Université de Batna 2 Département de Mathmatiques Master 1 Année universitaire: 2018/2019.

Analyse fonctionnelle appliquée Série d'exercices n°2

Exercice 1:

Soit $H = L^2(0,1)$ et $T = \frac{d}{dx}$ un opérateur tel que

 $D(T) = \{ f \in H : f \text{ est absolument continue et } f' \in H \}.$

Montrer que l'opérateur T est fermé.

Exercice 2: Soient H_1 et H_2 des espaces de Hilbert sur \mathbb{K} , et soit $T \in L(H_1, H_2)$, Montrer que

- 1. $R(T^*)^{\perp} = \ker(T)$.
- 2. $R(T)^{\perp} = \ker(T^*)$.
- 3. $\overline{R(T)} = \ker(T^*)^{\perp}$.
- 4. $\overline{R(T^*)} = \ker(T)^{\perp}$.

Exercice 3: Soient H_1 et H_2 deux espaces de Hilbert et $T: H_1 \to H_2$ un opérateur linéaire. Montrer que T est compact si et seulement si T^* est compact.

Exercice 4 : Soient H un espace de Hilbert et T un opérateur linéaire sur H le noyau de T est défini par $ker(T) = \{x \in D(T) : Tx = 0\}$. Montrer que

- 1. Si le domaine de T est dense dans H, alors $ker(T^*) = R(T)^{\perp}$.
- 2. Si T est un opérateur fermé, alors $ker(T) = R(T^*)^{\perp}$.

Exercice 5: Soient H_1 et H_2 deux espaces de Hilbert et $T:D(T)\subset H_1\to H_2$ un opérateur linéaire de domaine dense et $J:H_1\times H_2\to H_2\times H_1$ définie par $J(h_1,h_2)=(-h_2,h_1)$.

- 1. Montrer que J est linéaire continue et bijective et $J^* = J^{-1}$.
- 2. Montrer que $G(T^*) = [J(G(T))]^{\perp}$.
- 3. Déduire que T^* est un opérateur fermé.

Exercice 6:

Soit $H = L^2(0,1)$ et $T = \frac{d^2}{dx^2}$ un opérateur tel que

 $D(T) = \{ f \in H : f, f' \text{ sont absolument continues} \quad f(0) = f(1) = 0 \text{ et } f'' \in H \}.$

 $D\acute{e}terminer\ T^*\ l'adjoint\ de\ T.$