Série d'exercices N° 1

Quelques rappels sur le corps réel $\mathbb R$

Exercice 1

Soit $f: X \to Y$ et $A, B \subset X$ et $(A_i)_{i \in I}$ est une collection de sous ensembles de X alors :

- (a) $f(A \cap B) \subset f(A) \cap f(B)$; (b) $f(A \cup B) = f(A) \cup f(B)$;
- (c) $f(A \setminus B) \supset f(A) \setminus f(B)$; (d) $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$;
- (e) $f(\cap_{i\in I}A_i)\subset \cap_{i\in I}f(A_i)$.

Si $A, B \subset Y$ et $(B_i)_{i \in I}$ est une collection de sous ensembles de Y alors

- (a) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$; (b) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$;
- (c) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$; (d) $f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i)$;
- (e) $f^{-1}(\cap_{i \in I} B_i) = \cap_{i \in I} f^{-1}(B_i)$.

Exercice 2

Soient $f: X \to Y, A \subset X$ et $B \subset Y$

- 1. Montrer que $A \subset f^{-1}(f(A))$ et on obtient égalité si f est injective.
- 2. Montrer que $f(f^{-1}(B)) \subset B$ et on obtient égalité si f est surjective.

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - 1$. Trouver

$$f^{-1}(\{15\}, f^{-1}(\{-16\}, f^{-1}(\{x: x \le 0\}, f^{-1}(\{x: 3 \le x \le 24\}.$$

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(\pi x)$

- 1. Montrer que f n'est ni injective, ni surjective.
- 2. Choisissez des restrictions sur le domaine de f de telle sort que la nouvelle fonction est surjective mais pas injective.
- 3. Choisissez des restriction sur le domaine de f de telle sort que la nouvelle fonction est injective mais pas surjective.
- 4. Choisissez des restriction sur le domaine de f de telle sort que la nouvelle fonction est bijective.

Exercice 5

Soient A et B deux parties bornées de \mathbb{R} . On note $A + B = \{a + b : (a, b) \in A \times B\}$.

- 1- Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2- Montrer que $\sup(A+B) = \sup A + \sup B$.

Exercice 6

Soit I le sous-ensemble de $\mathbb R$ défini par $I=\{x\in\mathbb R:1\leq \frac{x}{2}+\frac{1}{x+1}<2\}.$

- 1. Montrer que I est la réunion de deux intervalles que l'on déterminera.
- 2. Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément et le plus petit élément de ces intervalles.