Exercice 1 : Soit E = C([-1,1]) l'espace vectoriel préhilbertien des fonctions continues à valeurs réelles. On définit l'application $\langle \cdot | \cdot \rangle$:

$$\langle f | g \rangle = \int_{-1}^{1} f(t)g(t)dt, \quad \forall f, g \in E$$

- Vérifier que $\ \left(\left. E \right., \left< \cdot \right| \cdot \right> \right)$ est un espace préhiblertien.
- Soit la suite $\{f_n\}_{n\geq 1}$ définie par

$$f_n(x) = \begin{cases} 0 & si \frac{1}{n} \le x \le 1 \\ 1 - nx & si \ 0 \le x \le \frac{1}{n} \end{cases}$$

Montrer la convergence de la suite $\left\{f_{\scriptscriptstyle n}\right\}_{\scriptscriptstyle n\geq 1}$ vers la fonction nulle dans $\left(E,\left\langle\,\cdot\,\middle|\,\cdot\right\rangle\right)$.

- On considère la suite $\{g_n\}_{n\geq 1}$ définie par

$$g_n(x) = \begin{cases} 1 & si \frac{1}{n} \le x \le 1 \\ nx & si - \frac{1}{n} \le x \le \frac{1}{n} \\ -1 & si - 1 \le x \le -\frac{1}{n} \end{cases}$$

- a) Montrer que $\|g_{n+p} g_p\|^2 = \frac{2p^2}{3n(n+p)^2}$
- b) En déduire que $\{g_n\}_{n\geq 1}$ est une suite de Cauchy dans $(E, \langle\cdot|\cdot\rangle)$
- c) Etudier la convergence de $\{g_n\}_{n\geq 1}$ dans $(E, \langle\cdot|\cdot\rangle)$
- d) Conclure

Exercice 2: Soit $E = \mathbb{C}^n$ un espace vectoriel $\sup \mathbb{C}$. Montrer que l'application $\langle \cdot | \cdot \rangle : E \times E \to \mathbb{C}$ définie par $\langle x | y \rangle = \sum_{k=1}^n x_k \overline{y}_k$ est un produit scalaire sur E

1) On pose
$$u = \begin{pmatrix} -i \\ 1 \end{pmatrix}$$
, $v = \begin{pmatrix} 1 \\ i \end{pmatrix}$. Calculer les quantités suivantes : $\langle u | v \rangle$, $||u||^2$, $||v||^2$ et $||u + v||^2$.

2) Que peut-on Conclure?

Exercice 3: Soit $(E, \|\cdot\|)$ un espace vectoriel préhilbertien sur \mathbb{R} . Montrer que $\forall x, y \in E: \|x+y\|^2 = \|x\|^2 + \|y\|^2 \Rightarrow \langle x|y\rangle = 0$

Exercice 4: Soit $(E, \|\cdot\|)$ un espace vectoriel normé sur \mathbb{R} . On suppose que la norme vérifie l'identité du parallélogramme. On définit l'application $\langle\cdot|\cdot\rangle: E\times E \to \mathbb{R}$ par $\langle x\,|\,y\rangle = \frac{1}{4} \Big(\|x+y\|^2 - \|x-y\|^2 \Big)$

Montrer que $(E, \langle \cdot | \cdot \rangle)$ est un espace préhilbertien.

Exercice 5: Soit $E = (\mathbb{R}^n, \| \|_{\infty})$ l'espace vectoriel des fonctions continues à valeurs réelles, muni de la norme :

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|, \qquad \forall x \in E.$$

L'espace E est-il un espace préhilbertien ?

Exercice 6: Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien. Montrer que si $\phi_1, \phi_2, \dots, \phi_n$ sont des éléments non nuls de E, deux à deux orthogonaux, sont linéairement indépendants.

Exercice 7 : Soit $\left(E,\left\langle \cdot\right| \cdot \right)$ un espace de Hilbert et A une partie de E

- 1) Montrer que l'ensemble $A^{\perp} = \{x \in E, \ \forall a \in A \ \langle a | x \rangle = 0\}$ est un sous-espace vectoriel fermé de E.
- $2) \quad A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$
- 3) Montrer que si A est un sous-espace vectoriel de E alors $(A^{\perp})^{\perp} = \overline{A}$

Exercice 8 : Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien. Montrer que pour tout $x, y \in E$ $|\langle x | y \rangle| = ||x|| ||y||$ si et seulement si x et y sont liés.

Exercice 9 : Soit $(E, \langle \cdot | \cdot \rangle)$ un espace de Hilbert et la boule fermée $B = \overline{B}(0,1)$ de E On rappelle que $d(x,B) = \inf \{ \|x-y\| \colon y \in B \}$

Montrer que qu'il existe un élément $x^* \in B$ unique tel que $d(x, B) = ||x - x^*||$.

Montrer que

$$x^* = \begin{cases} x & \text{si } x \in B \\ \frac{x}{\|x\|} & \text{si } x \notin B \end{cases}$$

Exercice 10 : Soit $\left(\mathbb{R}^3,\left\langle\cdot\middle|\cdot\right\rangle\right)$ un espace de Hilbert euclidien.

1) Utiliser le procédé de Gram-Schmidt pour orthogonaliser les vecteurs suivants :

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

2) Soit le plan
$$P = \left\{ v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad x_1 - x_2 + x_3 = 0 \right\}$$
 et le vecteur $u = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

Calculer u^* la projection orthogonale du vecteur u sur P.

Exercice 11: Soit $(\prod_3 [-1,1], \langle \cdot | \cdot \rangle)$ le sous-espace vectoriel des polynômes de degré 3.

- 1) Construire une base orthogonale de Π_3 (utiliser l'algorithme de Gram-Schmidt)
- 2) Calculer la meilleur approximation de la fonction $f(x) = x^4$ par un polynôme de degré 3.

Exercice 12 : Soit E = C([0, a]) (a > 0) l'espace vectoriel des fonctions continues à valeurs complexes muni du produit scalaire $\langle f | g \rangle = \int_0^a f(t) \overline{g}(t) dt$

Montrer que la famille $\left\{e_k(x) = e^{2i\pi k \frac{x}{a}}\right\}_{k \in \mathbb{Z}}$ est un système orthogonal

Exercice 13 : Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien sur $\mathbb R$.

- 1) Calculer $||u + \lambda v||^2$ pour tout $u, v \in E$ et $\lambda \in \mathbb{R}$.
- 2) Montrer que si $||u + \lambda v|| \ge ||u||$ pour tout $\lambda \in \mathbb{R}$ alors u et v sont orthogonaux
- 3) Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien sur $\mathbb C$. Montrer que si $||u + \lambda v|| \ge ||u||$ pour tout $\lambda \in \mathbb C$ alors u et v sont orthogonaux