du/fxy

XxY
3.5 Application. (Convolutlon of functlons)

Let i be the Lebesgue measure on R,Bg and f,g : R — R be functions in
Ly (u), then:

/Iﬂx—w«mwndu@w<mﬁm%mx

Let us define the convolution of f and g by the function A: R — R:

/fx— ) i ()

Wedenotehbyh:f*g

Since /f (x—vy).g(y).du(y) < /|f(x—y)\\g(y)|d,u(y) < oo we deduce

R
that h G Ly (p)

3.6 Lemma
Under the definition above we have ||f x g|| < ||f]| . [lg| .-®
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4 Convolution of Measures

4.1 Definition

Let us consider on the set R? endowed with the o-field Bre=Br @ Bg, the
transformation T : R?> — R given by T (z,y) = x + y which is measurable
because continuous. Let p; ® py be the product of two finite measures g, i,
defined on R, Br. The convolution p; * 5 of the measures pq, iy is the measure
on By given by: B € Be, (1, * 113) (B) = (1 @ ) (T~ (B)) . Then we have:
4.2 Proposition Let B € By and define:
T-*(B)],={yeRz+yeB}=B—x

[Tfl(B)]y ={zcRz+yeB}=B-y

then we get: (uy * f15) (B) = [ -pto (B — @) .pty (dz) = [ -py (B = y) -1 (dy)
by applying Fubini Theorem and the relation (p1; * f15) (B) = (11 ® o) (T-1 (B)) =

Jxxy A1) (2, 9) - (11 @ py) (dz, dy) .
Moreover if we take a function f : R — C integrable with respect to py * s
we obtain the following nice relation:

Jo () (% po) (dt) = [ po (dy) fp f (2 +y) iy (dx) = [ py (d2) [ | (2 +y) s (dy)
4.3 Proposition With the definitions above we have:
(1) poy  pgy = pg * 1y

(2) (p1* pa) (R) = (p1y @ i) (T (R)) = (g @ pap) (R?) = p1y (R) .pa (R)
(3) pq % 6g = 0o * p; = p11, Op is the Dirac measure at 0.H

48



Chapter 6

VECTOR INTEGRATION AND BOCHNER INTEGRAL

1. Vector Measures and Vector Measurable Functions

In what follows S will be an abstract set, A = A(S) a o—algebra of subsets
of S, X a Banach space and X* be the topological dual of X.

1.1.Definition . (i) A set function, p : A — X is called oc—additive if

for every pairwise disjoint sequence of sets {E,} in A, the series > u(E,) is
n
unconditionally convergent in X and we have

(05) -

If, in addition, u(@) = 0, then p is called a vector measure.
(7) A set function p : A — X is called weakly o—additive. if for every
pairwise disjoint sequence of sets {E, } in A we have

for each x* € X*, in other words the real set function x*p is a real measure.
1.2.Remark . It is clear that a vector measure is weakly o—additive. The
converse is also true (see Theorem 1.5 below).

1.3.Definition . The semi-variation of the vector measure p is defined by the
set function:

(|4l (E) = sup , EeA,

n
> e w(E:)
i=1
the supremum being taken over all finite partitions {F;} of F in A, and all finite
systems of scalars{e;} with |g;| < 1.
The semi-variation so defined is needed for some estimations in the integra-
tion process which will be used.

1.4.Definition . If 4 : A — X is a vector measure, the variation of y is defined
by the positive set function |u| (e) given by

|l (B) = SupZZ_) (Bl E A

the supremum being taken over all finite partitions {F;} of E in .A.The notation
v (p, E) is also used for |u| (E) by some authors.

We say that p is of bounded variation if |u| (S) < co. Moreover, if p is scalar
valued, then we have:
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Il (B) < 4sup{|u(F)| . F € A, F C E}. (#1.1)

1.5.Theorem . Let p: A — X be a weakly o—additive set function. Then:
(a) w is a vector measure.
(b) Moreover we have:

[l (E) < 4sup{[|u(F)Il, F € A, F C E},E € A.

1.6. Definition. (a) A p—null set is a subset of a set £ € A such that,
llgell (E) = 0. A property on S is said to be valid p—almost everywhere if it is
valid on the complement of a y—null set. From now on, we will assume that A
contains the y—null sets of S, otherwise, the Lebesgue completion process can
be applied to A, ||u]|.

(b) We say that a function f : S — R is measurable if for every Borel set
Bof R, f71(B) € A.

(c) A simple measurable function of S into R is a finite linear combination
of characteristic functions of pairwise disjoint sets in 4.

As is well known, we have:
1.7. Proposition . A function f : S — R is measurable if and only if it is
the limit p—almost everywhere of a sequence of simple measurable functions.
Also, the limit p—almost everywhere of a sequence of measurable functions, is
measurable.
1.8.Definition . Let f : S — R be a real measurable function. We define the
p—essential supremum of f on a set E € A by:

p—ess sup|f (s)] = inf {A = [[ull (EN{s:|f(s)] > A} = 0)}

ElS]
if

p—esssup | f (s)| < oo,
sEE

we say that f is p—essentially bounded on the set E and p—essentially
bounded if £ = S.

In Section 3 below, we need to integrate vector valued functions, so we
have to make precise the concept of measurability for such functions.
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1.9.Definition . (i) .An elementary measurable function f: S — X is a
function of the form

F (o)=Y xa, (&) i or imshort ="y, © .

3

where {A;} is a countable partition of S in A and {z;} a sequence of vectors
in X. We denote by £(S,X) the set of all elementary measurable functions
f:95—X.

(%) .A function f : S — X issaid to be strongly measurable if there is a se-
quence of elementary measurable functions f,, converging u—almost everywhere
to f. Let Fy,, (S, X) be the set of all strongly measurable functions f: S — X.

(49) .A function f : S — X is said to be weakly measurable if for each
x* € X*, the real function z* o f : § — R is measurable.

1.10. Proposition (1)The sets E(S,X) and Fs, (S, X), with addition and
scalar multiplication pointwise defined, are vector spaces.

(2) Let u be a function from X into a Banach space Y and

f = ZXA,L ®xi7

an elementary measurable function from S into X, then we have:
wo f = ZXAi ® u(x;).
i

so that uo f is elementary with values in Y. This gives the proof of the following:
1.11.Proposition . If u is a continuous function from X into a Banach space
Y and if f:S — X is strongly measurable, then wo f is strongly measurable.
In particular the function s — ||f (s)|| is measurable in the usual sense.
Proof: Let {s,} be a sequence of elementary measurable functions converging
p—almost everywhere to f. Then u (s,,) is elementary by the preceding Propo-
sition and w (s,) converges p—almost everywhere to u o f by the continuity of
u. To see that s — || f (s)]| is measurable take u (-) = |-||. O

As for the relation between the two types of measurability, weak-strong, this
is given by the following theorem of Pettis:
1.12.Theorem A function f:S — X is strongly measurable if and only if the
following conditions are satisfied:

(a) f is weakly measurable

(b) There is a set Sy € A such that p(S\So) = 0 and the image f (So)
of So by f is separable. We say that f is u—almost separably valued. In
particular, if X is a separable Banach space, the weak and strong measurability
are equivalent.
Proof: ( =) Let f be strongly measurable.

To see (a), take u = z*, for * € X*, in Proposition 1.11.

To prove (b), let f, be elementary converging p—almost everywhere to f.
So let Sy € A be such that u(S\ Sp) = 0 and f,, (s) — f(s), Vs € Sp. We
prove that f (Sp) is separable. Put A,, = f,, (Sp), then A, is countable since f,
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is elementary, and so A = |J A, is also countable. We deduce that the closure

A~ of A is separable. Since f,, (s) — f(s), Vs € Sy, we have f (Sp) C A, and
then f(Sp) is separable.

(<) Assume (a) and (b). We can suppose X separable, otherwise we replace
it by the closed subspace generated by f (Sy) which is separable by (b). Let {z,,
n=1,2,....} be a countable dense set in X. Then the family of balls { B (zj, %) ,
j=1,2,..}. covers X for each n. Moreover we have:

(B (a1)) = {sess @ -sl<ihea

by the measurability of the function s — ||f (s) — z;||. Now form the disjoint

sets o <B <zi, i)) \igjff1 <B (zm 711)>

making a partition of S and define for each n the function f, : S — X by
fn(s) = zj,, where j, is the unique j such that s € C;,. Then (f,) is a
1

sequence of elementary measurable functions satisfying || f,. (s) — f (s)|| < .

So fn converges (uniformly on S) to f, consequently f is strongly measurable.
O

By the way we proved the following lemma:
Lemma: Let X be a separable Banach space. Then any function f:S — X is
the uniform limit of a sequence of elementary functions.

2.Integration of scalar-valued functions

Now let X be a Banach space, and let p : A= A(S) — X be a vector
measure. If f: S — R is a real measurable function, we will define the integral
of f with respect to vector measure p and give some of its properties needed in
integral representation. First we consider simple functions.

2.1.Definition Let f (o) = Zai X4, (#) be a simple measurable function.

i=1
The integral of f with respect to pu over the set E € A is defined by:
/fdu= > aiu(ENA;).
i i=1

Just as in the customary real case, this integral does not depend on the repre-
sentation of f.
It is clear that the integral so defined is linear as a function of f, and
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o—additive as a set function of E. Moreover if M = sup g |f (s)|, then:

E/fdu HMZ(O”) (ENA;)

IN

w(EAA)| < M |l (B),

so we deduce that:

Jrau] < (suplr o)1) el (). (#12)
E

2.2.Definition A measurable function f : S — R is said to be y—integrable,
if there is a sequence f,, of simple functions such that:
(a) f, converges to f pu—almost everywhere

(b) The sequence / fndp p converges in the norm of X for each E € A.
The limit of the sequence /fn dp in (b) is called the integral of f with

respect to p over E and is denoted by /f d.

E
The integral so defined does not depend on the sequence f,, chosen. This fact
is not trivial at all (as it involves applications of Vitali-Hahn-Saks Theorem
and Egorov Theorem; . On the other hand, it is straightforward that the

integral /f dp is linear in f.

E
We record some properties of this integral in the following theorem:

2.3.Theorem (a). If [ is p—essentially bounded on the set E, then f is
u—integrable over E and :

HE/N” < (oo supI7O)1) -1l (9,

(b). Let T be a linear bounded operator from X into the Banach space Y.
Then T is a Y —valued vector measure on A, and for any pu—integrable f and

any E € A we have
T /fd,u :/deM-
E E
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Proof: It is easy to see that the conclusions are valid for f simple (see the
inequality (#1.2) in Definition 2.1). The fact that Ty is a vector measure
comes from the boundedness of T

Now let f be measurable with p—essential bound B on E. Let ¢ > 0 and
let Fy, Fs, ..., F, be a covering of f(F) by disjoint Borel sets of scalars. Define
Ej = f~1(F}). Let aj € Fj and define f. (s) = a; for s € E;. Then f. is simple
and we can arrange matters so that

[ — ess sug|f6 (s)—f(9)] <e.

ElS]

Let €, — 0, we have lim,, ,, p — ess sup,cp |fe, (s) — fe,. (s)] = 0. By the
inequality (#1.2) in Definition 2.1, we deduce that

tim | [ fe,dp~ [ fo,u] =0
7 E E

This yields the convergence of / fe, dp for each E € A and we have

E
/f dp = lim /fendu.
E E
On the other hand, since

[feul S 1fen (8) = F () +1f ()],

we deduce that
j—ess sup|fe, ()] < B +en,
sek
so that the validity of (a) follows from its validity for simple functions (see the
inequality (#1.2) in definition 2.1). Part (b) comes from its trivial validity for
simple functions and the boundedness of 7. B

3.Bochner Integral of Vector-valued Functions

Let (S, A, ) be a measure space, with p a finite positive measure. We will
assume that (S,.A4, 1) is complete. As considered in Sections 1, 2, X will be a
Banach space with topological dual X*. In this section we define the Bochner
integral with respect to the scalar measure pu, for functions f: S — X. ( for all
details on Bochner integral, see [5]).

3.1.Definition .We say that the elementary measurable function f (e) = Z Ti.Xa, (@)
i

is p—integrable if

Sl (4:) < ox.
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In this case we define the integral of f with respect to p by

Likewise the integral of f over the set E € A is

/fduzzxi.M(AmE).
B 7

3.2.Proposition The integral of an elementary measurable function has the
following properties:

(a) If f,g are elementary p—integrable and if «, 3 are scalars then a.f+ (.9
s elementary p—integrable and

[ts+sgdn=afsauss[gin
E E

E

(b) If f is elementary p—integrable,then

/fdu SE/flldu,

E

where || f (o)|| = Z 3]l x4, (¢) -

1
(¢) If Y is a Banach space and if T : X —'Y is a linear bounded operator,
then for each elementary p—integrable function f, the function T f is elementary

p—integrable and we have
T /fdu :/deu.
E

E

Proof: To see (a), write f = an.xAn, and g = Ztk.ka. Then
n k

fH+g= Z(snthk)xAntk and af = Zozsn.XAn.

n,k n

This implies that

D lsn+ il xa,ns, < D (sall + 861D XA, 5,
n,k n,k

D lsall xa, + D litell X, -
n k

If + gl
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So we deduce that

D llsn + el 1 (An N Br) <D llsall 1(An) + D Iltx]l 1 (Br) < oo.
n k

n,k
Consequently f + g is elementary p—integrable and

/(f+9)dﬂ_!fdu+/g.d/¢.

E E

Likewise af is elementary pu—integrable and
/afdu:a/fdﬂ.
E E

Part (b) is trivial. To prove (c), we have Tf = Z T'sp.x 4, and
n

/Tf dp = ZTSan*(An) =T <Z Sn-M(An)) =T /f du |,
n n E

by the boundedness of 7.1
Remark: If we take in (¢) Y =R and T = z* for some z* € X* we get

* E/fdu :/x*fdp.

E

3.3.Definition . A function f: S — X is said to be p—integrable if there is
a sequence f, of elementary u—integrable functions such that:
(1).fn converges p—almost everywhere to f

@»MM/wm—ﬂmM=0
E

In this case the Bochner integral of f is defined by

lﬂw:Man
E E

The following observations legitimate this definition:
First f is strongly measurable by (1) (Definition 1.9 (i7)). Next the function

I/ — fll is positive measurable by Proposition 1.11, so the integrals / lfn = flldu
E
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make sense. Finally the sequence / fn dp is Cauchy in the Banach space X. For
E
we have

[tudu= [ tndal =| [ 5 = twyau| < [ s = Sl
E E E

E

by Proposition 3.2 (b), since f,, — fy, is elementary; so we get

||/f”du/f""d“ < [ = fldn+ [ 15~ fldn—0.nm - o,
E & 2 /

by (2).
Now, if f, , g, are two sequences of elementary p—integrable functions sat-
isfying (1) — (2)we have

/fndu—/gndu < /Il(fn—gn)lldM
E E E
< /IIfn—flldu+/Hgn—f||du—>07n—>00-
E E

Consequently the Bochner integral of f is well defined. The following theo-
rem gives one of the outstanding facts about the Bochner integral.
3.4.Theorem For every p—integrable function f : S — X and every z* € X*

we have
x* /fd,u :/ac*fdu.
E E

Proof: Let {f,} be a sequence of elementary functions defining / fdu. Since
E
fn — f, p.a.e and since x* is continuous, we have z*f,, — z*f, p.a.e. On the

other hand z* /f ndu | = /m*fndu by Proposition 3.2 (¢). We deduce
E E

z* /fndu —/w*fdu = /x*fndu—/w*fdu

E E E E

/Ix*fn—w*fldué Hw*ll/Ilfn—flldu—>0~
E E

IA
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z* /fndu — g /fdu

E E

Consequently x* /f dup | = /x*f dp. O

E E
3.5.Theorem.(Bochner) A function f:S — X is p—integrable if and only if
[ is strongly measurable and [ || f|| dp < oco.

In other words, for a strongly measurable function f, the u—integrability is
equivalent to the integrability of | f|| .
Proof: Suppose f p—integrable.There exists a sequence (f,)of pu—integrable

elementary functions such that f, — f, p.a.e and/ lf»— flldp — 0; in par-
E

ticular f is strongly measurable and

fs Iflldp < fs l.frn — f”d,u“'fs | full dp < oo.

Conversely let f be strongly measurable and satisfies

fs [ fll dp < o0.

By Definition 3.3, we have to show the existence of a sequence g,, of elementary
p—integrable functions such that g, converges py—almost everywhere to f and

lim,, / llgn — flldp = 0. Fix o > 0 and let us consider the sets
B

Kn={seS, |fn@I<If ). 1+a)}.

Now define the function g,, by g, = fuXxx, - Since || f,|| and || f|| are measurable,
it results that K,, € A and so g, is elementary measurable. On the otherhand
we have

lgnll = I full XK, <IfII-(1+ @) onallof S.

From the condition [¢||f||dp < co we deduce that g, is p—integrable. Since
fn — f, p.a.e, we have: for almost every s € S, there exists N (s) > 1 such that

[ ()= 1f () < allf ()] VR = N (s);

that is s € K. This means that g, (s) = fn (s) Xx, (5) = fn (5), Y. > N (s).
This proves that g, converges p—almost everywhere to f and then ||g, — f|| — 0
t.a.e. Since we have

lgn = FI < llgnll + 1A < 1A - (U4 a) + 1A = 1A - 2+ @),
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we deduce from dominated convergence theorem in the classical space L ()
that

li}}l/Hgn —fldu=0.0
E

We denote by Ly (u, X) the set of all u—integrable functions.
As usual we identify two functions that are equal y—almost everywhere, in
symbols f =g p — a.e. it is easy to check that:

(a) Ly (1, X) is a vector space and the map f — /f dp is linear;
E

b f=g ufa.e<:>/fd,u:/gdu,forallEEA.
E

E

3.6.Theorem . Let (f,) be a sequence in L; (u, X) such that f,, — f p—a.e.
Suppose there exists g € L; (u) such that for each n we have || f,|| < g, p—a.e.
Then f € Ly (4, X) and [ f dp = lim,, [g fn dp.

Proof: For each z* € X* the scalar functions z* f,, converge to z* f u—a.e., so f

is weakly measurable. On the other hand, since f,, is strongly measurable f,, (S)
is separable. We deduce that |Jf, (S) is separable. Since f (S) C Ufn (S), it

n n
follows that f(S) is separable. Now we apply Pettis Theorem 1.12.to get
that f is strongly measurable. Since | fn|| < g, 1 — a.e. we deduce | f] <
g, p— a.e.and then [¢||f[ldu < oo, consequently f is Bochner integrable by
Theorem 3.5, so f € L; (g, X). On the other hand,

Ifn = fIl <29 and 29— fn — f]| 2 0.

By Fatou lemma

0

IN

Jslim inf2g — || fo — f|| dp = [52g9 dpe
< hHlnlnffS (29 - ”fn - f”) d,u
Js29dp —limsup [¢ || fn — fI| dp.

A

It follows that limsup [ || f — fI| du <0, so lim [¢ || f, — f|| dp= 0.1
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Chapter 7

Bochner integral in locally convex spaces

Let X be a locally convex Hausdorff space, whose topology is generated by
a family {p,} of continuous seminorms. We assume that {p,} is separating, this
means that for each nonzero x € X there is a p,, such that p, (z) # 0. Moreover
we assume that X is sequentially complete, that is, every Cauchy sequence in
X is convergent. For all details on such spaces, the reader is referred to [13],
especially the sections 1.25,1.36,1.37 there. The construction of the Bochner
integral we give in this context is, as far as we know, new. (for other approachs
see [1,5,14]). On the space Ly (i, X') of Bochner integrable functions we define
a family of separating seminorms that make this space locally convex. Finally
we introduce a special class of bounded operators from L (u, X) into X whose
structure is , in many respects, similar to some well known operators from Ly (p)
into R.

For the needs of measurability and integration, we fix an abstract measure
space (S, F, u), where F is a o —field on the set S and p a finite positive measure
on F.

1. Measurability

1.1. Definition: A function f:S — X is called elementary if its range f (.9)
is finite.

If we put f(S) = {z1,22,....,zn} and A; = {s: f(s) = x;} then the sets A;
form a partition of S and we can write f in the consolidated form

n
f(e)= lej 14, (e), where 14, is the characteristic function of the set A;.
=

n
1.2. Definition: An elementary function f(e) = > 214, (e) is measurable
j=1

if we have A; € F for every j. We denote by £ (X) the set of all elementary
measurable functions f : S — X. Then we have:

1.3 Proposition: £ (X) is a vector space on R.

Proof: Let f,gbein £(X) and A € R. Put f(e) => x, 14, (o)

9(8) = Symln, (o). then (f+9)(8) = ¥ (@0 +yn) Lo, (+) and
(Af) (o) = En:n)l\xn 14, (s) W o

1.4. Remark: Let T be any mapping from X into Y.
If f(8) = > wn1a, (o) then (T'o f) (o) =2 T (zn) 14, (o).
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1.5. Definition: A function f : S — X is measurable if there is a sequence
(fn) of elementary measurable functions such that:

Limpa (fn - f) =0

for each p,,.
This means that for each s € S, each € > 0, and each p,, thereis NV = Ny, > 1
such that Vn > N, p, (fn (s) — f (s)) < e.

1.6. Proposition:The set M (X) of all measurable functions
f S — X is a vector space on R.

Proof: Let f,g be in M (X) and let f,,g, be sequences of elementary func-
tions such that p, (fn, — f) — 0 and p, (9, — g) — 0, for each p,. Then we
have Po ((fn + gn) — (f +9)) < Do (fo — F) + Do (g — 8), 50 the sequence of
elementary functions f,, + g, gives the measurability of f + g.

Likewise for A € R,we have po (Afn, — Af) = |A| pa (fn — f) — 0, which gives
AfeM((X).R

2. Bochner integration

2.1. Definition: Let f (o) = ) x;14, () be an elementary measurable func-
j=1

tion. We define the integral of f by the vector fs fdpe X :
Js fdp= Zl 1 (4;) @
j=

Since p is finite this integral is well defined.

2.2. Proposition: (a)The integral is linear from &£ (X) into X.
(b). For every f € £ (X) and every p, we have
Pa (fs fd/,[,) < fspa(f) dp
where p,, (f) is the positive elementary function given by
n n
Pa (f) (®) = 3 pa (2;) 1a, (o) whose integralis [ pa (f) du= 3 pa (z;) p(4;).

Proof: (a) Put f (e) = émj 14, (o), g (o) = élyk 15, (o)
then (f+g)(e) = 4k($j +yk) 1a;nB, (o) and (Af)(8) = > Az;la, (o).

B

This yields [ (f +g) du <ij< 1 (zj +yr) p(A;NB) = > p(4)).x; +
1<k<m

<<

<.
it

kEN<Bk)~yk = [s fdu+ [g gdu
=1
Likewise we can prove that [ A.fdu = A [¢ fdp for X € R.
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i M:

(b) We have p, ([ fdp) = <

\_/
IN

n

> 1 (A)) pa(5) = [ pa (f) dp.B

Jj=1

2.3. Proposition: Let T': X — Y be a linear operator from X into a locally
convex space Y.
Let f € £(X), then T o f € £(Y) and we have:

T (fg fdu) = [¢To fdpu.

Proof: Let f (o) = élxj 14, (o), with [ fdu = Zu( j)-xj, then (T'o f) (e) =

> T (x;) 1a; (o) and

JsTo fdu= Y p(A;).T(xz;) =T\ > p(4y) .J;j>, by the linearity of T
j=1 j=1
so we deduce that T' (g fdu) = [T o fdu.m.

2.4. Definition: A measurable function f : § — X is Bochner integrable

if there is a sequence f,, of elementary measurable functions such that for each

Do, Lim pa (frn — f) = 0 uniformly on S. Since the measure y is assumed finite,
n

this implies that Lim fs Pa (fn — f) dpp =0, for each p,.

To define the Bochner integral of f let us observe that if f, is such a sequence
of elementary functions we have:

fspoz (fn - fm) d/,b S fS DPa (fn - f) d/l"' fs Pa (fm - f) d,u'
So %121 fspa (fn = fm) dp = 0. But p, fs (fn = fm) dp < fspa (fn = fm) du

by Proposition 2.2(b), this implies that the sequence of integrals [ g Jn dpis
Cauchy. As the space X is assumed sequentially complete, |, ¢ Jn dp converges.
This allows to define the Bochner integral of f by the vector:

fs fdp= L'flm fs In dp.

If g,, is another sequence of elementary functions such that
Do (gn — f) — 0 uniformly on S, it is easy to check, from the continuity of
Do that Lzlm Js fn dp = L%Lm Js 9n dp, so the Bochner integral [¢ fdu is well
defined.

In the sequel we will denote by L (u, X) the set of all Bochner integrable
functions f : S — X, where as usual two integrable functions are considered
as identical if they are equal p—almost everywhere.

2.5. Proposition: L; (u, X) is a vector space on R and we have:
(a). The integral as defined is linear from L; (u, X) into X.
(b). For every f € Ly (i, X) and every p, we have

pa ([ fdp) < [g pa (f) dp
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Proof:
(a) Let f,g bein Ly (p, X) and let f,, g, be in £ (X) such that
Do (fn—f) — 0 and p, (9, — f) — 0, uniformly on S. Since we have

Pa ((f +9) = (fn + 9n)) < Pa (fr — f)+Pa (gn — f) — 0, it follows that p, ((f +g) — (fn +gn)) —

0 uniformly on S. This yields
Js (F+9) dp = Lim [g(fo+gn) du = Lim [qfo dp+ Lim [ggn dp =
Js fdp+ [ gdu. Likewise we have [¢ X.fdu =\ [¢ fdp.
(b) Let f,, be in £ (X) defining [ fdpu. By proposition 2.2(b)
Pa (fs In du) < fS Do (fn) du for all n. This implies p, (fS fd,u) =
Pa (Lglm Js fn du) = (Lign Pa ([ fn du)) <liminf [g pa (fo) dp <
lim inf (fgpa (fa = f)d+ [g pa () dp) = [ pa (f) dpB.

2.6. Proposition: Let T : X — Y be a linear continuous operator from X
into a locally convex space Y.
Let f € Ly (u, X), then To f € L1 (1,Y) and we have:

T ([s fdp)=[sTo fdp

Proof: Let f, be in £(X) defining [ fdpu, ie L%Lm Do (fn—f) — 0 uni-
formly on S. By the continuity of T, if ¢ is a seminorm on Y there is a
seminorm p, on X such that ¢ (Tx) < p, (), for every x € X. It follows
that q(Tf, —Tf) = ¢T (fn — f) du < pa (fn — f) — 0 uniformly on S. We
deduce that ¢ (T'f, — Tf) — 0 uniformly on S for each ¢. So the sequence
Tf,, which is in £ (Y) by Proposition 2.3, is defining the integral of T'f by
Js Tfdu= Lim Js T fndp. By Proposition 2.3 once more we have

fS Tfrdu = TfS fndp for all n.

Since Lim [ fadp = [¢ fdp, we get Lim [¢ Tfndp = T ([ fdp), by the
n n

continuity of T'. this gives T ([ fdp) = [¢T o fdy.R.

3. Bounded operators on L; (i, X)

First we start by defining on L; (, X) a family {p, } of continuous seminorms
which will make Ly (p, X) a locally convex space.

Let us observe that for each p,, we have p, (f) bounded on S if f €
Ly (u, X). To see this let f,, be in £ (X) defining fs fdu,ie Limp, (fn, — f)=0
uniformly on S, (Definition 2.4), so if e > 0, there is N > 1 such that
[Pa (f) — o (fN)| < po (fn — f) < € uniformly on S. We deduce that p, (f) <
€+ pa (fn) on S and p,, (fn) is bounded on S since fy € € (X).

Now define p, on L; (i, X) by:

(3.1) fe Ll (uX) pa (f) = Lfeug? pa (f (1))
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Then p,, is a seminorm on L (u, X) and the family {p,} is separating. To see
this, let f be in Ly (u, X) with f # 0, that is f (¢) # 0 for some ¢t € S. Since the
family {ps} is assumed separating on X, there is a p, such that p, (f (¢)) > 0,
so that p, (f) > 0.

Since the family of seminorms {p,} is separating, it makes L; (u, X) a locally
convex space such that each p,, is continuous ([13], section 1.37).

In what follows we define a special class of bounded operators from Lq (u, X)
into X which are, in many respects, similar to some well known operators from
L; (p) into R. First let us observe:

3.2. Lemma: Let g € L, (p), then for every f € L (u, X)
g.f €L (pu, X).
Proof: Since g € L, (1), there is a sequence (g,,) of simple measurable func-
tions g, : S — R converging uniformly to g on S. Since f € Ly (u, X), there
is a sequence f, of elementary measurable functions such that for each p,,
Lign Pa (fn — f) = 0 uniformly on S. But g,.f, is elementary measurable, and

we have:

Pa (gnfn - gf) = Pa [(gnfn - gnf) + (gnf - gf)]

S |gn_g| Pa (f)+|gn|'pa (fn _f)

<|gn — 9| -Pa (f) +|9n| Do (fn — f) — 0, n — 0o, uniformly on S.
Consequently we have f.g € Ly (1, X) .l

Now we define a class {T, ,g € L (1)} of operators T, by the following
recipe:
3.3. Definition: For each fixed g € Lo (1), T, sends L; (1, X) into X by the

formula:
feli(pX), Ty(f)=Js fgdu

3.4. Theorem:. Let L; (u, X) be endowed with the seminorms {p,} given by
(3.1), and let X be equipped with the seminorms {p,}, then the operators T
are linear and bounded.

Proof: The linearity is clear from 2.5 (a). To see boundedness, let p, be a
seminorm on X, by 2.5 (b) we have:

pa (Ty () =pa ([ fodn) < [ pa (fg)dp. Since po (fg) = |g] pa (f), we
deduce that po (Ty (f)) < [g 19l Pa (f) dpp < |lgllo -Pa (f) -1 (X), which proves
that T} is bounded.W.

In what follows, we quote some properties of the operators T, whose proof
comes from facts about Bochner integral (2.5-2.6).We denote by E' the strong
dual of the space F : , ,

3.5. Proposition: (a) If # € X , then 0o T, € Ly (i, X).
(D) If 0 € X', then o T, (f) = Js 90f du, for every f € Ly (p, X).
(¢) If 0,0 are in X', and ¢, in Ly (u, X), then:

fop=ocotp=00T,(p)=00T, (V)
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These properties, especially property (c), lead to the following:
Open problem: Let T : Ly (u, X) — X be a linear bounded operator from

Ly (pu, X) into X satisfying condition 3.5(c), that is:
If 0,0 are in X | and ¢, in Ly (u, X), then:

fop=0cop— 00T (s)=00T (1)
Does there exist a g € Lo, (1) such that:

T(f) = [g fadp, for all f € Ly (u, X).
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Appendix

Operators in Banach Spaces

1. Linear Bounded Operators

1.1 Let X,Y be normed space. A linear operator T from a normed space X
into a normed space Y is said to be bounded if there is a constant M > 0 such
that:

1T (@) < M-l Ve € X

This definition means that if B is a bounded subset of X, the set {T" (x),z € B}
is bounded in Y. For instance if B = {x : ||z|| < 1} then |T (z)|| < M,Vz € B.

1.2.Example Let the space C [0, 1] of continuous functions f : [0,1] — R, be
equipped with the uniform norm ||-|| . Define T': C'[0,1] — R by

fo x) dr (Riemann integral), then it is clear that |7 (f)| < || f]| ., and
T is bounded Wlth the choice M = 1.

1.3 Proposition Let T" be a bounded operator from X into Y. Define:

||T||:sup{| @I e x4 7é0}

[l
my = sup{[|T (z)|| : = € X, ||z = 1}
my = sup {[|T (2)|| : = € X, |lzf| < 1}
mg = sup {[|T (2)|| : # € X, ||=f| < 1}

Then my = mg = m3 = ||T|| < co and we have:

1T @) < ITI ]|, V2 € X

Proof: First T bounded operator = m; < 00,t = 1,2,3, and ||T]| < oo;
next we have from the definition, m; < ||T'||. On the other hand if x # 0,

— 1, and T(ﬁ”) _ @I

]
Since {z : ||z]| =1} C {x: ||z] < 1}, we get my < mg; on the other hand for

T (x
|zl < 1,z # 0, we have <||$|>H H ||$H < my, whence [T (z)]

< my, this yields || T|| < mq, so

IN

][ s < my. Taking supremum over {a ¢ |[2] < 1} we get my < my 50 my =
m3. By the same trick we obtain m; = my. Finally it is clear that ||T (z)|| <
1T ||z, Ve € X. 1
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1.4 Theorem The following properties are equivalent for a linear operator T
from X into Y:
(a) T is bounded.
(b) T is uniformly continuous.
(¢) T is continuous at a point zy € X.
Proof:(a) = (b)
We have | T () = T (2)|| = |T (x — 2)|| < ||T|| | — 2’| ,Vz,2" € X, s0if e >0
then we have ||z —2/|| < e|T||”" = |T(2) =T ()| <e.
(b) = (c) is trivial.
(c) = (a)
By (c) there is 0 > 0 such that ||z — z¢]| < 0 = ||T (x) — T (z0)]| < 1. Now

if ||lz|| < 1, we get |jox +zo — 20| < o, and since x = — (ox + g — To), We
o
1 1
deduce | T (z)|| = = ||IT (62 + x0) — T (x0)|| < —. From Proposition 1.3, ||T|| =
o o
1
sup {||T ()| : z € X, ||z|]| < 1}, and then ||T|| < —, this yields 7" bounded.H
o

We denote by B (X,Y) the set of linear bounded operators from a normed
space X into a normed space Y, on the same field K of scalars. Let 5,7 €
B (X,Y) and a € K, we define for z € X:

(S+T)(z)=S(z)+T(x)

(aT) (z) = oT ()

Then we have:

1.5 Proposition B (X,Y) is a vector space with these defined operations.
Moreover the function T'— ||T|| is a norm on B (X,Y).

Proof: It is immediate that B (X,Y) is a vector space, the null vector being
the operator T' with T'(z) = 0,Vz € X. To see that T — ||T|| is a norm,

let S,T € B(X,Y), then we have [|S+ T|| = sup{||S (z) + T (o), |lz| = 1} <

sup {||S' (@) || + 1T ()], lzl| = 1} < sup {||S ()|, [|z]| = L}+sup {|T" (z)| , [|z[| = 1}
= ||S|| + ||IT||. Likewise ||aT|| = |a|||T],« € K. Finally, since ||T (z)|| <
ITIl ||lz||, we have ||T|| =0 = T (z) =0,V € X.1

1.6 Theorem If Y is a Banach space, B (X,Y) is a Banach space.

Proof: Let (T,) be Cauchy in B (X,Y). For each z € X we have
T () — T, ()| < || T — Tl |||, YR, m > 1, so (T, (2)) is Cauchy in YV and
since Y is Banach limT;, () exists in Y'; we denote this limit by T (z).

n

The mapping so defined from X into Y is linear.

Indeed, for each n > 1 we have ||T (z +y) — (T (z) + T (y))|| <

IT (@ +y) — To (2 + )| + [T (2 +9) — (T (2) + T )] <

IT (2 +y) — T (o + )| + T (2) = T (@)l + T (4) — T (5)]| — 0,1 —> o0,
Sowe get T (z+y) =T (z)+ T (y). Similarly T (az) = oT (z), a € K, z € X.
It remains to prove that ' € B(X,Y) and that ||T,, —T| — 0. If ¢ > 0
there is No > 1: nym > N. = ||T,, — Tw|| < e. For n > N, we have
T, (@) T (@) = i 1T, () — Ty, (@)]) < i sup [T, — Ti ] < € o],
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Consequently if n > N, we get |1}, (z) = T (z)|| < €|z]|,Vz € X, and this
yields T,, =T € B(X,Y) and T € B(X,Y); on the other hand for n > N,
T —T|| =sup{||T (z) — T (z)||, ||| = 1} <, that is ||T,, — T|| — 0.1

2. Duality Hahn-Banach Theorem

2.1 Definition Let X be a normed space on the field K = R or C. A linear
functional or linear form on X is a linear operator from X into K. We denote
by X*, instead of B (X,K), the Banach space of continuous linear functionals
on X. The space X* is called the dual space of X. If x € X and x* € X*, we
denote z* (z) by (x*, x).

We are often faced to the following problem: given a subspace M C X and a
bounded linear functional y* on M, i.e y* € M*, how to extend y* to a bounded
linear functional z* on X. The extension process solution to this problem is
given by the famous Hahn-Banach Theorem.

2.2 Theorem (Hahn-Banach)

Let X be a vector space on the field K =R or C, and let p : X — [0, 00)
be a seminorm on X, that is p satisfies:

(Dp(z+y) <px)+p(y),Vo,y € X.

(2)p(az) =|a|p(z),Va e K,Vx € X.
Let M be a subspace of X and g : M — K, a linear form on M such
that:|g (y)| < p(y),Vy € M
Then g can be extended to a linear functional f : X — K, on X such
that:|f (z)| < p(z),Vz € X

For applications, the following corollaries are the most useful:

Corollary 1: Let X be a vector space on the field K=R or C
and let p: X — [0, 00) be a seminorm on X, then for each a € X, there is a
linear functional f on X such that f (a) =p(a) and |f (z)| < p(z),Vz € X.

The next corollary shows that in a normed space, continuous linear functionals
exist in profusion:

Corollary 2: Let X be a normed space, then for each a € X, there is z* € X*
such that (z*,a) = ||a||, [{(z*,z)| < ||z|,Vz € X and ||z*|| = 1.

Corollary 3: Let X be a normed space and let M be a subspace of X.
If y* : M — K, is a continuous linear functional on M, i.e y* € M*, there is
an extension z* of y* to X with 2* € X* and |z*|| = ||y*|| .
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3. Uniform Boundedness Theorem

3.1 Theorem (Uniform Boundedness Theorem)

Let X be a Banach space and let (E;,i € I) be a family of normed spaces.

For each ¢ € I let T; : X — FE; a linear continuous operator such that:

sup {||T; ()| ,i € I} < oo, for each € X. Then we have: sup {||T;|,i € I} <
00.

Proof: For each i € I define the continuous function f; : X — R by f; (z) =
I|7; (z)]|. The condition reads: for each # € X there is M, > 0 such that
fi(x) = ||T; (z)|| < M,,Vi € I. Since X is a Baire space there is a nonempty
open U of X and a constant M > 0 such that sup {||T; ()| ,i € [} < M,Yx € U
(Theorem 5.7.7). Let B (a,r) be an open ball contained in U with ¢ € U and
r > 0. So we have ||z —al <r = sup{||T; (z)||,7 € I} < M. We show that

2M 2M
IT:|| < —,Vi € I. To this end it is enough to have ||T; (y)|| < —,Vi € I
T T

for ||ly|| < 1. For such y put x = a + ry, we get |z — a|| = r[Jy|]| < r and then
IT; (x)|| < M,Vi € I. This gives |T; (a) + rT; (y)|| < M,Vi. But a € U, so
1T (a)|| < M.

Now we make the following estimation:

17T ()l < [ITi (@) + T3 (Il + |1 T5 ()| < M + M = 2M whence |[T; (y)|| <

2M 2M
= Vi€ I Finally we get [|T;[| = sup {| T ()|, |yl < 1} < ==, Vi [.W
Corollary: (Banach-Steinhauss)

Let X be a Banach space and let E be a normed space. Let (T,) be a sequence
of linear bounded operators from X into E. Suppose that T (z) = limT, (x)

exists in F for each z € X. Then T (x) defines a linear bounded operator T
from X into E with ||T|| < liminf ||7,] .

Proof: It is clear that T is linear. Let ¢ > 0 and z € X, thereis N = N, , > 1
such that Vn > N : |T,, ()| < ||T (z)|| +e€. Since sup ||T}, (x)]| < oo, we deduce
n<N

that sup || T}, (z)|| < oo, for each = € X. By the uniform boundedness theorem,
there is M > 0 such that sup||T,|| < M, this yields | T, (z)|| < |To.] |z]] <

Mlz||,Vn > 1 and ||T (z)|| = lim ||T, (x)|]] < M ||z||, this proves that T is

bounded. On the other hand || T, (z)|| < || T |z||,Vn > 1 = [T (2)] =
lim || T, (2)|| < liminf |7, || ||z| and then ||T']] < liminf ||T5,| .1
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